
INFORMATICA, 2009, Vol. 20, No. 3, 343–368 343
© 2009 Institute of Mathematics and Informatics, Vilnius

Requirements Elicitation in the Context of
Enterprise Engineering: A Vision Driven Approach

Albertas ČAPLINSKAS
Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: alcapl@ktl.mii.lt

Received: October 2008; accepted: March 2009

Abstract. In the context of enterprise engineering, strategic planning, information systems engi-
neering, and software engineering activities should be tightly integrated. Traditional, interview-
based requirements gathering and elicitation techniques are suited for this aim not enough well
and often lead to the violation of the strategic alignment. The vision-driven requirements engi-
neering has been proposed to solve this problem. The paper contributes to the further development
of vision-driven requirements engineering techniques. It proposes a methodical framework that
defines a complete scheme to organize different level requirements and allows to flowdown re-
quirements from business to software level preserving their business-orientation.

Keywords: enterprise engineering, methodical frameworks, requirements engineering, strategic
alignment vision driven approach.

1. Introduction

The development of an enterprise system is a kind of strategic innovation. Usually, it
initiates the business reengineering process which intends to introduce a new, more pro-
gressive business model and in order to solve problems, which faces current business;
to explore new opportunities created by modern ICT; and to provide new values for the
customers. Consequently, the development of an enterprise system should be started with
strategic analysis because the strategic alignment of the enterprise system to the business
goals and needs cannot be achieved without linking the system requirements with the
business vision, goals, objectives and strategies. It is the main point of the vision-driven
enterprise engineering. Every member of the project team, from the top managers to the
programmers and testers, should be able to articulate the reasons why the project has been
undertaken, and which business strategic objectives it should meet. In other words, if the
team aims to develop the system truly supporting the business, it must understand what
the real business needs are or, quoting Paul A. Strassmann,

“Before one tries to prescribe solutions to problems, one must necessarily un-
derstand and interpret the problems correctly” (Strassmann, 1998).
The traditional requirements gathering techniques suppose that all real business needs

can be discovered investigating the customers, end users and other stakeholders. How-
ever, the information gathered from the stakeholders usually is not enough trustworthy



344 A. Čaplinskas

and only partly reflects real business goals and needs. It happens for many reasons. The
top management has no time for long interviews and discussions and, mainly, is not famil-
iar enough with the details of modern ICT. It cannot envisage what new business opportu-
nities can be created by an advanced enterprise system today. The middle-level managers
and line-of-business employees are occupied with the hot operational problems, which
mostly are only indirectly related with the strategic goals of the enterprise. Consequently,
this personal expects first of all that the to-be enterprise system will help to solve these
hot problems. As a result, the gathered requirements to a large extent are subjective. The
real operational needs are tangled with the desires and wishes of the investigated persons.
Shortly, such requirements usually lead to the violation of the strategic alignment.

A number of architectural and methodical frameworks aiming to lower the risk to vi-
olate strategic alignment have been proposed. The most popular ones are the Zachman
framework (Zachman, 1987) and the TOGAF (The Open Group, 2002). Architectural
frameworks are static and, mainly, purposed to classify artefacts. Methodical frameworks
are dynamical ones. They define the order in which artefacts must be developed and
provide guidance how it should be done. Encompassing all phases of enterprise engi-
neering, they do not go into details of any particular phase or activity, including the re-
quirements engineering. To provide guidance in which order the requirements should be
elicited and analyzed, a requirement-oriented framework is necessary in addition. This
paper discusses such a framework that defines a complete scheme to organize different
level requirements of a to-be enterprise system and allows to flowdown these require-
ments from the business level to the software level preserving the business-orientation.
However, it does not pretend to propose neither a new requirements engineer process nor
a new requirements engineering methodology. It does not consider requirements trace-
ability, process scalability and many other issues that should be considered describing a
process or a methodology. The proposed framework is supposed to be used together with
the most of current requirements engineering processes, methodologies and enterprise
architectures. It is oriented to the middle scale enterprise systems because to define in
advance all requirements for large enterprise systems is impossible.

The remaining of the paper is organized as follows. Section 2 discusses the Zach-
man framework. Section 3 describes the vision driven approach to the requirements en-
gineering. Section 4 surveys the related works. Section 5 highlights relations between
the systems engineering and the philosophy beyond the proposed methodical framework.
Section 6 describes this framework in details. Section 7 concludes the paper.

2. The Zachman’s Framework

The methodical framework proposed in this paper is organized in a similar way as the
Zachman’s framework (Zachman, 1982, 1987; Sowa and Zachman, 1992), although the
recent is an architectural one. In this original version, the Zachman’s framework sup-
poses that it is possible to manage the complexity of an enterprise system using multi-
perspective approach or, more exactly, explicitly looking at every important issue from



Requirements Elicitation in the Context of Enterprise Engineering 345

every important perspective – planner’s, owner’s, designer’s, builder’s, integrator’s and
user’s. The views describe the system by collection of artefacts (models) at the con-
textual, conceptual, logical, physical, integrated and operational levels. The Zachman’s
framework also supposes that all important issues (focus areas) for each perspective can
be described answering six questions: what? (data), how? (functions), where? (network),
who? (people), when? (time), and why? (motive). So, the rows representing perspectives
and the columns representing important issues form matrix with the dimension 6 × 6.
The semantic of the Zachman’s framework is defined by seven rules (Sowa and Zach-
man, 1992; Inmon et al., 1997):

• Perspective uniqueness – Each row represents a distinct and unique perspective.
• Dimension simplicity – Each column has a simple basic model describing an aspect

of the enterprise architecture. Models are interdependent and interact continuously
(a change in one column usually affects one or more other columns).

• Dimension uniqueness – The basic model of each column is unique. It means that
each artefact of an enterprise system can be unambiguously classified.

• Cell uniqueness – Each cell is unique.
• Dimension importance – Columns have no order.
• Dimension necessity – All six dimensions are needed for the complete description

each of the perspectives.
• Logic recursiveness – The framework may be used to describe different variants

of the enterprise system (e.g., as-is and to-be) and each variant can and may be
described at various levels of detail/granularity (i.e., the cells can and may be de-
scribed at various levels of detail/granularity).

To sum up, I conclude that the Zachman’s framework is organized using combination
of abstraction, decomposition, concern separation and unification principles. Zachman
defines the 6 abstraction levels or, in his terminology, perspectives. The decision to define
6 perspectives is well-motivated but not principal one. The number of perspectives is
context-dependent. Developing other frameworks one may define as many perspectives
as it is necessary.

Zachman decomposes each perspective into six focus areas named “what”, “how”,
“where”, “who”, “when”, and “why”. I call it the H3W decomposition. The H3W de-
composition is exhaustive and ensures the complete separation of concerns. So, at least
in the context of enterprise engineering, the number six is principal one. Developing other
frameworks one always must use the H3W decomposition to decompose perspectives re-
gardless how many perspectives are defined.

3. Vision-Driven Requirements Engineering

The proposed framework follows the philosophy of the vision-driven approach. This ap-
proach is not a new one. Already James Martin in his classical work on enterprise engi-
neering emphasized the leading role of vision for the success of enterprise engineering
projects (Martin, 1995). S.M. Grotevant put this in the following way:



346 A. Čaplinskas

“Information Technology provides the infrastructure and tools, which funda-
mentally change organizations, but management provides the strategic business
vision that transforms technology into competitive advantage” (Grotevant, 1998).
This approach is widely accepted by the requirements engineering community (De la

Vara and Díaz, 2007; Dumas et al., 2005; Lamsweerde, 2001) as well as by many im-
portant players in the field of systems engineering, including the MITRE Coorporation
(McLean, 2006). In the context of the requirement engineering, the vision-driven ap-
proach means that most of the system requirements can be and should be derived directly
from the results of the strategic planning, first of all from the business vision. It is a nat-
ural point of view because the enterprise systems are purposed to support the strategic
goals of the enterprise. Although the stakeholders play a very important role in the re-
quirements discovery and elicitation, nevertheless, they are only supplementary source
of information serving to complete and to refine requirements derived from the results of
the strategic planning. In line with this approach, the strategic analysis and the strategic
planning should be modified in such a way that they can be considered also as inherent
parts of the enterprise engineering process. More exactly, it is assumed that the enterprise
architecture planning must be included into strategic planning because it is “the process
of defining architectures for the use of information in support of the business and the plan
for implementing those architectures” (Spewak and Hill, 1995).

In line with the vision-driven approach, the aim of the strategic analysis is to discover
the threats and problems hindering to achieve strategic as well as tactical goals of the en-
terprise and, as a consequence, to implement successfully its mission. The unused busi-
ness opportunities must be analysed and described, too. It is also highly recommended to
prepare the forecast of challenges, which with high probability will be faced by the enter-
prise in near future. The final aim of the strategic planning is to develop the detailed vision
statement which should be formulated on the basis of results of the strategic analysis and
describe how, using new opportunities, to improve the business that at least the most
serious problems and threats would be eliminated and that the enterprise will become
able to cope with the forecasted challenges. The vision statement is considered as a part
of the to-be enterprise system requirements, more exactly, as the highest-level require-
ments of this system defining its purpose as well as reasons why it should be developed.
The vision statement is formulated in such way that it will serve as a basis to define the
scope and the depth of the project. To be realistic and implementable, the vision should
be constrained by a number of financial, political, legal and ethical constraints. Financial
constraints define the reasonable amount of investments for the development of the to-be
system. Political constraints define what business policies, first of all security policies,
must be preserved in the to-be system. Legal and ethical constrains define what legal and
ethical norms cannot be violated by the to-be system. So, the term “vision statement” is
used here in slightly different meaning as in the business where it usually means “a short
and inspiring statement of what the organisation intends to become and to achieve in the
future, often stated in competitive terms”. Here this term addresses a precise description
of the desirable future state of the enterprise, which first of all performs a directional
function. It expresses the goals, aspirations and intentions of the enterprise and must be



Requirements Elicitation in the Context of Enterprise Engineering 347

approved by the top management and may be by the other important stakeholders. Nev-
ertheless, it should be developed by the professionals, mainly, by the business analysts,
consultants and architects involving also the information systems analysts and even the
application systems analysts. The details of the vision development process are beyond
the scope of this paper and will not be discussed here.

4. Related Works

In the context of vision-driven enterprise engineering, some attempts already have been
done to use the Zachman’s architectural framework (Zachman, 1987; Sowa and Zachman,
1992) as a methodical one. D. Hay proposed (Hay, 2002) how to use this framework to
translate the business owner’s view into the architect’s view. He emphasizes the impor-
tance of strategic planning and supposes that it should be considered as the first phase
in developing any business-oriented software (Hay, 2002). Hay describes the tasks of
strategic planning as follows:

“Lay out the vision, mission, priorities, and constraints of the enterprise. From
this, define a set of projects, carefully setting the boundaries among them so as to
make the whole coherent. These boundaries then define the scope of each project.
This phase is carried out from the perspective of the planner’s view (Row One) of
the Architecture Framework” (Hay, 2002).
The most important shortcoming of the proposed approach is that Hay, similarly as

the Oracle methodology (OC, 2000), views the whole enterprise engineering process from
the point of view of database system. He supposes that at each abstraction level the data
requirements first of all should be specified and the data model should be developed. As a
result, the motivation serves not as the starting point from which other requirements must
be derived, but only for the explanation of reasons of already defined requirements. In
addition, Hay is not consequent in dealing with the information processing requirements
(i.e., IS-level requirements). On the one hand, he states that the task of requirements
analysis phase is:

“The detailed examination of a particular area of the business. In that area,
what are the fundamental, underlying structures, what are the information-
processing gaps, and what kinds of information technology might address these?
What data are required, when, and where, for each function to be performed?
What roles perform each function, and why? What constraints are in effect?”
(Hay, 2002).
On the other hand, he interprets the Zachman’s “information-system designer’s view”

as “a model of fundamental concepts” which defines the business in more rigorous terms.
In fact, he tangles IS requirements partly with business level requirements, partly with
software level requirements and supposes that the flowdown of requirements can be per-
formed directly from the business level to the application system level. Such approach
infringes the concern separation principle and increases the risk to violate the strategic
alignment.



348 A. Čaplinskas

K. Wiegers proposed (Wiegers, 2003) another way how to translate the business soft-
ware requirements into the business ones. Wiegers does not refer to any enterprise ar-
chitecture. He also does not pretend to propose “an elaborate methodology that purports
to solve all of your requirements problems” (Wiegers, 2003). Nevertheless, the scheme
used to organize different levels requirements is closely related to the Zachman’s frame-
work because this scheme groups requirements into layers using criteria of views or per-
spectives. Wiegers defines three perspectives: business requirements, user requirements,
and software requirements. Information processing requirements do not belong to any
of these groups and are considered as ‘system requirements’, which are treated as ex-
ternal information source to be used defining software level requirements. It seems, that
Wiegers follows here the IEEE Std 1223-1998 (IEEE, 1998) approach. His book is a
valuable source for any requirements engineer, but it does not describe in details how one
can perform correctly the requirements flowdown from the business to the software level.
He mentions both business and software visions, but explains how to explore further the
software vision only. How business vision and other deliverables of the strategic plan-
ning should be used, is not explained. There is also some obscurity in how the software
requirements can be derived from the user requirements.

Highly related to the vision-driven enterprise engineering approach is also the famous
Circular No. A-130 (OMB, 1996). The document requires that developing an enterprise1

system it is necessary:

• to identify the work performed to support enterprise’s mission, vision and perfor-
mance goals;

• to analyze the information utilized by the enterprise in its business processes, iden-
tifying the information used and the movement of the information;

• to identify, to define, and to organise the activities, that capture, manipulate, and
manage the business information to support business processes, and to describe the
logical dependencies and relationships among business activities;

• to define the data and to describe the relationships among data elements used in the
enterprise’s information systems, and to identify how data is created, maintained,
accessed, and used;

• to describe and to identify the functional characteristics, capabilities, and intercon-
nections of the hardware, software, and telecommunications.

It is easy to see that, even if it is not stated explicitly, this document treats the IS
requirements as an autonomous group of requirements which is clearly separated from
the business level as well as from the application level requirements. It requires align-
ing the IS requirements with the business processes that support the enterprise’s mission
and goals. However, the document does define neither any framework nor process nor
methodology how to organise, elicit, derive and flow down the requirements.

The leader in the practical application of vision-driven approach in enterprise engi-
neering is the USA Department of Defence (DoD), which already in 1996 developed
the first version of its C4ISR Architecture Framework (DoD, 1997). In 2003 this frame-
work was supplanted by the first version of the new framework DODAF (now already

1The document uses the term “agency”. The term “enterprise” is more general one.



Requirements Elicitation in the Context of Enterprise Engineering 349

the version 1.5 (DoD, 2007) is available). In the DoD approach the primary driver is the
business mission. The DODAF provides four kinds of views or perspectives for the en-
terprise architecture: all view (AV), operational architecture (OA), systems architecture
(SA), and technical architecture (TA). The AV describes the entire architecture and de-
fines the scope and context of the architecture. The OA describes the operational context,
the SA describes the system capabilities, and the TA describes the arrangement, inter-
action, and interdependence of the system parts. The Enterprise Architecture planning
process is based on the Business Systems Planning (BSP) approach (Zachman, 1982)
and takes a data-centric approach for the architecture planning. A similar approach has
been advocated by Spewak and Hill (1995). Goikoetxea (2007) follows this approach,
too. He argues that an architectural framework should provide five views or perspectives:
Business Process Architectural View, Business Systems Architectural View, Data Ar-
chitectural View, Applications Architectural View, and Technologies Architectural View.
Like many other researchers, Goikoetxea advocates data-centric approach. He supposes
that the Vision and Strategy document must be translated into a set of business processes
describing the day-to-day business of the enterprise and each business process must be
decomposed into a number of business activities. After this, the existing set of logical
business systems must be modified and extended into new set of logical enterprise busi-
ness systems. Goikoetxea uses the term “business system” rather to address the functional
areas of a business such as human resources or finances. The new set of business systems
must be represented hierarchically as a tree of business systems. Interfaces for each busi-
ness system must be defined in terms of the services provided by this system. Further the
business hierarchy must be broken into groups having business affinity for each other and
each such group must be considered as a separate project.

To sum up, a number of approaches how to translate the business level requirements
into the software level requirements has been proposed but up to time any exhaustive and
detailed methodical framework still is not developed for this aim.

5. The Systems Engineering View on an Enterprise System

Enterprise engineering deals with three different kinds of systems – business, informa-
tion, and application systems. However, there is no generally accepted agreement on what
these terms mean. Different authors define quite differently what a business system, an
information system, or even an application system is. The vision-driven requirements
engineering requires to conceptualise all layers of an enterprise system in a unified man-
ner and, consequently, to define business, information, and application systems using the
same ontology and unified terminology. An attempt to do this has been made in Caplin-
skas et al. (2002a, 2002b, 2003) using the system engineering paradigm. The system
engineering is a holistic, integrative discipline, wherein the contributions of many engi-
neering disciplines are evaluated and balanced, one against another, to produce a coherent
whole that is not dominated by the perspective of a single engineering branch (Grif-
fin, 2007). Even if today many of main players in the field, including the International



350 A. Čaplinskas

Counsel on Systems Engineering (INCOSE), consider the system engineering primarily
as an interdisciplinary field of engineering, even as a separate engineering discipline, it is
possible to consider it also as a generic discipline, which focuses on the ideas, concepts,
principles, methodologies, methods, techniques and practices that, after specialization,
adaptation and enrichment, can be applied for engineering almost of any kind of systems.
A similar point of view among others advocates also the generic design science (Warfield,
1994). For sure, not all engineering methods, techniques and approaches, especially ones
related to the implementation of system components, can be generalized and formulated
in terms of abstract system. Besides, there are still many unsolved issues related to the
engineering of self-organising emerging systems, first of all, social and socio-technical
ones. Because the business systems and the IS are socio-technical systems, any enterprise
engineering effort will be, probably, fallen if it does not take into consideration also the
human components of the system. In recent time, this problem has been intensively dis-
cussed and some solutions have been proposed. For example, Haskins (2005, 2007, 2008)
suggests that using patterns and pattern languages it is possible to extend the language
of systems engineering and to include both social and technological contexts. Another
solution is to consider the enterprise system as a composition of only “mechanistic” el-
ements, including elements needed to support the social reengineering issues, supposing
that the decisions how to redesign social components have already be done and are re-
flected in the reengineering strategy. Nevertheless that the problem is still far to be solved
in full extent, the systems engineering methodology can and should be applied for the
engineering of the enterprise systems. This point of view is supported by many authors.

An abstract artificial system can be defined from outside as well as from inside per-
spectives. From the inside perspective it is usually defined as a whole, formed out of sets
of elements and relationships between them that distinguish itself by emerged properties
of connectedness and functionality. From the outside perspective it is defined as a black
box, that is, as an entity characterized only by its external interface behaviour. It means
that the system is defined in terms of inputs, outputs and a mathematical relation between
them. Some authors, for example, Myers and Kaposi (2004), see a system rather as a
model of a real-world entity or, in terms of Myers and Kaposi, as a representation of a
referent, but not as a real-world entity itself.

“It is not true that anything and everything is a system, but it is true that any-
thing and everything can be modelled as a system” (Myers and Kaposi, 2004).
In line with this approach, the outside perspective is described by a black box repre-

sentation of system and the inside perspective is described by its structural representa-
tion. Taking a snapshot of the referent at the time instant, “we obtain its representation as
a product”, and, modelling its operation over a period of time, “we shall have its repre-
sentation as a process” (Myers and Kaposi, 2004).

The idea that any system under development should be represented firstly as a black
box and that this representation should be step by step transformed later into structural
representation is widely accepted in many engineering fields, including software engi-
neering and enterprise engineering. In SE this idea was proposed by H.D. Mills (Linger
et al., 1979) and elaborated later in the Cleanroom methodology (Prowell et al., 1999)



Requirements Elicitation in the Context of Enterprise Engineering 351

where the externally visible behaviour of a black box is specified in the terms of a total
mathematical function that maps every possible sequence of input stimuli to the appro-
priate response. Frappier and St-Denis (1998) extended this definition in that they use
a relation instead of a function. This model allows representing the behaviour of state-
aware systems without defining internal states. The systems with the states observable
from the outside perspective can be described using pre- and post-conditions. Using in-
variants, and pre- and post-conditions it is possible to describe some non-functional char-
acteristics of system, too. However, not all non-functional characteristics can be specified
using this approach because some characteristics cannot be related to any specific func-
tion or relation and are generated by a whole system. Linear and non-linear, deterministic
and non-deterministic systems can be represented as functional style black boxes. How-
ever, it is possible to represent the systems using also black box models of other styles:
object-oriented, service-oriented, task-oriented, etc. For example, in the object-oriented
paradigm an object can be considered as a black box, which receives and sends mes-
sages. According to the contract principle proposed by Meyer (1988), the specification
of an object-oriented system can be treated as a black box representation of this system.
A more elaborated representation of an object-oriented black box system is a use case
model (Jacobson et al., 1992). A use case is a pattern of behaviours the system exhibits
or, in other words, it specifies a set of transactions initiated by an external actor. It means
that it describes how the system responds to the external stimuli. A stimulus is an event
that initiates a goal-oriented interaction between an external actor and the system. This
interaction produces a result that is observable from the outside perspective. An actor is
someone or something external to the system and interacting with it. A use case descrip-
tion may include the pre- and post-conditions, invariants, goal description, description of
abnormal situation and other related information. Thus, “a use cases capture who (actor)
does what (interaction) with the system, for what purpose (goal)” (Malan and Brede-
meyer, 1999). A use case model describes all the actors of the system and all use cases
initiated by them. It specifies all the ways of using the system or, in terms of the use
case approach, describes the system as having a set of responsibilities. Apart of the use
case model, this approach provides also other black box views of the system (Gomaa and
Olimpiew, 2005): use case interaction model, use case collaboration model, use case con-
text model and use case state model. A use case interaction model describes all system
usage scenarios. The system is treated as a black box object, actors as objects, and stim-
uli and responds as the messages. This model explicitly describes the sequences of inputs
and outputs of the system. A use case collaboration model represents the functionality of
the system by roles that each actor plays in collaborations with it. This model is used for
black box representation of an enterprise system in the SEAM methodology (Wegmann
et al., 2005). A use case context model represents all external classes that interact with the
black box system that is represented as an aggregate class (Gomaa and Olimpiew, 2005).
External classes represent users, external devices and external systems. The difference
between actors and external classes is that actors are intended to be proactive, providing
inputs to the system. An actor can interact with the system using several external classes.
For example, using an ATM to withdraw the cash from the machine, the actor (customer)



352 A. Čaplinskas

uses several external hardware devices (card reader, keyboard, display, cash dispenser,
printer), which are represented as external classes (Gomaa and Olimpiew, 2005). Thus,
comparing with the use case model, the use case context model provides some additional
information. A use case state model describes the interactions between the actor and the
black box system by protocol state machines. This model describes the state-depend sys-
tems more effective as the use case model because it explicitly describes the inputs from
each actor and from the actor and state dependent responses.

The main conclusion of this discussion is that from the outside perspective it is rea-
sonable to consider an abstract system as a constrained black box of certain style that
aims at a set of goals and objectives. Goals specify the intended use of the system and
the output to be provided by it. Objectives are defined measurable levels against which
non-functional characteristics defining the quality of the system can be measured2. The
constraints specify external restrictions imposed on the behaviour of the system. The style
specifies the way in which the functionality of the system can be accessed.

In the enterprise engineering context, black boxes usually are purposed to process the
events. The term event is used here in a very broad sense. It encompasses commands,
situation and everything that directly or indirectly triggers the system. Such black boxes
can be specified using the H3W decomposition (Sowa and Zachman, 1992).

Let me go back now to the definition of an abstract system from the inside perspective.
Usually, it is defined as a whole, formed out of sets of elements and relationships between
them that distinguish itself by emerged properties of connectedness and functionality.
Although this definition is accepted by most researchers working in the fields of systems
and enterprise engineering, it is mainly ignored when defining business, information and
application system. I advocate that these systems should be defined by the concretisation
of the definition of an abstract system and that in the context of enterprise engineering it
can be done in the below described way.

An enterprise business system is a whole formed out of sets of business actors, re-
sources, and interrelated business processes (possibly, including some production pro-
cesses) that implements business policies and business rules accepted by the enterprise.
Any business system is purposed to achieve certain, usually long term mission-related
business goals delivering particular domain-specific products or/and services. A business
actor is an entity capable of exerting behaviour. Each actor in the system is responsible
for performing some set of business and/or production operations and is implemented us-
ing some combination of peopleware, hardware and software, including information and
application systems. A business system domain (or simply business domain) is a sphere
of business activity related to the mission of enterprise. Sometimes such domains are
called mission domains and the term business domain encompasses not only mission but
also the so-called resource domains (Wells, 2006). Typically, an enterprise has several
business domains and, consequently, several business systems. For example, a university
may have separate business systems to deliver the education, research and community
services. Each business system produces, process, uses or in other way manipulates some

2This definition has been suggested by Ferrstl and Sinz (2006).



Requirements Elicitation in the Context of Enterprise Engineering 353

business objects. The term business object is used here as a generic one and refers to a
product, service, resource or business event. Mostly, it is interchangeable with the term
accounting object. Each business system provides a number of interfaces. The parts of
business system are related to each other by architecture of this system (static relation-
ship) and by system’s workflow (dynamic relationship). All the enterprise business sys-
tems form together a collaboration in which each business system plays some prescribed
role required to fulfil the mission of the enterprise.

An enterprise information system (IS) is a whole formed out of organisational mem-
ory and sets of information processing actors (IPA), information flows, and interrelated
information processing processes implemented in accordance with the enterprise infor-
mation processing policies and standards. It includes also various system integration and
management mechanisms including organizational ones. An enterprise information sys-
tem is purposed to deliver information, computing and communication services required
by internal business actors and, possibly, by some external actors (customers, clients,
governmental bodies, etc.). An IPA is an entity capable to deliver some set of required
services and is implemented using some combination of peopleware, hardware and soft-
ware, including application systems. Shortly, an information system is system that pro-
vides the information required to perform everyday business activities and supports the
business decisions (Davis and Olson, 1985). Typically, it consists of a number of rela-
tively autonomous subsystems, a part from which support so-called functional areas (fi-
nance, human resources, materiel resources, procurements, management, etc.) and other
part provide specific services required to support particular enterprise business systems.
All subsystems of an enterprise IS are integrated and form together a collaboration in
which each subsystem plays some prescribed role required to support the enterprise busi-
ness as a whole. An enterprise IS provides a number of interfaces used to access the
services delivered by it. It produces, process, uses or in other way manipulates some in-
formation objects, a part from which models accounting objects and other part are infor-
mation entities that exist only at the IS level. The parts of an IS are related to each other
by architecture of this system (static relationship) and by system’s workflow (dynamic
relationship).

As a part of enterprise system, an application system can be defined as a whole formed
out of sets of hardware agents, protocols, data stores, knowledge bases, and interrelated
software application programs. An application system is purposed to support a particular
information processing function and to deliver the services required by the IPA related
to this function and, possibly, by the other application systems. Some application sys-
tems may fully implement the appropriate IPA or, in other words, act as IPA and deliver
services directly to internal or/and external business agents. Such application systems are
called software agents. Hardware agents (computers, networks, etc.) execute software ap-
plications programs. Typically, an application system consists of a number of subsystems
(components) providing specific services required to support a particular information pro-
cessing function. An application system has a number of interfaces used to access the ser-
vices provided by it. It produces, process, uses or in other way manipulates some digital
objects a part from which models information objects and other part are software objects



354 A. Čaplinskas

used for internal purposes. The parts of an application system are related to each other
by software architecture of this system (static relationship) and by system’s control flows
(dynamic relationships). All application systems form together a collaboration in which
each application system plays some prescribed role required to support the enterprise IS
as a whole.

6. The Proposed Framework

The proposed methodical framework (Fig. 1) is intended to be used for requirements
elicitation, specification, analysis and evaluation. This paper discusses the structure of
this framework and the order in which requirements must be elicited. The description
of the concrete requirements derivation and flowdown techniques is omitted due to the
restriction of the size of the paper.

Fig. 1. The proposed methodical framework for requirements elicitation, analysis, specification and validation.



Requirements Elicitation in the Context of Enterprise Engineering 355

6.1. Perspectives

The framework (Fig. 1) provides five perspectives describing the business level require-
ments (the view of business analyst), the user level requirements (the view of stakehold-
ers), the IS requirements (the view of IS analyst), the requirements of IS subsystems (the
view of IS engineer), and the software requirements (the view of software analyst). This
list provides the levels of requirements specified normally for any enterprise system under
development. To be complete, it should additionally include the requirements of software
components (the view of software architect), the implementation requirements (the view
of software engineer), the process requirements (the view of process engineer), and the
testing requirements (the view of tester). However, these perspectives are omitted here
because they are well-researched ones and described in many textbooks, for example,
in Bray (2002). The first five perspectives differ from corresponding ones provided by
the Zachman’s framework because they are designed for different purposes. The require-
ments of a to-be enterprise system should be elicited, specified, analyzed and evaluated
for each of the proposed perspectives.

6.2. Focus Areas

The proposed framework (Fig. 1) is built using the H3W decomposition. The focus areas
are defined as following:

• “Why”: Motivation (vision of the system as it seen from the corresponding per-
spective).

• “How”: Service requirements (what services are required to support the vision;
what accuracy, reliability, and safety constraints shall meet these services?); ar-
chitectural requirements (what architecture should be chosen to produce required
services?).

• “What”: Objects requirements (what kind of objects shall process the system in
order to deliver required service; how these objects should be protected in the sys-
tem?).

• “Who”: Accessibility requirements (who will use the system and in which way?
how many and what kind of interfaces should provide the system? what level of
usability should be ensured for this aim?).

• “Where”: Workplaces requirements (what workplaces are required for each
“who”? how these workplaces should be equipped?).

• “When”: Efficiency requirements (what deliver time is acceptable for each of ser-
vices provided by the system?).

The development of architectural requirements is a design activity. However, it is con-
sidered here as a part of the proposed methodical framework because the functional and
architectural requirements are tightly related and should be developed in parallel. Be-
sides, it is impossible, for example, to produce application systems requirements without
decomposing the IS into subsystems and deciding what application systems are required
to support these subsystems.



356 A. Čaplinskas

6.3. Rules

The semantic of the proposed framework (Fig. 1) is described by the following rules:

• Perspective uniqueness – Each row represents a distinct, unique perspective. Each
perspective describes the requirements of to-be enterprise system from the point
of view of some group of stakeholders. The requirements should be produced in
the order provided by the ordering of rows. The perspectives are interdependent,
most of the lower level requirements follow from the higher level ones; all higher
level requirements must flowdowned to the lower level; the requirements coming
from other sources (additional requirements) are constrained by the higher level
requirements.

• The dominant role of business vision – Top level requirements are derived from the
constrained business vision.

• Design basis – The flowdown of the requirements from the higher level to the
lower one should be done taking into account the design basis document that lists
the features that may be potentially provided by the lower level requirements (Fig.
1). This document helps to avoid old-fashioned solutions that may be suggested by
the stakeholders, which often are unfamiliar with the possibilities of the advanced
ICT technologies.

• Alignment of perspectives – Each perspective except higher level one is constrained
by higher level perspective. On the other hand, each perspective is augmented us-
ing additional (external) sources of information (Fig. 1). Additional requirements
elicited from the external sources augment the derived requirements but cannot
contradict higher level requirements.

• Dimension ordering – Columns are ordered according to their dependency in the
following way: “why”, “how”, “what”, “who”, “where”, and “when”.

• Dimension simplicity – Each column contains a group of requirements which de-
scribes an aspect of enterprise system. The later column may depend only on previ-
ous columns. A change in one column usually affects one or more other columns.

• Dimension uniqueness – The group of requirements described in each column is
unique. It means that each requirement of enterprise system can be unambiguously
classified.

• Cell uniqueness – Each cell is unique.
• Dimension necessity – All six dimensions are needed for the complete description

of each perspective.
• Logic recursiveness – The framework may be used to describe requirements at

various levels of granularity.
• Procedural independency – The framework establishes the classification of enter-

prise system requirements, defines the dependencies between the groups of require-
ments and the order in which different groups should be elicited, analyzed, and
specified. However it does not define any particular methods or techniques that
should be used for this aim. It does not also require some particular methods or
techniques be used for the requirements flowdown or derivation. It is independent
from any particular requirements engineering process, methods or techniques.



Requirements Elicitation in the Context of Enterprise Engineering 357

6.4. The content of the Cells

The content of the cells of the proposed framework has been discussed shortly in Caplin-
skas and Paskeviciute (2009). Here it is discussed in more details (Table 1).

6.4.1. Motivation (why-requirements)
Vision driven approach requires that during the strategic planning the vision statement
would be developed and that the financial, policy, legal, and ethical constraints for this
statement would be defined. The vision statement states what business threats and prob-
lems shall eliminate the to-be business system and what new business opportunities it
shall provide. The business level why-requirements must be derived from this statement.
They consist of a prioritised business goal tree and the financial, political, legal and ethical
constraints that constraint the implementation of the business goals provided by this tree.

At the user level, the why-requirements are formulated in terms of business processes
that shall support the to-be enterprise system. They define the list of business processes
and, for each process, its priority, inputs, outputs, events that initiate this process, and its
implementation constraints (Blick, 2000; Rukanova et al., 2006).

The list of the business processes is derived from the business goal tree. The inputs,
the outputs and the events of a business process are defined refining the business goal that
is implemented by this process. To derive the implementation constraints of the business
processes, the implementation constraints of the business goal tree must be allocated to
the business processes and the flowdown of the allocated constraints must be performed.
In other words, the decision should be made what financial constraints must be estab-
lished for implementation of each process and how this process should be constrained
in other ways. The priorities are assigned to the business processes taking into account
the priorities of corresponding business goals and hearing the voice of the stakeholders.
The priorities define the order in which the processes shall be implemented and should
be used later to take decisions about the versioning of the to-be system.

At the IS level, the why-requirements include the to-be IS vision statement, the fea-
ture tree, its implementation constraints and the priorities of the features. The vision
statement is derived from the higher level why-requirements and expressed in terms of
the user-oriented IS services supporting the required business processes. It highlights the
differences between the current IS and the to-be IS. The product vision statement tem-
plate (Moore, 1999) may be used to formulate the vision. The vision is refined by an
IS feature tree (van den Broek et al., 2008; Roubtsova and Roubtsov, 2006). The design
basis supports the development and refinement of vision statement suggesting what ser-
vices may provide and what features can implement an advanced IS today. The financial,
policy, ethical and legal constraints of feature tree are derived from the constraints of busi-
ness processes. The priorities of the features are derived from the priorities of business
processes. If the project provides an incremental development, the feature tree should be
decomposed into separate increments.

At the IS subsystems level, the why-requirements are formulated for each subsystem
separately. The list of subsystems is defined by the IS level how-requirements. To derive
the why-requirements, the IS features and implementation constraints are allocated to the



358 A. Čaplinskas

Table 1

The content of the cells

Why How What Who Where When

Business level requirements

Business vision,
goal tree and its
implementation
constraints

Requirements of
business services

Types of business
objects with
which shall
manipulate the
business system

Stakeholders,
access rights and
privileges of
stakeholders

The list of system
access points
related to the
stakeholders and
to the business
services

Time
constraints
for service
deliver

User level requirements

Business
processes, their
priorities and
implementation
constraints

Operational
needs (business
use cases),
business policies
and rules

What
information is
required to
produce required
service and how
it shall be
protected
(conceptual
requirements)

To whom shall be
delivered IS
services, access
rights, privileges
and competence
of services
receivers

Where shall be
delivered the
services

Time
constraints
for business
use cases

IS requirements

IS vision, feature
tree and its
implementation
constraints

IS use cases,
information
processing
standards,
policies and
rules.
Trustworthiness
of IS services.
Architectural
requirements

What
information shall
process IS and
how this
information shall
be protected
(detailed
requirements)

Access, interface
and usability
requirements

How should be
equipped
workplaces

Time
constraints
for IS use
cases

Requirements of IS subsystems (for each subsystem)

Subsystem
vision, feature
tree and its
implementation
constraints

Subsystem level
use cases,
trustworthiness
of results,
architectural
requirements

What
information shall
process each of
the subsystems
and how this
information shall
be protected

Access, interface
and usability
requirements

Detailed
workplaces
requirements

Time
constraints
for
subsystem
use cases

Software requirements (for each application system)

Product vision,
implementation
constraints

Application
system use cases,
trustworthiness
of results

Data
requirements,
security
requirements

Access, interface,
usability and
ergonomic
requirements

Run-time
environment,
resource
behaviour
requirements

Time
constraints
for
application
system use
cases



Requirements Elicitation in the Context of Enterprise Engineering 359

IS subsystems and their flowdown is performed. So, the why-requirements of a subsystem
consist of its vision statement, its feature tree and its implementation constraints.

At the software level, the why-requirements are formulated for each application sys-
tem supporting the to-be IS. The list of application systems is defined by the subsystem
level how-requirements. The requirements of an application system consist of the vision
of this system and its implementation constraints. The vision statement is statement is
produced refining the feature tree of the IS subsystem, which shall be supported by this
application system, and is expressed in terms of application system features. The product
vision statement template (Moore, 1999) may be used to formulate the vision. The de-
sign basis suggests what kind of features can be implemented by an advanced application
system today. To derive the implementation constraints, the constraints of each to-be IS
subsystem must be allocated to the application systems supporting this subsystem and
the flowdown of the allocated constraints must be performed. An application system may
support several IS subsystems and inherit their features and constrains. Nevertheless, ex-
cept the case when the business goal tree includes contradictory goals, any contradictions
ought not to arise.

6.4.2. Functional and architectural requirements, trustworthiness of delivered results
(how-requirements)

At the business level, the how-requirements define the list of business services, which
shall provide the to-be system in order to implement the business vision, the required
functional and extra-functional properties of the services, and their architecture. A busi-
ness service is a unit of business system capability. It produces results that are delivered
to a customer and it is implemented by a combination of business transactions. Thus,
its architecture is defined by the set of tightly coupled or dependant on similar business
events business processes. The architectural requirements of a business service define
how it is decomposed into business processes and how these processes are related each to
other. The list of all business processes defines the scope of the project (Wiegers, 2003)
because it describes what business processes shall be supported by the to-be enterprise
system. The extra-functional properties of a business service define the required quality
of service (QoS) and the required level of its trustworthiness. The business level how
requirements are derived from the why-requirements taking into account the additional
domain information collected from the stakeholders.

At the user level, the how-requirements define the business use cases, and related
business policies and business rules. That is, they describe how shall be implemented
the business transactions supported by the to-be business system. The list of primary
and secondary agents participating in the use cases is derived from the business-level
who-requirements. The list of business events that initiate the use cases and the list of
business objects processed or/and used by these use cases are derived from the business-
level what-requirements. The business polices and business rules determine how the to-be
business system shall conduct with regard to each business use case. They may be specific
to a use case or applied across the entire business system. The how-requirements should
define when and where business policies and rules are applicable. Each business use case



360 A. Čaplinskas

must provide references to the specific business rules that are active during this use case.
However, policies and rules should not be embedded in the use cases.

At the IS level, the how-requirements define the IS level use cases, the list of in-
dispensable information processing standards, information processing policies and rules,
and the list of the to-be IS subsystems. So, they define what services shall provide the to-
be IS in order to fulfil the operational needs of the stakeholders. The IS level use cases are
derived from the business use cases eliminating their non-relevant parts and refining the
relevant parts. The user-level who- and what-requirements should be taken into account
refining the business use cases. The information processing standards, and the informa-
tion processing polices and rules determine how the IS shall conduct with regard to each
IS use case. Policies and rules may be specific to a use case or applied across the entire IS.
The how-requirements should define when and where the information processing policies
and rules are applicable. Each IS level use case must provide references to the specific
information processing rules that are active during this use case. However, policies and
rules should not be embedded in any use case. The QoS and the trustworthiness level
of the to-be IS services including accuracy, reliability, and safety of delivered results
are derived from the IS implementation constraints. The IS level how-requirements in-
clude also the architectural requirements defining how the to-be IS shall be decomposed
into subsystems of different kinds including transaction processing, decision support,
information flow management, workflow management, content management, document
management, data processing, group work support and resource management ones. The
design basis suggests from what kinds of subsystems can be composed an advanced IS
today. The IS may provide also expert systems, search engines and other sophisticated
software components. However, mainly, they are regarded as the internals of the appro-
priate IS subsystems. On the other hand, the global data stores usually are implemented
as IS subsystems.

At the IS subsystems level, the how-requirements for each subsystem define its use
cases, the required QoS and the required level of trustworthiness of delivered services,
and the list of application systems and other software components necessary to implement
the required use cases. To produce the requirements, the to-be IS use cases, the trustwor-
thiness requirements and the QoS requirements must be allocated to the IS subsystems
and the flowdown of allocated requirements must be performed. The how-requirements
of a subsystem cannot violate implementation constraints of this subsystem defined by
its why-requirements.

At the software level, the how-requirements of any application system define the use
cases of this system, and the required QoS and the required level of trustworthiness of
services delivered by it. The application system use cases are derived from the use cases
of the corresponding subsystem of the to-be IS taking into account the who- and what-
requirements of this application system.

6.4.3. Object requirements (what-requirements)
At the business-level, the what-requirements define the kinds of business objects neces-
sary to implement the business services defined by the how-requirements. The require-
ments are produced analyzing these services.



Requirements Elicitation in the Context of Enterprise Engineering 361

At the user level, the what-requirements define what kinds of business objects and
in which way shall model and protect the to-be IS. The requirements are produced con-
fronting the business level what-requirements with the business use cases. The design
basis suggests what kinds of information objects can process information systems today
and, consequently, in which ways the required business objects can be modelled. The
information objects, which model the accounting objects of the business system, nor-
mally, are represented as records. Other business objects are modelled as pictures, pho-
tos, maps, audiovisual objects or in some other way. Usually, the stakeholders expect that
the to-be IS will manipulate also with some auxiliary information objects modelling any
business object. The decision on what kinds of auxiliary information objects are required
is done analyzing the business use cases and the additional information gathered from
the stakeholders. The information necessary to formulate security requirements should
be collected also from the stakeholders. So, the user level objects requirements define
the kinds of the information objects that shall be stored in so-called organization memory
and the required protection level for each kind of these. The term “organization memory”
addresses here the total body of enterprise’s data stores including computer data bases,
data warehouses, intranet pages, paper documents and other stores. The objects require-
ments must describe the structure, identification, representation accuracy and integrity
constraints of the information objects stored in this memory. They must describe also
who and where shall create each kind of information objects, how these objects shall get
into enterprise memory, how they shall be protected and how they shall be presented to
the users. The information protection requirements must define the required confidential-
ity class for each kind of information objects and the required protection level for each
confidence class.

At the IS level, the what-requirements define the structure and other properties of the
to-be organizational memory. They should define which kinds of data stores (computer
DB, repository of the paper documents, repository of the Web documents, etc.) shall pro-
vide this memory, how shall be organized (centralized, distributed, etc.) each data store,
and what replication requirements it shall meet. The requirements are derived from the
user level ones. First of all, the requirements of information objects must be allocated
to the data stores and the list of required stores must be produced. Then the allocated
requirements, including the security requirements and the information presentation re-
quirements, are refined taking into account the specific properties of the data store, where
the information objects shall be stored, and corresponding IS use cases. Refining the
information presentation requirements, for each information object the decision about
media, used to present this object for the users, must be done.

At the IS subsystems level, the what-requirements define with which kinds of infor-
mation objects shall manipulate each subsystem. To produce the requirements, the higher-
level what-requirements must be allocated to the to-be IS subsystems and the flowdown
of allocated requirements must be performed. The list of the to-be IS subsystems already
is defined by the IS level how-requirements. The subsystems’ use cases define to which
subsystem the requirements of which information objects must be allocated. A subsystem
may access internal as well as external data stores. If subsystem accesses some external



362 A. Čaplinskas

data store, the requirements may define a special view of information objects stored in
this store.

At the software level, the what-requirements define how the information objects shall
be digitalised and how the digital objects shall be protected from accidental loss, corrup-
tion and/or deliberate unauthorized attempts to access or to alter them. To produce the
requirements, the what-requirements of each to-be IS subsystem are allocated to the ap-
plication systems defined by how-requirements of this subsystem. To which application
system the requirements must be allocated, define the use cases defined by the software
level how-requirements. The required accuracy of the digitalisation is defined refining the
allocated requirements. The exact form of the digital representation is the subject of the
future design decisions. The data security requirements are derived from the higher level
security requirements.

6.4.4. Access, interface and usability requirements (who-requirements)
At the business level, the who-requirements define the list of stakeholders of the to-be
enterprise system, their access rights and privileges. The stakeholders are defined in terms
of roles (i.e., as the departments, positions, customers, clients, suppliers, regulators, etc.).
External systems and processes, including software, hardware, devices and other “things”
that shall interact with the to-be enterprise system are regarded also as the stakeholders.
The list of the stakeholders is derived from the business goal tree considering which
roles contribute to the achieving the goals provided by this tree. The bottom-level goals
are allocated to the roles directly contributing to this process, the higher level goals to
the managers of different levels, including the top management of the enterprise. How
and with which business objects shall be allowed to operate a stakeholder, follows from
the role, which this stakeholder plays in the goal achievement process, and from the
requirements of the objects produced or used by this process.

At the user level, the who-requirements define the list of the consumers of the ser-
vices delivered by the to-be IS, their access rights, privileges, preferences and compe-
tences. The list is produced confronting the list of the stakeholders with the business
use cases. The business use cases define also how and with which information objects
shall operate each consumer. Together with the business-level requirements, they serve
also as a basis to define the consumer’s access rights and privileges. For each consumer,
the requirements describe also his competences, including computer literacy, and pref-
erences (easy-to-use, performance, etc.). These requirements must be taken into account
defining later the interface and usability requirements. A special category of consumers
is the external systems, processes and devices. The access rights, privileges and, possibly,
competence requirements should be defined also for this category of consumers. For any
category of the services consumers the access rights and privileges are defined taking into
account the objects requirements.

At the IS level, the who-requirements define the list of the to-be IS interfaces, the us-
ability requirements, the services delivered through each interface, and the access rights
and privileges of the service consumers. They are derived from the higher-level who-
requirements. First of all, the list of the IS interfaces is produced. Then the IS services



Requirements Elicitation in the Context of Enterprise Engineering 363

are allocated to these interfaces and the flowdown of the allocated requirements is per-
formed defining for each interface which IS services and how can be accessed through
this interface. An IS interface is a protocol which defines how a services consumer shall
interact with the IS in order to receive required services. Because the IS may deliver some
information, computing or even communication services without using any software sys-
tem (i.e., manually), an interface may provide also such forms of interaction as the oral
or written interaction. The access rights and privileges, competences, and preferences
of a service consumer are derived from business-level requirements taking into account
the IS-level use cases and the requirements of the information objects. Analyzing con-
sumers’ competences and preferences the usability requirements are produced for each
IS interface.

At the IS subsystems level, the who-requirements define the access, interface and us-
ability requirements of each to-be IS subsystem. To produce the requirements, the IS
level who-requirements must be allocated to the to-be IS subsystems and the flowdown
of the allocated requirements must be performed. The subsystem-level use cases are used
to decide which requirements to what subsystem must be allocated. They are also used
to decide which service consumers shall use each interface of each subsystem, which in-
formation objects they shall access and, consequently, which access rights and privileges
must be allocated to this subsystem.

At the software level, the who-requirements for each interface of each application
system define the kind of the task description language, the users’ access rights and privi-
leges, the users’ authorization requirements, the usability requirements and the ergonomic
requirements. The requirements are produced allocating the higher level requirements and
performing their flowdown. The flowdown of the requirements is performed taking into
account the how- and the what-requirements of the corresponding application system.

6.4.5. Workplaces requirements (“where”)
At the business level, the where-requirements define the list of the points from which the
system shall be accessible (i.e., system access points, SAP), and who (in terms of roles)
and for which purposes shall access the system through these SAPs. All services delivered
by the to-be IS can be divided into three categories: the services that shall be delivered
securely to the internal users (i.e., to the enterprise departments, to its employees, etc.);
the services that shall be delivered securely to the special categories of the external users
(e.g., the bank services delivered to the depositors); and the services that shall be delivered
to the general public. By analogy with intranet, extranet and internet, it is reasonable to
speak about the internal services network (ISN), the external services network (ESN),
and the public services network (PSN). Normally, the intranet is a part of the ISN, and
the extranet is a part of the ESN. However the ISN and the ESN are broader concepts
as the intranet and the extranet. The requirements for the SAPs provided in the ISN,
the ESN and the PSN are different. At the business level, the ISN requirements define
where (terrains, buildings, rooms, etc.) shall be deployed the workplaces of the employees
of the enterprises and for which purposes they shall be used performing the business
transactions. They define also how workplaces shall be related to each other in order to



364 A. Čaplinskas

form the ISN. The ESN and the PSN requirements define where inside of the enterprise
shall be deployed client service terminals (CST) (e.g., the client service counters, the
automated tell machines, or computers through which clients may access some services)
and how many and what kinds of SAP shall be provided by the system to deliver the
services for the remote users of ESN and PSN, and to interact with the external systems,
processes and devices. The business lever where-requirements also define how the SAPs
of the ESN and PSN shall be connected with the ISN.

At the user-level, the where-requirements define the intended usage of each SAP when
performing different kinds of the business transactions provided by the to-be enterprise
system. To produce these requirements, the business use cases are allocated to the SAPs
and the business level where-requirements are refined performing the flowdown of the
allocated use cases.

At the IS level, the user level where-requirements must be completed and refined. First
of all, it is necessary to decide where the to-be IS data stores shall be deployed and to
add the “workplaces” of the data stories to the list of the SAPs. Similarly as the “normal”
workplaces, the data stores and the services to save and to retrieve the information objects
shall be provided for them. It is a reason to speak about the “workplaces” for the data
stores. Next, the IS level use cases must be allocated to the SAPs and the decision must
be done which services provided by the to-be IS shall be delivered to each SAP. Finally,
analyzing how the IS level use cases are related each to other, must be defined what
communication services shall provide the to-be IS to ensure required communication
between different workplaces inside the ISN, between the ISN and the ESN and between
the ISN and the PSN.

At the IS subsystems level, the where-requirements define with what kind of hard-
ware and software shall be equipped each to-be workplace and each to-be SAP. They also
define which parts of ISN, ESN and PSN shall be implemented by the intranet, the ex-
tranet and the internet technologies. To produce the requirements, the higher-level where-
requirements must be allocated to the to-be IS subsystems and the allocated requirements
must be refined taking into account the subsystem-level use cases.

At the software level the where-requirements must define the required run-time en-
vironment (system software, hardware, network environment, etc.) and the required re-
source behavior of each application system. To produce the requirements, the higher-level
level where-requirements must be allocated to the application systems and the flowdown
of the allocated requirements must be performed.

6.4.6. Performance requirements (“when”)
At the business level, the when-requirements must define the required performance of the
to-be business system. The performance of a business system can be defined in many dif-
ferent ways. In the context of enterprise engineering, the performance of a to-be business
system usually is defined in the terms of business services. For each business service,
the average or the maximal acceptable deliver time, including the time consumed in the
added value and logistic chains must be defined. It is supposed that the business-level
when-requirements for each business event, business situation, initiative and/or directive
must define maximum or average its processing time.



Requirements Elicitation in the Context of Enterprise Engineering 365

At the user level the when-requirements must define the time constraints for each
business use case. Similarly, at the IS level they must define the time constraints for each
IS use case, at the IS subsystems level – for each subsystem-level use case, and at the
software level – for each application system level use case. In all mentioned cases, the
time constraints must be stronger as the appropriate higher level constraints and must be
derived from theses.

7. Conclusions

The development of an enterprise system should be started with the strategic analysis be-
cause the strategic alignment of the enterprise system to the business goals and needs can-
not be achieved in any another way. The vision-driven requirements engineering has been
proposed to support the derivation of software requirements from the results of strategic
planning, first of all from the business vision. A number of architectural and methodical
frameworks aiming to lower the risk to violate strategic alignment have been proposed.
However, they encompass all phases of enterprise engineering, do not go in very details
of requirement engineering and do not support directly the vision driven requirements
engineering techniques. A special phase-oriented methodical framework is needed for
this aim. It should be designed in such a way that can be used together with the gen-
eral purpose architectural and methodical frameworks. In addition, it should be based on
the systems engineering paradigm and define the business, information, and application
systems as the special kinds of an abstract system because the vision-driven approach
requires to conceptualise all layers of an enterprise system in a unified manner. The pa-
per proposes and investigates such methodical framework purposed for the elicitation of
requirements of a to-be enterprise system. Together with the philosophy described above
the Zachman’s (1987) idea to decompose the system into a number of perspectives and
focus areas has served as a theoretical basis for this framework. The framework defines
a complete scheme to organize different level requirements, supports the flowdown of
requirements from the business to the software level preserving requirements’ business-
orientation and contributes to the further development of the vision-driven requirements
engineering techniques.

References

Blick, G. (2000). Defining business process requirements for large-scale public sector ERP implementations:
A case study. In: Proc. of the 8th Eur. Conf. on Information Systems (ECIS 2000), Vienna, Austria, July 3–5.
Accessible at: http://is2.lse.ac.uk/asp/aspecis/20000156.pdf.

Bray, I.K. (2002). An Introduction on Requirements Engineering. Addison-Wesley. An imprint of Pearson Edu-
cation.

Caplinskas, A., Paskeviciute, L. (2009). A methodological framework for enterprise information system re-
quirements derivation. In: Papadopoulos, G.A., Wojtkowski, W., Wojtkowski, W.G., Wrycza, S., Zupancic, J.
(Eds), Information Systems Development: Towards a Service Provision Society, Springer-Verlag (in press).

Caplinskas, A., Lupeikiene, A., Vasilecas, O. (2002a). A framework to analyse and evaluate information sys-
tems specification languages. In: Manolopoulos, Y., Navrat, P. (Eds.), Advances in Databases and Informa-



366 A. Čaplinskas

tion Systems. 6th East European Conf., ADBIS 2002, Bratislava, Slovakia, September 2002. Proc. LNCS,
Vol. 2435, Springer, pp. 248–262.

Caplinskas, A., Lupeikiene, A., Vasilecas, O. (2002b). Shared conceptualisation of business systems, informa-
tion systems and supporting software. In: Haav, H.-M., Kalja, A. (Eds.), Databases and Information Systems
II: Selected Papers from the Fifth International Baltic Conference, BalticDB&IS’2002. Kluwer Academic,
pp. 109–320.

Caplinskas, A., Lupeikiene, A., Vasilecas, O. (2003). The role of ontologies in reusing domain and enterprise
engineering assets. Informatica, 14(4), 455–470.

Davis, G.B., Olson, M.H. (1985). Management Information Systems: Conceptual Foundations, Structure and
Development, 2nd ed. McGraw-Hill.

De la Vara, J.L., Díaz, J.S. (2007). Business process-driven requirements engineering: A goal-based approach.
In: Proc. of the 8th Workshop on Business Process Modeling, Development, and Support (BPMDS’07), 11–
15 June 2007, Trondheim, Norway. Accessible at:
http:// lamswww.epfl.ch/conference/bpmds07/program/Gonzalez_23.pdf.

Department of Defense (DoD) (1997). Command, Control, Communications, Computers, Intelligence, Surveil-
lance, and Reconnaissance (C4ISR) Architecture Framework. Version 2.0, 18 Dec. 1997.

Department of Defense (DoD) (2007). DoD Architecture Framework. Version 1.5, 23 April 2007:
Vol. I. Definitions and Guidelines. Accessible at:
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf.
Vol. II. Product Descriptions. Accessible at:
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf.
Vol. III. Architecture Data Description. Accessible at:
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_III.pdf.

Dumas, M., Aalst, W. van der, Hofstede, A. (2005). Process-Aware Information Systems: Bridging People and
Software Through Process Technology. Wiley.

Ferrstl, O.K, Sinz, E.J. (2006). Modeling of business systems using SOM. In: Bernus, P., Mertins, K., Scmidt, G.
(Eds.), Handbook on Architectures of Information Systems, 2nd ed. Springer-Verlag, pp. 347–368.

Frappier, M., St-Denis, R. (1998). A specication method for cleanroom’s black box description. In: Proc. of the
Thirty-First Hawaii Intern. Conf. on System Sciences, Kohala Coast, Hawaii, USA, January 6–9. Electronic
ed., Vol. 6: Organizational Systems and Technology. IEEE Computer Society, pp. 112–121. Accessible at:
http://computer.org/proceedings/hicss/8248/82480112abs.htm.

Goikoetxea, A. (2007). Enterprise Architectures and Digital Administration: Planning, Design and Assessment.
World Scientific.

Gomaa, H., Olimpiew, E.M. (2005). The role of use cases in requirements and analysis modeling. In: Proc.
of the 2nd Intern. Workshop on Use Case Modeling (WUsCaM-05): Use Cases in Model-Driven Software
Engineering, Montego Bay, Jamaica, October 2–7. Electronic ed. Accessible at:
http://www.ie.inf.uc3m.es/wuscam-05/.

Griffin, M. (2007). System Engineering and the Two Cultures of Engineering. Boeing Lecture at the Purdue
University, 28 March 2007. Accessible at:
http://www.spaceref.com/news/viewsr.html?pid=23775.

Grotevant, S.M. (1998). Business engineering and process redesign in higher education: Art or science? In:
Online Proc. of EDUCAUSE Conf. on Information Technology in Higher Education (CAUSE 98), December
8–11. Washington State Convention & Trade Center, Seattle, Washington. Accessible at:
http://net.educause.edu/ir/library/html/cnc9857/cnc9857.html.

Hay, D.C. (2002). Requirements Analysis: From Business Views to Architecture. Prentice-Hall.
Haskins, C. (2005). Application of patterns and pattern languages to systems engineering. In: Proc. of the

15th Annual Intern. Symposium of the INCOSE on Syst. Eng.: Bridging Industry, Government,& Academia
(INCOSE 2005), Rochester, July 10–15.

Haskins, C. (2007). Using patterns to transition systems engineering from a technological to social context.
Syst. Eng., 11(2), 147–155.

Haskins, C. (2008). Using systems engineering to address socio-technical global challenges. In: Proc. of the
6th Annual Conf. on Systems Engineering Research (CSER 2008), Crowne Plaza Redondo Beach & Marina
Hotel, Redondo Beach, April 4–5. Accessible at:
http://www.gilb.com/tiki-download_file.php?fileId=235.



Requirements Elicitation in the Context of Enterprise Engineering 367

IEEE (1998). Std 1233-1998: IEEE Guide for Developing System Requirements Specifications. Software Engi-
neering Standards Committee of the IEEE Computer Society, USA.

Inmon, W.H, Zachman, J.A., Geiger, J.G. (1997). Data Stores, Data Warehousing, and the Zachman Frame-
work: Managing Enterprise Knowledge. McGraw-Hill.

Jacobson, I., Christerson, M., Jonson, P., Overgaard, G. (1992). Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley.

Lamsweerde, A. van (2001). Goal-oriented requirements engineering: A guided tour. In: Proc. of the 5th IEEE
Intern. Symposium on Requirements Engineering, Toronto, Canada. Accessible at:
http://www.info.ucl.ac.be/Research/Publication/2001/RE01.pdf.

Linger, R.C., Mills, H.D., Witt, B.I. (1979). Structured Programming: Theory and Practice. Addison-Wesley.
Malan, R., Bredemeyer, D. (1999). Functional Requirements and Use Cases. Bredemeyer Consulting.

Accessible at: http://www.bredemeyer.com/pdf_files/functreq.pdf (last modified: July
25, 2006).

Martin, J. (1995). The Great Transition, Using the Seven Disciplines of Enterprise Engineering to Align People,
Technology and Strategy. American Management Association.

Mayer, B. (1988). Object-Oriented Software Construction. Prentice-Hall.
Mayers, M., Kaposi, A. (2004). A First Systems Book: Technology and Management. Imperial College Press.
McLean, V.A. (2006). The MITRE Corporation, NET Recruiter. Accessible at:

http://www.netrecruiter.net/currentreqs.html.
Moore, G.A. (1999). Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream Cus-

tomers. Harper Business.
Office of Management and Budget (OMB) (1996). Circular No. A-130. Revised. Transmittal Memorandum

No. 4. Accessible at:
http://www.whitehouse.gov/omb/circulars/a130/a130trans4.html.

Oracle Corporation (OC) (2000). CDM Quick Tour. Release 2.0.0.
Prowell, S.J., Trammell, C.J., Linger, R.C., Poore, J.H. (1999). Cleanroom Software Engineering – Technology

and Process. Addison-Wesley.
Roubtsova, E.E., Roubtsov, S.A. (2006). A feature computation tree model to specify requirements and reuse.

In: Proc. of the 8th Intern. Conf. on Enterprise Information Systems (ICEIS-2006), Vol. 3, Information
Systems Analysis and Specification, pp. 118–125.

Rukanova, B., van Slooten, K., Stegwee, R. (2006). Business process requirements, modeling technique, and
standard: How to identify interoperability gaps on a process level. In: Konstantas, D., Bourrières, J.-P.,
Léonard, M., Boudjlida, N. (Eds.), Interoperability of Enterprise Software and Applications. Springer,
pp. 13–24.

Sowa, J.F., Zachman, J.A. (1992). Extending and formalizing the framework for information systems architec-
ture. IBM Syst. J., 31(3), 590–616.

Spewak, S.H., Hill, S.C. (1995). Enterprise Architecture Planning: Developing a Blueprint for Data, Applica-
tions, and Technology. Wiley.

Strassmann, P.A. (1998). What is alignment? Cutter IT Journal, August 1998. Accessible at:
http://www.cutter.com/itjournal.html.

The Open Ggroup (OG) (2002). The Open Group Architecture Framework TOGAF. Version 8.1.1, Enterprise
Edition. Accessible at: http://www.opengroup.org/architecture/togaf8-doc/arch/.

Van den Broek, P., Galvão, I., Noppen, J. (2008). Elimination of constraints from feature trees. In: Proc. of the
12th Intern. Software Product Line Conf., 12 Sept., Limerick, Ireland. Lero International Science Centre,
University of Limerick, Ireland, pp. 227–232.

Warfield, J.N. (1994). A Science of Generic Design: Managing Complexity Through Systems Design. 2nd ed.
Iowa State University Press.

Wegmann, A. (2004). On the systemic enterprise architecture methodology (SEAM). In: Proc. of the Int. Conf.
on Enterprise Information Systems (ICEIS 2003), Angers, France.

Wegmann, A., Balabko, P., Le, L-S., Regev, G, Rychkova, I. (2005). A method and tool for business-
IT alignment in enterprise architecture. In: Belo, O., Eder, J., Cunha J.F., Pastor, O. (Eds.), Proc. of
the 17th Conf. on Advanced Information Syst. Engineering (CAiSE ’05), Porto, Portugal, 13–17 June.
CAiSE Forum, Short Paper Proc., electronic ed. Accessible at: http://www.informatik.uni-
trier.de/∼ley/db/conf/caise/caisefo2005.html#WegmannBLRR05.



368 A. Čaplinskas

Wells, D. (2006). Modeling business metrics. Part 1: TDWI flash point. Electronic Journal, March 9. The Data
Warehousing Institute. Accessible at:
http://www.tdwi.org/Publications/display.aspx?id=7884&t=y.

Wiegers, K.E. (2003). Software Requirements. 2nd ed., Microsoft Press.
Zachman, J.A. (1982). Business systems planning and business information control study: A comparison. IBM

Syst. J., 21(1), 31–53.
Zachman, J.A. (1987). A framework for information systems architecture. IBM Syst. J., 26(3), 276–292.

A. Čaplinskas is a professor, principal researcher and the head of the Software Engineer-
ing Department at the Institute of Informatics and Mathematics, Vilnius, Lithuania. His
main research interests include software engineering, information system engineering,
legislative engineering, and knowledge-based systems.

Organizacij ↪u integruot ↪u informacini ↪u sistem ↪u reikalavim ↪u
formulavimas vadovaujantis t ↪u organizacij ↪u vizija

Albertas ČAPLINSKAS

Kuriant organizacij ↪u integruotas informacines sistemas, program ↪u sistem ↪u inžinerijos procesai
turi būti betarpiškai susieti su organizacijos strateginio planavimo ir informacini ↪u sistem ↪u inžineri-
jos procesais. Tradiciniai reikalavim ↪u rinkimo būdai, grindžiami vartotoj ↪u bei užsakov ↪u apklausos
arba panašiomis technikomis, tam nėra pakankamai gerai pritaikyti, dėl ko dažnai pažeidžiama
suformuluot ↪u reikalavim ↪u atitiktis realiems organizacijos poreikiams. To galima išvengti, jei reika-
lavimai yra išvedami iš organizacijos vizijos. Straipsnyje pasiūlytas metodinis karkasas, naudojant
kur↪i galima vienareikšmiai klasifikuoti vis ↪u lygmen ↪u reikalavimus ir per kelis tarpinius lygmenis
organizacijos poreikius transformuoti ↪i programinės ↪irangos reikalavimus užtikrinant pastar ↪uj ↪u ati-
tikt↪i tiems poreikiams.


