Requirements Engineering: a roadmap

Bashar Nuseibeh
Department of Computing
Imperial College
180 Queens’ Gate
London SW7 2BZ, U.K.
ban@doc.ic.ac.uk

ABSTRACT

This paper presents an overview of the field of software

systems requirements engineering (RE). It describes the
main areas of RE practice, and highlights some related

research issues.

1 Introduction

The primary measure of success of a software system is
the degree to which it satisfies its customers. Customer
satisfaction is determined by how closely the system
meets a variety of stakeholder needs. Broadly speaking,
software systems requirements engineer{RE) is the
process of identifying stakeholders and their needs, and
documenting these in a form that is amenable to analysis,
communication and subsequent implementation. Such a
process can present a number of difficulties. Stakeholders
(including paying customers, users and developers) may
be numerous and distributed. Their goals may vary and
conflict, depending on their perspectives of the
environment in which they work and the tasks they wish
to accomplish. Often, their goals and technical needs may
not be explicit or may be difficult to articulate. And
inevitably, their requirements may be constrained by a
variety of factors outside their control.

This paper presents an overview of the main activities that
constitute requirements engineering. While these
activities are described independently and in a particular
order, practical reality dictates that these activities are
actually interleaved, iterative, and may span the entire
software systems development life cycle. The papeois

a survey, it is a roadmap. Therefore, the related work
cited in each section is only a guide to the reader
interested in exploring a topic further. Nevertheless, the

Steve Easterbrook
Department of Computer Science
University of Toronto
6 King's College Road
Toronto, Ontario M5S 3H5, Canada
Email: sme@cs.toronto.edu

paper aims to provide sufficient content and direction to
navigate the field of RE. It is organized as follows.
Section 2 outlines the disciplines that provide the
foundations for effective RE, while section 3 briefly
describes the context and background needed in order to
begin the RE process. Sections 4 to 8 describe the core
RE activities:

» eliciting requirements,

* modellingandanalysingrequirements,
e communicatingequirements,

e agreeingrequirements, and

¢ evolvingrequirements.

Section 9 then discusses how these different activities
may be integrated together in a single development
process. The paper ends with some concluding remarks
about research directions in the field.

2 Foundations

Before discussing RE activities in more detail, it is worth
examining the role of RE in software and systems
engineering, and the many disciplines on which it draws.
Zave [71] provides one of the clearest definitions of RE:

“Requirements engineering is the branch of
software engineering concerned with the real-world
goals for, functions of, and constraints on software
systems. It is also concerned with the relationship
of these factors to precise specifications of software
behavior, and to their evolution over time and
across software families.”

This definition is attractive for a number of reasons. First,
it highlights the importance of the “real-world goals” that
motivate the development of a software system. These
represent the ‘why’ as well as the ‘what’ of a system.
Second, it refers to “precise specifications” — these
provide the basis foanalysingrequirementsyalidating
that they are indeed what the stakeholders wdetining
what designers have to build, amdrifyingthat they have
done so correctly upon delivery. Finally, the definition
refers to specification “evolution over time and across
software families”, emphasising the reality of a changing
world and the need to reuse (partial) specifications, as
engineers often do in other branches of engineering.

It has been argued that requirememtsgineeringis a
misnomer. However, typical textbook definitions of
engineering refer to the creation of cost-effective
solutions to practical problems by applying scientific
knowledge. Therefore, the use of the teemgineeringn

RE serves as a reminder that RE is an important part of an
engineering process, being the part concerned with
anchoring development activities to a real-world problem,
so that cost-effectiveness can indeed be analysed. It also
refers to the fact that specifications themselves need to be
engineered, and RE represents a series of engineering
decisions that lead from recognition of a problem to be
solved to a detailed specification of that problem.

Note that the focus of Zave’s definition is @oftware
engineering. In reality, software cannot function in
isolation from the system in which it is embedded, and
hence RE has to encompass a systems level view. We
therefore prefer to characterise RE as a branctysfems
engineering[65], whose ultimate goal to is deliver some
systems behaviour to its stakeholders. The special
consideration thasoftware requirements engineerihgs
received is largely due to the abstract and invisible nature
of software, and the vast range and variety of problems
that admit to software solutions. If the focus of a project is
on the development of software-intensive systems only,
then one can indeed regard RE as purely the task of
producing (software) descriptions [34].

Whether viewed at the systems level or the software level,
RE is a multi-disciplinary, human-centred process. The
tools and techniques used in RE draw upon a wide variety
disciplines, and the requirements engineer may be
expected to master skills from a number of different
disciplines.

In the context of software developmenComputer
Scienceplays a particularly important role. Computer
Science provides the framework to assess the feasibility
of requirements and provides the building blocks of the
descriptions to be produced. Although software
engineering still lacks a mature science of software
behaviour on which to draw, it is Computer Science that
is at the forefront of developing such a science.
Requirements engineers must draw on such a science in
order to model the behaviour of the software they are
specifying.

Since software is a formal description, analysis of its
behaviour is amenable to formal reasoninbogic
provides a vehicle for achieving [2]. In RE, logic can be
used to improve the rigour of the analysis performed, and
to make the reasoning steps explicit. Different logics may

be used to express different aspects of a required system.

For example, temporal logic can be used to describe
timing information, deontic logic to describe permissions

and obligations, and linear logic to describe resources and
their use. A further advantage of specification languages

-2-

grounded in logic is that they are potentially amenable to
automated reasoning and analysis.

In the systems engineering context, an understanding and
application of systems theory and practice is also very
relevant to RE [65]. This includes work on characterizing
systems, identifying their boundaries and managing their
development life cycle [11, 69]. RE also encompasses
work on systems analysis, traditionally found in the
information systems world [59].

The context in which requirements engineering takes
place is nearly always a human activity system, and the
problem owners are people. Therefore RE needs to be
sensitive to how people perceive and understand the
world around them, how they interact, and how the

sociology of the workplace affects their actions. RE draws
on the cognitive and social sciences to provide both
theoretical grounding and practical techniques for

eliciting and modelling requirements:

¢ Cognitive psychologyelps to understand the difficulties

people may have in describing their needs [17]. For
example, problem domain experts often have large amounts
of tacit knowledge, which is not amenable to introspection;
hence their answers to questions posed by requirements
analysts may not match their behaviour. Also, the
requirements engineer may need to model the user's
understanding of software user interfaces.

e Anthropology provides a methodological approach to
observing human activities that helps to develop a richer
understanding of how computer systems may help or hinder
those activities. [25]. For example, the techniques of
ethnomethodology [26] have been applied in RE to develop
observational techniques for analysing collaborative work
and team interaction.

e Sociologyprovides an understanding of the political and
cultural changes caused by computerisation. Introduction of
a new computer system changes the nature of the work
carried out within an organisation, and may affect the
structure and communication paths within that
organisation. A requirements gathering exercise can
therefore become politicised. Approaches to RE that
address this issue include the “Scandanavian” approach
which aims to involve in the requirements definition
process those most affected by the outcomes [32].

¢ Linguistics is important because RE is largely about
communication. Linguistic analyses have changed the way
in which the English language is used in specifications, for
instance to avoid ambiguity, and improve
understandability. Tools from linguistics can also be used
in requirements elicitation, for instance to analyse
communication patterns within an organisation [10].

Finally, there is an important philosophical element in
RE. RE is concerned with interpreting and understanding
stakeholder terminology, concepts, viewpoints and goals.
Hence, RE must concern itself with an understanding of
beliefs of stakeholdersepistemolog)y the question of

what is observable in the worlgfienomenologyand the
question of what can be agreed on as objectively true
(ontology. Such issues become important whenever one
wishes to talk about validating requirements, especially
where stakeholders may have divergent goals and
incompatible belief systems. They also become important
when selecting a modelling technique, because the choice
of technique affects the set of phenomena that can be
modelled, and may restrict what the requirements
engineer can observe.

3 Context and Groundwork

RE is often regarded as a “front end” activity in the
software systems development process. This is generally
true, although it is often also the case that requirements
change during development and evolve after the system
has been in operation for some time. Therefore, RE plays
an important role in the management of change in
software development. Nevertheless, the bulk of RE does
occur early in the lifetime of projects, motivated by the
evidence that requirements errors (e.g. misunderstood or
omitted requirements) are more expensive to fix later in
project lifecycles [18, 7, 48].

However, before a project can be started, some
preparation in needed. Finkelstein [20] categorises such
preparation as “Context” and “Groundwork”. In
particular, some assessment of the project’s feasibility and
associated risks needs to be undertaken, and RE plays a
crucial role in making such an assessment. It is often
possible to estimate project costs, schedules and technical
feasibility from precise specifications of requirements,
and it is important that conflicts between high-level goals
of an envisioned system are surfaced early, in order to
establish a system’s concept of operation and boundaries.
Of course, risk assessment should be re-evaluated
regularly throughout the development lifetime of a system
[49], however, an initial evaluation is particularly critical.

4 Eliciting Requirements

The elicitation of requirements is perhaps the activity
most often regarded as the “first” step in the RE process.
The term “elicitation” is preferred to “capture”, to avoid
the suggestion that requirements are “out there” to be
collected simply by asking the right questions.
Information gathered during requirements elicitation often
has to be interpreted, analysed, modelled and validated
before the requirements engineer can feel confident that a
complete enough set of requirements of a system have
been collected. Therefore, requirements elicitation is
closely related to other RE activities — to a great extent,
the elicitation technique used is driven by the choice of
modelling scheme (and vice versa: many modelling
schemes imply the use of particular kinds of elicitation
techniques).

Requirements to elicit. Most requirements engineers
agree that one of the most important elicitation tasks is to

-3-

establish a systemtsoundaries These boundaries define,

at a high level, where the final delivered system will fit
into the current operational environment. Identifying (and
agreeing) a system’s boundaries affects most subsequent
elicitation efforts. The elicitation of stakeholders and user
classes, of goals and tasks, and of scenarios and use cases
all follow from then on.

Identifying stakeholders—- individuals or organisations
who stand to gain or loose from the success (or failure) of
a system — is also critical. Stakeholders include customers
or clients (who pay for the system), developers (who
design, construct and maintain the system), and users
(who interact with the system to get their work done).
Ideally, users should play a central role in the elicitation
process, since they will be interacting with the delivered
system. Often, however, other stakeholders (such as
paying clients) are more influential, which can result in a
significantly different system being delivered, to the one
preferred by users. Of course, users themselves are not
homogeneous, and part of the elicitation process is to
identify different user classes (e.g., novice, expert,
disabled, frequent, etc.) [63].

Goalsdenote the objectives a system must meet. Eliciting
high level goals early on in the development process is
crucial. However, goal-oriented requirements elicitation
[13] is an activity that continues as development
proceeds, as high-level goals (such as business goals) are
refined into lower-level goals (such as technical goals that
are eventually operationalised in a system). Eliciting goals
focuses the requirements engineer on the problem domain
and the needs of the stakeholders, rather than on possible
solutions to those problems.

It is often the case that users find it difficult to articulate
their requirements. To this end, a requirements engineer
can resort to eliciting information about thasksusers
currently perform and those that they might want to
perform [16]. These tasks can often be representetsén
casesthat can be used to describe the outwardly visible
requirements of systems [62]. More specifically, the
requirements engineer may choose a particular path
through a use case - scenario- in order to better
understand some aspect of using a system [36].

Elicitation techniques. The choice of elicitation
technique depends on the time and resources available to
the requirements engineer, and, of course, the kind of
information that needs to be elicited. Often, the first port
of call for a requirements elicitation exerciseesisting
documentation This might include draft requirements
documents, organisational charts, process models or
standards, and user or other manuals of existing systems.

A number of other more structured techniques are also
available to the requirements engineérterviews for
example, often provide an opportunity for an in-depth

exploration of issues relevant to one or a small number of
stakeholdersQuestionnaires and surys, on the other
hand, can be used to reach a larger sample of
stakeholders, whileneetingsallow focused brainstorming
and early identification of conflicting requirements.

The use okthnographyto observe users in their ‘normal’
work environment is also becoming increasingly popular
for elicitation of some requirements. It appears to be well
suited when users find it difficult to articulate their needs
and when requirements engineers are looking for a better
understanding of the context in which a future system
may be installed [68].Prototypeson the other hand
provide stakeholders with a concrete (although partial)
model or system that they might expect to be delivered at
the end of a development project [14]. Prototypes can be
used to elicit stakeholder feedback in terms of missing
requirements, unnecessary requirements, or confirmation
(validation) that user requirements have been elicited
satisfactorily. In fact, prototypes provide valuable
feedback at many stages of the systems development
process: during (pre-requirements) feasibility analysis,
requirements elicitation, requirements validation, and
exploratory design, to name a few.

Finally, techniques originally developed for knowledge
acquisition for knowledge base systems can also be used
for requirements elicitation [64]. Such techniques include
laddering (using probes to elicit structure and content of
stakeholder knowledge), card sorting (asking
stakeholders to sort cards in groups, each of which has
name of some domain entity),repertory grids
(constructing an attribute matrix for entities, by asking
stakeholders for attributes applicable to entities and
values for cells in each entity), arRIAD/JAD workshops
(using consensus building workshops with unbiased
facilitator) [44].

The elicitation process. With a large plethora of
elicitation techniques available to the requirements
engineer, some guidance on their use is neeldhods
provide one way of delivering such guidance. Each
method itself has its strengths and weaknesses, and is
normally best suited for use in particular application
domains. For example, the Inquiry Cycle [54] and
CREWS [43] provide alternative methods for eliciting
requirements using use cases and scenarios.

Of course, in some circumstances a full-blown method
may be neither required nor necessary. Instead, the
requirements engineer needs simply to select the
appropriate technique or techniques most suitable for the
elicitation process in hand. In such situations, technique-
selection guidance is more appropriate than a rigid
method [44].

5 Modelling and Analysing Requirements
Modelling — the construction of abstract descriptions that

-4-

are amenable to interpretation — is a fundamental activity
in RE. So much so that a number of RE textbooks (e.g.,
[15, 69]) focus almost entirely on modelling methods and
their associated analysis techniques. Models can be used
to represent a whole range of products of the RE process.
Moreover, many modelling approaches are used as
elicitation tools — where the modelling notation and
partial models produced are used as drivers to prompt
further information gathering.

The key question to ask for any modelling approach is
“what is it good for?”, and the answer should always be in
terms of the kind of analysis and reasoning it offers. We
suggest below some general categories of RE modelling
approaches, and give some example techniques under
each category. We then suggest some analysis techniques
that can be used to generate useful information from the
models produced.

Enterprise modelling. The context of most requirements
engineering activities and software systems is an
organisation in which development takes place or in
which a system will operate. Enterprise modelling and
analysis deals with understanding an organisation’s
structure, the business rules that affect its operation, the
goals, tasks and responsibilities of its constituent
members, and the data that it needs, generates and
manipulates.

Enterprise modelling is often used to capture the
“purpose” of a system, by describing the behaviour of the
organisation in which that system will operate [41]. This
behaviour can be expressed in terms organisational
objectives (or goals) and associated tasks and resources
[70]. Others prefer to model an enterprise in terms of its
business rules, work flows and the services that it will
provide [29].

Modelling goals is particularly useful in RE. High-level
business goals may be repeatedly refined as part of the
elicitation process, leading to requirements that can then
be operationalised [13].

Task analysis — an elicitation technique derived from
work in human-computer interaction — is the process of
discovering the way people perform their jobs. By
understanding how people work, the requirements
engineer can begin to identify areas of work that are
problematic and that might need the support of an
(automated) system [37].

The RE process uses and generates large volumes of
information. This data needs to be understood,
manipulated and managed. Data modelling provides the
opportunity to represent information in the RE process, so
that it may subsequently be analysed. Entity-Relationship-
Attribute (ERA) type modelling is often used to represent
data, however, increasingly, object-oriented models, such
as Class Diagrams, are also being used.

Behavioural Modelling. Modelling requirements often
involves modelling the dynamic or functional behaviour
of stakeholders and systems (existing and required). A
wide range of modelling methods are available for this
purpose, from structured and object-oriented methods to
Soft and or formal methods. These methods provide
different levels of precision and are amenable to different
kinds of analysis. Formal methods (for example, based on
Z) can be difficult to construct, but are also amenable to
automated analysis [61]. On the other hand, Soft methods
provide “rich” representations [53] that non-technical
stakeholders find appealing, but are often difficult to
check automatically.

Domain Modelling. A significant proportion of the RE
process is about developing “domain descriptions” [35].
A model of the domain provides an abstract description of
the world in which an envisioned system will operate.
Without such a description, it is difficult for the
requirements engineer to understand the context of
requirements and to identify opportunities for
requirements reuse. Domain-specific models have also
been shown to be essential for building automated tools,
because they provide the ability to restrict analysis and
reasoning, thereby making it tractable (e.g., [57]).

Modelling Non-Functional Requirements (NFRs)
Quality, or non-functional, requirements are normally
global attributes of a required system. They are generally
regarded as more difficult requirements to express in a
measurable way, making them more difficult to analyse.
However, recent work by researchers [47] and
practitioners [58] has emphasised the need and
demonstrated the ability to model NFRs and express them
in a form that is measurable or testable. There is also a
growing body of research concerned with particular kinds
of NFRs, such as safety [46, 42], security [12], reliability
[23] and usability [37].

Analysing Requirements Models.A primary benefit of
modelling requirements is the opportunity this provides
for analysing them. Analysing software models is a wide
ranging topic, however, for RE, a few areas are especially
relevant. These include requirements animation [28],
automated reasoning (e.g., analogical and case-based
reasoning [45] and critiquing [19]) consistency checking
(e.g., using model checking [33]), and a variety of
techniques for validation and verification (V&V), which
we discuss in section 7.

6 Communicating Requirements

RE is not only a process of discovering and specifying
requirements, it is also a process of facilitating effective
communication of these requirements among different
stakeholders. The way in which requirements are
documented plays an important role in ensuring that they
can be read, analysed, (re-)written, and validated.

The focus of requirements documentation research is
often on specification languages and notations, with a
variety of formal, semi-formal and informal languages
suggested for this purpose [15, 69]. From Logic [4] to
Natural Language [3], different languages have been
shown to have different expressive and reasoning
capabilities.

What is increasingly recognized as crucial, however, is
requirements managemeatthe ability, not only to write
requirements but, to do so in a form that is readable and
traceable by many. One attempt to achieve readability has
been the development of a variety of documentation
standards that provide guidelines for structuring
requirements documents [67]. However, some authors
(such as Kovitz [38]) argue that standards or templates
cannot in themselves provide a general structuring
mechanism for requirements. Rather, he argues that the
structure has to be developed for the particular context or
problem in hand. Nevertheless, it is often the case that
projects with rigid contractual constraints demand
conformance to standards. Kovitz also suggests a variety
of heuristics focusing on the small details of writing
requirements documentation can improve the quality of
the requirements documentation — regardless of the
format in which requirements are expressed.

Requirements traceability (RT) is the another major factor
that determines how easy requirements documentation is
to read, navigate, query and change. Gotel [27] defines
requirements traceability as “the ability to describe and
follow the life of a requirement in both forwards and
backwards direction (i.e., from its origins, through its
development and specification, to its subsequent
deployment and use, and through all periods of on-going
refinement and iteration in any of these phases)”. RT lies
at the heart of requirements management practice in that it
can provide a rationale for requirements and is the basis
for most tools that analyse the consequences and impact
of change. Providing RT in requirements documentation
is a means of achieving integrity and completeness of that
documentation, and has an important role to play in
managing change, which will be discussed in section 8.

7 Agreeing Requirements

Having captured a statement of the requirements, it is
vital that the all stakeholders agree with it. Recall that
validation is the process of establishing that the
requirements (model) elicited provides an accurate
account of stakeholder requirements. Describing the
requirements is an important step towards getting
agreement. As Popper points out, “There is a world of
difference between holding a belief or expecting
something, and using human languagesty so. The
difference is that only if spoken out, and thus
objectivized, does a belief become criticizable” [52].
Describing the requirements is a necessary precondition

not only for validating requirements, but for resolving
conflicts between stakeholders..

Techniques such as inspection and formal analysis tend to
concentrate on the coherence of the requirements
descriptions: are they consistent, and are they structurally
complete. The formal method SCR [31] illustrates this
approach — the SCR tool provides automated checking
that the formal model is syntactically consistent and
complete. In contrast, techniques such as prototyping,
specification animation, and the use of scenarios are
geared towards testing a correspondence with the real
world problem: for example, have we covered all the
aspects of the problem that the stakeholders regard as
important.

Requirements validation is difficult for two important
reasons. The first reason is philosophical in nature, and
concerns the question of truth and what is knowable. The
second reason is social, and concerns the difficulty of
reaching agreement among different stakeholders with
conflicting goals. We will briefly examine each of these
inturn.

We can compare the problem of validating requirements
with the problem of validating scientific knowledge.
Many requirements engineers adopt a logical positivist
approach — essentially the belief that there is an objective
world that can be modelled by building a consistent body
of scientific knowledge grounded in empirical
observation. In RE, this view says that the requirements
describe some objective problem that exists in the world,
and that validation is the task of making sufficient
empirical observations to check that this problem has
been captured correctly. Karl Popper was one of the first
philosophers to point out some the limitations of
empirical observation. Popper’s view was that scientific
theories can never be proved correct through observation,
but can only be refuted [51]. Proposing a new theory is
therefore tantamount to inviting others to devise
experiments to refute it. For RE, this viewmggests that
validation should adopt the same stance that software
testers take: it should devise experiments to attempt to
refute the current statement of requirements. Jackson [34]
argues that descriptions used in RE should be refutable —
those that are not refutable are vague, and should only be
treated as “rough sketches”.

Logical positivism was severely criticised in the latter part
of the twentieth century. Each attack offers illuminating
insights for requirements engineers [5]. For example,
Kuhn [39] observed that science tends to move through
paradigm shifts, where the dominant paradigm determines
the nature of current scientific theories. This leads to the
realization that observation is not value-free, rather it is
theory-driven. The process of empirical observation is
biased by the current paradigm. For requirements
engineers, this means that the methods and tools they use

-6-

dominate the way that they see and describe problems. In
the extreme case, this shifts the problem of validating
requirements statements to a problem of convincing
stakeholders that the chosen representation for
requirements models is appropriate. Once again, Jackson
captures this perspective through his identification of
“problem frames” [34]. If the stakeholders do not agree
with the choice of problem frame, it is unlikely that they
will ever agree with any statement of the requirements.
Ethnomethodologists attempt to avoid the problem
altogether, by refusing to impose modelling constructs on
the stakeholders [26]. By discarding traditional problem
analysis tools, they seek to apply value-free observations
of stakeholder activities, and therefore circumvent the
requirements validation issue altogether.

The second essential difficulty in requirements validation

centres on the problem of disagreement between
stakeholders. Recent approaches that explicitly model
stakeholders’ goal hierarchies make the problem clear:
stakeholders may have goals that conflict with one

another. In the KAOS approach for example, these are
modelled as obstacles: the modelling process includes an
explicit analysis of potential obstacles to each goal [40].

Requirements negotiation attempts to resolve conflicts
between stakeholders without necessarily weakening
satisfaction of each stakeholder’s goals. Early approaches
to requirements negotiation focused on the importance of
establishing common ground [60], and on modelling each
stakeholder’s contribution separately rather than trying to
fit their contributions into a single consistent model [17].
Boehm introduced the win-win approach [6] in which the
‘win’ conditions for each stakeholder are identified, and
the software process is managed and measured to ensure
that all the win conditions are satisfied.

The theory underlying these negotiation models is the
same in each case: identify the most important goals of
each participant, and ensure these goals are met. This
approach is used in other RE techniques to promote
agreement, without necessarily making the goals explicit.
For example, in Quality Function Deployment (QFD) [30]
matrices are constructed to compare functional
requirements with one another and rate their importance,
but without explicitly identifying stakeholder goals.

In summary, two essential difficulties in agreeing (and
validating) requirements have been described: the first is
philosophical and the second social. These difficulties are
compounded by a number of contextual issues, including
contractual and procurement issues, and the fact that the
political and social milieu in which the introduction of a
new computer system changes the nature of work and the
organisations.

8 Evolving Requirements
Successful software systems always evolve as the

environment in which these systems operate changes and
stakeholder requirements change. Thereforanaging
changeis a fundamental activity in the RE [8].

As a first and minimal step, changing requirements
documentation needs to be managed. This often involves
providing techniques and tools for configuration
management and version control, and exploiting
traceability links to monitor and control the impact of
changes in different parts of the documentation. Of
course, managing changing requirements is not only a
process of managing documentation, it is also a process of
recognising change through continued requirements
elicitation, re-evaluation of risk, and evaluation of the
systems in their operational environment.

For software systems, the primary kind of change that
needs to be managed is change in software descriptions
(specifications and other kinds of documentation).
Specifications are generally changed for two reasons.
Either the specification contains a problem that needs to
be fixed (typically an inconsistency of some kind), or new
requirements need to be added (as part of evolutionary
development or to cope with changing stakeholder needs).
Therefore, managing changing requirements is also a
process ofmanaging inconsistencf22] — whether this
inconsistency is introduced by change or is as a result of
change.

Finally, the development of software systepmoduct
families has become an increasingly important form of
development activity. For this purpose, there is a need to
develop a range of software products that share similar
requirements and architectural characteristics, yet differ in
certain key requirements. The process of identifying “core
requirements” in order to develop architectures that are
(a) robust to change, and (b) flexible enough to be
customized and adapted to changing requirements, is one
of the key researches in software development.

9 Integrated Requirements Engineering

RE is a multi-disciplinary activity, deploying a variety of
techniques and tools at different stages of development
and for different kinds of application domains. Methods
provide a systematic approach to combining different
techniques and notations, amdethod engineering9]
plays an important role in designing the RE process to be
deployed for a particular problem or domain. Methods
provide heuristics and guidelines for the requirements
engineer to deploy the appropriate notation or modelling
technique at different stages of the process.

A variety of approaches have been suggested to manage
and integrate different RE activities and products.
Jacskon, for example, uses problem frames to structure
different kinds of elementary and composite problems
[34]. His argument is that identifying well-understood
problem, offers the possibility of selecting corresponding,

-7-

appropriate, well-understood, solutions.

Another popular approach to RE is to support explicitly
multiple perspectives or views of requirements [21]. This
enables a wider range of requirements to be elicited,
assists in identifying inconsistencies and conflicts
between requirements, and can facilitate requirements
partitioning and subsequent modelling and analysis. One
particular “viewpoint-oriented” RE approach, explicitly
supports both the development of multiple perspectives
and the design and integration of multiple methods to
support such an RE process [50].

Finally, to enable effective management of an integrated
RE process, automated tool support is essential.
Requirements management tools (such as DOORS [55],
Requisite Pro [56], Craddle [1] and others) provide
capabilities for documenting requirements, managing
their change, and integrating them in different ways
depending on project needs.

10 Concluding Remarks

Requirements engineering continues to be a crucial
activity in any systems engineering process. The novelty
of many software applications, the speed by which they
need to be developed, and the degree to which they are
expected to change, all play a role in determining how the
RE process should be conducted. The demand for better,
faster, and prettier software systems will continue, and the
RE field will therefore continue to evolve to deal with
different development scenarios.

Unfortunately, many delivered systems do not meet their
customers’ requirements, and this is, at least partly, due to
ineffective RE (often treated as a time-consuming,

contractual process).

Nevertheless, we believe that effective RE will continue
to determine the success or failure of projects, and to
determine the quality of systems that are delivered.
However, we also believe that RE research should be
focused increasingly on understanding and supporting
more interleaved models of software development. In
particular, the intertwining of requirements and design
needs to be revisited [66], to provide software systems
engineers with better guidance as they navigate the
“process road” [24] between software requirements and
software architectures.

Acknowledgements.This work was partially funded by
the UK EPSRC projects MISE (GR/L 55964) and VOICI
(GR/M 38582).

11 References
[1] 3SL, “CRADDLE”", Structured Software Systems Ltd.
http://www.threesl.com/, 1999.

[2] S. Abramsky, D. Gabbay, and T. Maibaum, Eds.,
Handbook of Logic in Computer Science Vol 1:
Background: Mathematical Structure€larendon Press,
1992.

[3] V. Ambriola and V. Gervasi, “Processing Natural
Language Requirements”, Proc. of 12th Int. Conference on
Automated Software Engineering6-45, Lake Tahoe,
USA, IEEE CS Press, 3-5 Nov. 1997.

[4] G. Antoniou, “The role of nonmonotonic representations in
requirements engineering”Int. Journal of Software
Engineering and Knowledge Engineerjn§(3):385-399,
World Scientific, 1998.

[5] B. I. Blum, Beyond Programming: To a New Era of
Design Oxford University Press, 1996.

[6] B. Boehm, P. Bose, E. Horowitz, and M. J. Lee,
“Requirements Negotiation and Renegotiation Aids: A
Theory-W Based Spiral Approach’Proc. of 17th Int.
Conference on Software Engineering (ICSE;1243-254,
Seattle, USA, IEEE CS Press, 23-30 April 1995.

[7] B. W. Boehm,Software Engineering Economjd3rentice-
Hall, 1981.

[8] S. A. Bohner and R. S. Arnold, EdsSoftware Change
Impact AnalysislEEE CS Press, 1996.

[9] S. Brinkkemper and S. Joosten, “Editorial:
Engineering and Meta-modelling”,Information
Software TechnologB8(4):259, Elsevier, April 1996.

[10] J. F. M. Burg, Linguistic Instruments in Requirements
EngineeringIOS Press, 1997.

[11] R. Carter, J. Martin, B. Mayblin, and M. Munda8ystems,
Management and Change: A Graphic Guid@aul
Chapman Publishing/Harper and Row, 1984.

[12] L. Chung, “Dealing with Security Requirements During the
Development of Information SystemsRroc. of 5th Int.
Conference on Advanced Information Systems Engineering
(CAISE'93) 234-251, Paris, France, Springer-Verlag, 1993.

[13] A. Dardenne, A. v. Lamsweerde, and S. Fickas, “Goal-
Directed Requirements Acquisitiongcience of Computer
Programming 203-50, Elsevier, 1993.

[14] A. Davis, “Operational Prototyping: A New Development
Approach”,Software 9(5):70-78, IEEE CS Press, 1992.

[15] A. Dauvis, Software Requirements: Objects, Functions and
StatesPrentice Hall, 1993.

[16] A. Dix, J. Finlay, G. Abowd, and R. Bealdduman-
Computer Interaction2nd Edition, Prentice Hall, 1998.

[17] S. M. Easterbrook, EACSCW: Cooperation or Conflict?,
Springer-Verlag, 1993.

[18] A. Endres, “An Analysis of Errors and Their Causes in
System ProgramsTransactions on Software Engineerjng
1(2):140-149, IEEE CS Press, 1975.

[19] S. Fickas and P. Nagarajan, “Critiquing Software
Specifications: a knowledge based approachBbftware
5(6):, IEEE CS Press, November 1988.

Method
and

[20] A. Finkelstein, “Requirements Engineering: an overview”,
Proc. of 2nd Asia-Pacific Software Engineering
Conference (APSEC'93)lokyo, Japan, IEEE CS Press,
1993.

[21] A. Finkelstein and I. Sommerville, “The Viewpoints FAQ:
Editorial - Viewpoints in Requirements Engineering”,
Software Engineering Journal 11(1):2-4, IEE/BCS,
January 1996.

[22] C. Ghezzi and B. Nuseibeh, “Guest Editorial - Managing
Inconsistency in Software Developmentransactions on
Software Engineering24(11):906-907, IEEE CS Press,
November 1998.

[23] D. D. Gobbo, M. Napolitano, J. Callahan, and B. Cukic,
“Experience in Developing System Requirements
Specification for a Sensor Failure Detection and
Identification Scheme”,Proc. of 3rd High-Assurance
Systems Engineering Symposjiiashington, DC, IEEE
CS Press, 13-14 Nov. 1998.

[24] M. Goedicke and B. Nuseibeh, “The Process Road
Between Requirements and Desig®toc. of 2nd World
Conference on Integrated Design and process Technology
(IDPT'96), 176-177, Austin, Texas, USA, SDPS, 1-4
December 1996.

[25] J. Goguen and M. Jirotka, EdRequirements Engineering:
Social and Technical Issuescademic Press, 1994.

[26] J. Goguen and C. Linde, “Techniques for Requirements
Elicitation”, Proc. of 1st IEEE Int. Symposium on
Requirements Engineering (RE'93)52-164, San Diego,
IEEE CS Press, 4-6th Jan. 1993.

[271 O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability ProblemProc. of 1st Int.
Conference on Requirements Engineering (ICRE'94)
101, Colorado Springs, IEEE CS Press, April 1994.

[28] A. Gravell and P. Henderson, “Executing Formal
Specifications Need Not Be Harmful”, Software
Engineering Journal 11(2):104-110, IEE/BCS, March
1996.

[29] S. Greenspan and M. Feblowitz, “Requirements
Engineering Using the SOS ParadigniProc. of 1st Int.
Symposium on Requirements Engineering (RE'28p-
263, San Diego, IEEE CS Press, 4-6 Jan. 1993.

[30] J. R. Hauser and D. Clausing, “The House of Qualififie
Harvard Business Revi€@):63-73, May-June 1998.

[31] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw,
“Automated Consistency Checking of Requirements
Specifications” Transactions on Software Engineering and
Methodology5(3):231-261, July 1996.

[32] K. Holtzblatt and H. R. Beyer, “Requirements Gathering:
The Human Factor”, Communications of the ACM
38(5):31-32, ACM Press, May 1995.

[33] G. J. Holzmann, “The Model Checker Spiffransactions
on Software Engineering23(5):279-295, IEEE CS Press,
May 1997.

[34] M. Jackson Software Requirements and Specifications: A
Lexicon of Practice, Principles and PrejudiceAddison
Wesley, 1995.

[35] M. Jackson and P. Zave, “Domain DescriptionBtpc. of
1st Int. Symposium on Requirements Engineering (RE'93)
56-64, San Diego, USA, IEEE CS Press, 4-6 January 1993.

[36] M. Jarke and R. Kurki-Suonio, “Guest Editorial - Special
issue on Scenario Managemeriftansactions on Software
Engineering 24(12):, IEEE CS Press, December 1998.

[37] P. Johnsontiuman-Computer Interaction: psychology, task
analysis and software engineerifgcGraw-Hill, 1992.

[38] B. L. Kovitz, Practical Software Requirements: A Manual
of Contents & StyleManning, 1999.

[39] T. S. Kuhn, The Structure of Scientific Revolutigns
University of Chicago Press, 1962.

[40] A. v. Lamsweerde and E. Letier, “Integrating Obstacles in
Goal-Driven Requirements Engineering?toc. of 20th Int.
Conference on Software Engineering (ICSE;283-62,
Kyoto, Japan, IEEE CS Press, 19-25 April1998.

[41] P. Loucopoulos and E. Kavakli, “Enterprise Modelling and
the Teleological Approach to Requirements Engineering”,
Int. Journal of Intelligent and Cooperative Information
Systems4(1):45-79, 1995.

[42] R. Lutz, G. Helmer, M. Moseman, D. Statezni, and S.
Tockey, “Safety Analysis of Requirements for a Product
Family”, Proc. of 3rd IEEE Int. Conference on
Requirements Engineering (ICRE '984-31, Colorado
Springs, IEEE CS Press, 6-10 April 1998.

[43] N. Maiden, “CREWS-SAVRE: Scenarios for Acquiring
and Validating Requirements”,Automated Software
Engineering5(4):419-446, Kluwer, Oct. 1998.

[44] N. Maiden and G. Rugg, “ACRE: Selecting Methods For
Requirements Acquisition'Software Engineering Journal
11(3):183-192, IEE/BCS.

[45] N. A. M. Maiden and A. G. Sutcliffe, “Exploiting Reusable
Specifications Through Analogy'Communications of the
ACM, 34(5):55-64, ACM Press, April 1992.

[46] F. Modugno, N. G. Leveson, J. D. Reese, K. Partridge, and
S. D. Sandys, “Integrating Safety Analysis of Requirements
Specifications”, Proc. of 3rd IEEE Int. Symposium on
Requirements Engineering (RE'97)48-159, Annapolis,
IEEE CS Press, 6-10 Jan. 1997.

[47] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and
Using Non-functional Requirements: a process-oriented
approach”, Transactions on Software Engineerjng
18(6):483-497, IEEE CS Press, June 1992.

[48] T. Nakajo and H. Kume, “A Case History Analysis of
Software Error Cause-Effect Relationship3tansactions
on Software Engineeringl7(8):830-838, IEEE CS Press,
1991.

[49] B. Nuseibeh, “Ariane 5: Who Dunnit?”,Software
14(3):15-16, IEEE CS Press, May 1997.

[50] B. Nuseibeh, J. Kramer, and A. C. W. Finkelstein, “A
Framework for Expressing the Relationships Between
Multiple Views in Requirements Specification”,
Transactions on Software Engineering0(10):760-773,
IEEE CS Press, October 1994.

[51] K. R. PopperConjectures and Refutations: The Growth of
Scientific KnowledgeBasic Books1963.

[52] K. R. Popper, “Campbell on the Evolutionary Theory of
Knowledge”, In Evolutionary Epistemology, Rationality
and the Sociology of Knowledgé&15-120, G. Radnitsky
and W. W. Bartley, Eds., La Salle, IL: Open Court, 1987.

[53] C. Potts, “Requirements Models in ContexProc. of 3rd
Int. Symposium on Requirements Engineering (RE'97)
102-104, Annapolis, IEEE CS Press, 6-10 Jan. 1997.

[54] C. Potts, K. Takahashi, and A. Anton, “Inquiry-based
requirements Analysis"Software 11(2):21-32., IEEE CS
Press, 1993.

[55] @SS, “DOORS”, Quality Systems and Software
http://www.qss.co.uk/, 1999.
[56] Rational, “Requisite Pro”, Rational Corporation

http://www.rational.com, 1999.

[57] H. B. Reubenstein and R. C. Waters, “The Requirements
Apprentice: Automated Assistance for Requirements
Acquisition”, Transactions on Software Engineering
17(3):226-240, IEEE CS Press, March 1991.

[58] S. Roberston and J. Robertsdfiastering the Requirements
ProcessAddison-Wesley, 1999.

[59] S. Robertson and J. Robertsofihe Complete Systems
Analysis: The Workbook, The Textbook, the Answers
Dorset House, 1994.

[60] W. N. Robinson and S. Volkov, ‘%porting the
Negotiation Life-Cycle”, Communications of the ACM
41(5):95-102, ACM Press, May 1998.

[61] M. Saaltink, “The Z/EVES System’Proc. of 19th Int.
Conference on the Z Formal Method (ZUMY2-88,
Reading, UK, Springer-Verlag, April 1997.

[62] G. Schneider and J. Winters, “Applying Use Cases: a
practical guide,” : Addison-Wesley, 1998.

[63] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder
Identification in the Requirements Engineering Process”,
Proc. of Workshop on Requirements Engineering Processes
(REP'99) - DEXA'99 387-391, Florence, Italy, IEEE CS
Press, 1-3 September 1999.

[64] M. Shaw and B. Gaines, “Requirements Acquisition”,
Software Engineering Journall1(3):149-165, IEE/BCS,
May 1996.

[65] R. Stevens, P. Brook, K. Jackson, and S. Arn&@gstems
Engineering: Coping with Complexity Prentice Hall
Europe, 1998.

[66] W. Swartout and R. Balzer, “On the Inevitable Intertwining
of Specification and ImplementationCommunications of
the ACM 25(7):438-440, ACM Press, July 1982.

[67] R. Thayer and M. Dorfman, EdsSoftware Requirements
Engineering, 2nd Edition, IEEE CS Press, 1997.

[68] S. Viller and |. Sommerville, “Social Analysis in the
Requirements Engineering process: from ethnography to
method”, Proc. of 4th Int. Symposium on requirements
Engineering (RE'99)Limerick, Ireland, IEEE CS Press, 7-
11th June 1999.

[69] R. J. Wieringa,Requirements Engineering: Frameworks
for UnderstandingWiley, 1996.

[70] E. Yu, “Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineeririgfoc. of 3rd IEEE
Int. Symposium on Requirements Engineering (RE'97)
226-235, Annapolis, IEEE CS Press, 6-10 Jan. 1997.

[71] P. Zave, “Classification of Research Efforts in
Requirements Engineering”, Computing Surveys
29(4):315-321, ACM Press, December 1997.

