
Requirements Engineering and the
Creative Process in the Video Game Industry

David Callele, Eric Neufeld, Kevin Schneider
Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan, Canada S7N 5C9

{callele,neufeld,kas}@cs.usask.ca

Abstract

The software engineering process in video game develop-

ment is not clearly understood, hindering the development

of reliable practices and processes for this field. An investi-

gation of factors leading to success or failure in video game

development suggests that many failures can be traced to

problems with the transition from preproduction to produc-

tion. Three examples, drawn from real video games, illus-

trate specific problems: 1) how to transform documenta-

tion from its preproduction form to a form that can be used

as a basis for production, 2) how to identify implied infor-

mation in preproduction documents, and 3) how to apply

domain knowledge without hindering the creative process.

We identify 3 levels of implication and show that there is

a strong correlation between experience and the ability to

identify issues at each level.

The accumulated evidence clearly identifies the need to

extend traditional requirements engineering techniques to

support the creative process in video game development.

Keywords: Non-functional requirements, elicitation,

video game development, game design document, prepro-

duction, production, domain-specific terminology.

1. Introduction

Video games are a special type of multimedia applica-

tion – an entertainment product that requires active partici-

pation by the user. Developed by a multi-disciplinary team,

non-functional requirements such as entertaining the user

creates special demands on the requirements engineering

process. Requirements like fun and absorbing are not well

understood from the perspective of requirements engineer-

ing, compounding communication issues between game

designers and software engineers. Game designers may not

understand, for example, the limitations of artificial intel-

ligence when designing non-player characters while soft-

ware engineers may not understand the creative vision or

they may be too willing to compromise that vision in the

rush to ship the product.

It may be that nothing can qualitatively change this.

However, it should be possible to decrease the cost of

delays caused by communication errors in such a non-

heterogeneous group. As a first step toward the develop-

ment of a formal process, we have tried to locate the causes

of the most costly errors. By way of background, we first

review the requirements engineering literature applied to

multimedia development and introduce the video game in-

dustry and the video game development process, with at-

tention to the roles of preproduction and the game design

document (as a deliverable artifact of the preproduction

process). We analyze the observational reports from the

Postmortem column in Game Developer magazine, catego-

rize the information therein, and present the results. Three

examples, drawn from real video games, illustrate particu-

lar issues that must be addressed in a formal process. We

follow with our conclusions and directions for future work.

2. Background

Requirements engineering within a community of com-

mon interest is difficult – the ability to precisely commu-

nicate and capture stakeholder wants and needs is rare.

Traditional requirements engineering techniques [12] [22]

assume these communications issues can be overcome in

a few iterations. However, we are unaware of any work

that directly addresses the validity of this assumption in

a multi-disciplinary development effort. When these ef-

forts include a strong creative or artistic element, such as

in video game design, multimedia web sites, or the movie

industry, even the industrial literature is sparse.

Members of video game development teams include

practitioners from such diverse backgrounds as art, music,

graphics, human factors, psychology, computer science,

and engineering. Individuals who, in other circumstances,

would be unlikely to interact with each other on a profes-

sional basis unite in their economic goal of creating a com-

mercially successful product. Requirements engineering in

the face of such diversity requires the creation of a common

(domain) language (and implied world model) specific to

the task at hand. Once all stakeholders fully commit to the

domain language, then a set of requirements that captures

the stakeholders wants and needs can be generated.

Given the dearth of directly related work, we performed

a more extensive literature review, focussing on: 1) require-

ments engineering and emotional factors (including fun in

games), 2) issues of language and the creation of a com-

mon language or domain ontology, 3) requirements elicita-

tion and the effects of feedback on emergent requirements,

particularly in multimedia development, and 4) the roles

of implication, inference, and anticipation when capturing

requirements.

2.1. Emotional Factors

Few researchers have investigated emotional factors in

requirements engineering. Draper [8] looked at fun as

a candidate software requirement, attempting to identify

what it is that makes play “fun”. He concluded that “fun

is not a property of software, but a relationship between the

software and the users goals at that moment” and that “pro-

viding enjoyment is now a defining requirement of an im-

portant class of software, and this has not been sufficiently

recognized in our analyses and design methods”. These

conclusions are consistent with our experience.

Hassenzahl et al. [14] introduced hedonic qualities

(those that are unrelated to the current task but present

for emotional reasons) and associated repertory grid tech-

niques for measuring them. Bentley et al. [3] investi-

gated emotional (affective) factors in computer games, not-

ing that “software requirements for these and other affec-

tive factors are never truly captured in an official manner”.

In particular, usability, flow (immersion), and motivation

were considered via a user survey mechanism. They note

that there are no established techniques for eliciting emo-

tional requirements. Even Chung, in his detailed analysis

of non-functional requirements [7], does not substantively

address emotional issues.

In the field of game design, Salen and Zimmerman [24],

Laramee [16], and Saltzzman [25] address issues of emo-

tions and emotional response in game players. While these

works do not directly address requirements engineering

practices, the techniques that they describe for game de-

sign and eliciting feedback from players may increase the

range of elicitation techniques available to practitioners. In

a more general sense, Norman [20] describes numerous

human factors practices that could be readily incorporated

into requirements engineering for video games.

2.2. Language and Ontology

Zave [28] classifies the problems addressed by re-

quirements engineering, defining the domain, in part,

as “. . . translation from informal observations of the real

world to mathematical specification languages.” In game

development, this is only partially true. In many cases,

the game designer, an individual who may have little or

no interest in a mathematical representation, is also tasked

with generating the requirements. Unable to generate the

requirements in isolation, the game designer works with

the production team to translate the vision to requirements

– usually stated in natural language complete with domain

specific terminology. Once captured, the requirements may

be formalized in place or, more likely, formalized as they

are translated into specifications.

Goguen [13] describes creating a common language as

the creation of discourse structures that “. . . are situated,

emergent, open, locally organized, and contingent.” In

other words, the domain language must be taken in context,

as created by the members of the domain, constantly sub-

ject to revision, affected by current developments, and sub-

ject to re-interpretation in light of historical and anticipated

events. The dynamic nature of this description applies well

to the evolutionary aspects of video game development.

Jarke and Pohl [15] describe a central system vision,

driven by a perceived need for change (either threat or op-

portunity). They further stress the importance of the vision,

defining “requirements engineering as a process of estab-

lishing vision in context”. An accurate expression of the

“vision in context” requires a language of discourse that

includes the requisite domain specific terminology. Van

Lamsweerde [27] describes this domain specific terminol-

ogy as the “conceptual units in terms of which models will

be built”.

Pinheiro [21] introduces requirements honesty, main-

taining the integrity of the requirements engineering

process in the face of significant time-to-market pressures

(such as those experienced in the video game industry).

Process integrity breakdown may be reflected in the domain

language – when domain language becomes imprecise, this

may be an indicator of trouble.

The need for an ontology (a formal representation of the

entities within a domain and their relationships) is men-

tioned [15], [27] but the focus of the work seems to be on

business process improvements rather than new product de-

velopment. Ontologies themselves have be considered a

deliverable from the requirements engineering process [6].

Automated approaches to requirements capture have

been tried, particularly in the area of translating natural

language to a formal representation. Gervasi and Neuse-

beih [11] proposed a lightweight approach, and in their case

study were able to identify errors missed by other valida-

tion methods. Their approach relied heavily on a restricted

domain of discourse and was focussed on the validation of

objects and actions in this environment. While their syn-

tactic analysis has significant benefit, the complexity of the

problem in a (relatively) unrestricted domain such as video

game design may exceed the bounds of practicality. Re-

sults in this area would help the documentation transition

studied further in Section 6.1.

2.3. Elicitation, Feedback and Emergence

Goguen [13] emphasizes that “feedback and feedfor-

ward go on all the time, at least in successful large projects”

and that “requirements are emergent”. Emergent require-

ments, those that are discovered during the transition from

preproduction to production, are a significant aspect of the

creative design process.

Sutton [26] points out that it is only through an iterative

process that we can hope to achieve an acceptable degree

of certainty when capturing requirements. Interactions be-

tween language of discourse and abstraction heighten the

complexity.

Using web based artifacts as an example of multime-

dia development, Lowe [17] characterizes development of

web-based systems by “uncertainty in the project domain

and volatility of the client needs and available technology.”

concluding that “Research has tended to focus on design

methods, but largely without considering how these design

processes contribute to a domain understanding and clar-

ification of the requirements.” The volatility and lack of

clarity described here is also characteristic of video game

development.

Zave [28] presents a classification scheme that assumes

that “. . . as software engineers, we can seek to understand

social factors but we can only hope to influence techni-

cal practices.” We posit that requirements engineering can

take a more proactive approach in video game development

by providing feedback from production to preproduction in

response to a feedforward of early versions of preproduc-

tion documentation. The resultant influence on the creative

process escapes Zave’s technical practices restriction. Spe-

cific feedforward and feedback examples appear in Section

6.3.

2.4. Implication, Inference and Anticipation

In practice, requirements elicitation consists of repeat-

edly asking what and why of the customer. As Van Lam-

sweerde [27] states, further goals are elicited through ques-

tioning why a current goal exists or is in its current form.

However, the customer is not always consciously aware

of all of the goals. The search for implied goals may be

the most important duty of a requirements engineer. So-

phisticated practitioners look for implications as soon as

possible and present them to the customer to evaluate their

validity. Van Lamsweerde [27] notes that “The lack of an-

ticipation of exceptional behaviors may result in unrealis-

tic, unachievable and/or incomplete requirements.”

The role of implication in emergent requirements is in-

vestigated further in Section 6.2.

3. Video Game Development

Video games are a significant element of the entertain-

ment industry. The Consumer Electronics Association [1]

reports that entertainment software sales rose from $5.1 bil-

lion in 1999 to $7.7 billion in 2003 and that hardware sales

increased from $2.3 billion in 1999 to $3.2 billion in 2003.

Combined hardware and software sales in the video game

industry exceed the 2003 $9.42 billion gate receipts of the-

atrical release movies in North America [10].

However, for every advertisement for a newly released

game, the trade press reports a disproportionately large

number of projects that fail to reach the market. The

present work begins an investigation into the causes of

these failures. The multidisciplinary nature of the video

game development process – with art, sound, gameplay,

control systems, human factors (and many others) interact-

ing with traditional software development creates complex-

ities that may recommend a specialized software engineer-

ing methodology for this domain.

3.1. Development Process

Figure 1 models the game development process as two

consecutive efforts. The left hand side of the diagram de-

picts the preproduction phase, resulting in a Game Design

Document (GDD). Preproduction loosely corresponds to a

customer’s internal efforts to define their wants and needs

before meeting with the development team.

Figure 1. Video game development

The right hand side of the diagram, derived from Medvi-

dovich and Rosenblum [18], depicts the production phase.

During the production phase, the GDD is analyzed (with

the assistance of the game designer(s)) to capture system

requirements that are then restated as a formal specifica-

tion. Once the specification is complete, a traditional soft-

ware development process begins (often using an iterative

development effort of some form), resulting in the game

artifact.

Moving from preproduction to production is particularly

difficult in video game development. A wide range of fac-

tors (e.g. artistic, emotive, and immersive factors) must be

addressed by the requirements engineering effort. These

factors are captured in the game design document.

3.2. The Game Design Document

The game design document is a creative work written

by the game designer (or game design team). The GDD

must be thorough, but not necessarily formal (in the sense

of structure or from a mathematical perspective). In fact,

one could argue that imposing too much structure on the

creative process may be highly detrimental – constraining

expression, reducing creativity, and impairing the intangi-

bles that create an enjoyable experience for the customer.

In a sense, the GDD is the requirements document as de-

fined by the preproduction team.

The form of the game design document varies widely

across genres and studios. Typically, a GDD (drawing

loosely from Bethke [4]) includes a concept statement and

tagline, the genre of the game, the story behind the game,

the characters within the game, and the character dialogue.

It will also include descriptions of how the game is played,

the look, feel, and sound of the game, the levels or mis-

sions, the cutscenes (short animated movie clips), puzzles,

animations, special effects, and other elements as required.

A game design document is a preproduction artifact de-

signed to capture a creative vision. It is not designed to

meet the needs of a production effort. If a GDD is being

used as a source document in the production phase, there

are two possible explanations. The first explanation may

be that the game design document contains the information

required for the production phase. In this case, the game

design document is malformed and should be restructured

and maintained as independent preproduction and produc-

tion documents. The second explanation may be that, even

though the game design document does not contain pro-

duction information, the production team is performing re-

quirements engineering, specification, and possibly even

design, on an ad hoc basis. The greatest danger associated

with such ad hoc activities is the dependence on human

memory for capturing decisions and their justifications.

There are issues associated with managing the game de-

sign document to requirements document transition. Two

sets of documentation must be created and maintained. The

writing styles associated with the two sets of documenta-

tion are very different – is it reasonable to expect that a

single individual can perform both tasks in an efficient and

acceptable manner, particularly in the absence of generally

accepted practices for performing this translation?

4. The Transition from Preproduction to Pro-

duction

Requirements errors are some of the most costly to fix;

Boehm and Basili [5] estimate that errors of this type can

cost up to 100 times more to fix after delivery than if

caught at the start of the project. Despite the available

evidence and accumulated experience, many projects still

suffer from failures due to inadequate requirements engi-

neering

Game designer and producer Eric Bethke [4] states

. . . too many projects violate their prepro-

duction phases and move straight to production.

. . . In my opinion, preproduction is the most im-

portant stage of the project. I would like to see

the day when a project spends a full 25 to 40% of

its overall prerelease time in preproduction. Dur-

ing production there should to be relatively few

surprises.

He promotes the use of UML based tools as a way to man-

age the transition but a formal (or semi-formal) transition

process is not presented. Many of the requisite elements for

production management (such as requirements capture, re-

quirement analysis, task analysis, time estimation, project

plans and technical design) are discussed in an informal

manner.

Other producers and consultants, such as Rollings [23]

and Michael [19], also identify many of the requisite ele-

ments for production management but do not provide for-

mal or semiformal guidelines for managing the transition.

When discussing game design documents, Bethke [4]

states “. . . I have never seen a completed design document,

and one of the reasons is that game design documents need

to be maintained through the course of production.” With

time-to-market pressures so prevalent, it is easy to see how

documentation maintenance is given low priority.

Despite the recognized need, we have discovered no ev-

idence that a process for managing the transition from pre-

production to production has been proposed (recognizing

that such a process may exist within an organization but

remain unreported in the literature).

5. Review of Postmortem Columns

The video game industry is competitive and manage-

ment processes are significant corporate assets and gen-

erally inaccessible to the researcher. Therefore, we use

the Postmortems columns in Game Developer magazine

[2], some of which are extracted in POSTMORTEMS from

Game Developer[9], as a source of observational reports on

this issue.

From the author’s guide provided by the publisher:

. . . Explain what 5 goals, features or aspects

of the project went off without a hitch or bet-

ter than planned. . . . Explain what 5 goals, fea-

tures or aspects of the project were problem-

atic or failed completely. . . . Important: try to

come up with things that went right/wrong dur-

ing project that are likely unique to your project.

Stay away from common and well understood

problems and solutions (e.g., ”communication

between the team members wasn’t good” – that’s

been true of most games), and focus on what

made your project different from others.

The reports presented in the Postmortem column poten-

tially capture what makes video game development unique.

They are typically attributed to members of the project

management team or middle to upper management within

the development organization. As such, one can reasonably

assume that the reports reflect issues of particular import to

the authors. While there may be an observer effect, par-

ticularly with respect to those items that went wrong, we

assume the information presented has a strong basis in fact.

Fifty postmortem reports [2], published between May

1999 and June 2004, were analyzed in an attempt to iden-

tify factors that lead to success or failure in video game

development. Each report contained 5 entries in the “what

went right” and “what went wrong” sections. These en-

tries were reviewed and classified according to the follow-

ing scheme1.

The classifications scheme has five categories: 1) pre-

production, issues outside of the traditional software devel-

opment process such as inadequate game design or inad-

equate storyboarding, 2) internal, issues related to project

management and personnel, 3) external, issues outside of

the control of the development team such as changes in the

marketplace and financial conditions, 4) technology, issues

related to the creation or adoption of new technologies, and

5) schedule, issues related to time estimates and overruns.

Schedule issues are a subset of internal issues, but were

1In an attempt to reduce possible biases, the entries were reviewed with

minimal identifying information and categorization of the “what went

right” entries was performed independently of the “what went wrong”

entries.

uniquely identified in an effort to determine if scheduling

was a significant issue. Any pair of the five categories was

also possible (e.g., “internal and technology”) if the entry

was that precise.

Figure 2. Observational Report Analysis

Figure 2 is a normalized representation of the results

of the categorization process. Of the 15 possible cate-

gories, only five categories are significant. In order of sig-

nificance: internal factors, preproduction factors, technol-

ogy factors, interactions between preproduction and inter-

nal factors, and external factors. In relative terms, internal

factors dominate any other category by a factor of approx-

imately 300%.

Closer inspection of points classified as internal or

schedule factors reveals that many, if not most, of the en-

tries are related to classic project management issues. In

particular, missing project elements (tasks) or errors in es-

timating the size of the tasks are particularly common. It

appears that many of these issues could be addressed by a

RE process that better manages the transition from prepro-

duction to production.

Of interest is the balance in the categorization results.

Across all categories, across all projects, the maximum de-

viation from the mean is only 5.8% – a category was per-

ceived as likely to contribute to the success of a project as

it was to the failure of the project.

The high degree of correlation between the “what went

right” and “what went wrong” entries could be a result

of the granularity of the categorization scheme – approx-

imately 60% of all entries are categorized within the (ma-

jor) internal category or related minor categories. In gen-

eral, the management of different aspects of the production

process was often listed both as an element that went right

and an element that went wrong within a given project.

The degree of correlation between the “what went right”

and “what went wrong” entries within a given project is

also significant. We assumed that the order in which the en-

Figure 3. Correlation Within a Project

tries were presented was irrelevant and then cross-checked

the results of the categorization process to see if the same

categories were being reported as success and as failures.

The results of this analysis are shown in Figure 3.

Again, it appears that individual categories are just as

likely to be viewed, within a given project, as a contributor

to success as to failure.

In an effort to determine whether these strong correla-

tions are related to the categorization process or are inher-

ent within the data, we are currently performing a more

detailed analysis of these reports.

6. Examples From Real Games

The initial results from our analysis of the Postmortem

columns led us to conclude that weak management of the

transition from preproduction to production was a source

of many issues . We now look at some examples from real

games that have either been published or are currently in

development2 to find further support for this conclusion.

We look at 3 issues in particular: documentation transfor-

mation, implication creating emergent requirements, and

the effects of a priori knowledge on the requirements engi-

neering process.

6.1. Documentation Transformation

Table 1 illustrates a microcosm of the documentation

transformation issue. The game designer begins (1) with

a story written in a narrative style. That story is then trans-

lated (elsewhere in the game design document) to a more

formal form (2) that describes the action as a task and a jus-

tification for that task. The requirements engineer analyzes

2In the first example, minor changes have been made to the material to

obfuscate the source.

this information, in context, to determine a set of require-

ments (3): identifying in-game assets such as the player

avatar, Anna (a Non-Player Character (NPC)) and an in-

ventory item. A state that controls the player’s progress

through the game is also identified and captured. Depend-

ing on the in-house process used, the detailed description

(4) of these in-game assets may be part of the requirements

document or part of a specification document. Independent

of where the detailed descriptions are located, they could

easily reach 50 pages once issues like artistic style, anima-

tion, and game state are included.

Performing and managing this transformation is com-

plex. Each of these documents requires a different writ-

ing style and a single individual may not have the requisite

writing skills to author materials for all purposes. In ad-

dition, creating the requirements document or specification

document often requires considerable a priori knowledge

of the available technology so that this information can be

presented in context. There is also a multiplicative effect:

each successive document is larger than the prior document

as the author(s) attempt to precisely capture the required in-

formation. The authors must manage multiple stakeholder

viewpoints, synthesizing a common domain language, nu-

merous nonfunctional requirements, and inconsistencies as

the project evolves.

The list of required skills is long and implies a team

effort. The associated costs are significant, leading to a

strong management bias toward minimizing the documen-

tation effort.

6.2. Implication

By its nature as a creative work, a game design docu-

ment is replete with implied information. Identifying these

implications requires careful analysis, understanding the

ramifications of the implications requires significant do-

main knowledge.

To expand on the importance of domain knowledge, we

revisit Table 1. This table captures what we call first-level

implications: those implications that can be derived di-

rectly from the materials presented. Almost all develop-

ment teams, independent of their experience levels, cap-

ture these implications. Missing implications at this level

is usually an oversight on the part of the team.

The second level of implication requires general knowl-

edge of the domain – in this case, the adventure game

genre. These implications are generally captured by teams

with members who have experience with non-trivial soft-

ware development projects in the domain. In this case, the

description contains significant implications regarding the

game world: the characters must be situated within the ap-

propriate environment(s). Therefore, there is an environ-

ment surrounding the player when they receive the infor-

1 Story After her father, Bernard, died, Crystal did not know which way to turn – paralyzed by her loss

until the fateful day when his Will was read.

2 Game Design Document The Player must visit Anna the Lawyer to receive a copy of Bernard’s Last Will and Testament,

thereby obtaining the information necessary to progress to the next goal.

3 Requirements The Player must be represented by an avatar.

Female Non Player Character required: Anna the Lawyer

Inventory Item: Last Will and Testament (LWT)

Player can not progress beyond Game State XYZ until LWT added to Inventory

4 Specification Could easily reach 50 pages

Table 1. Documentation Transformation

mation, there is Anna’s office, perhaps an office building

with other office interiors, background sounds, and possi-

bly even other NPCs in the office areas. And, if there are

other NPCs, do the NPCs interact with the Player?

These second level implications could easily amount to

many person-months of development effort by modelers,

artists, animators, and other members of the production

team.

The third level of implication requires knowledge of im-

plementation details such as the target architecture. These

implications are captured by experienced teams, particu-

larly when the present project is a sequel of some form.

The requirement for the player to visit Anna raises ques-

tions about the connectivity between the elements (locales)

of the virtual world – is there more than one way the Player

can get to Anna the Lawyer? How does the player experi-

ence the journey? Via a scene change? Or, must they guide

their avatar through the virtual world (implying the creation

of all the media assets to represent the world)?

Perhaps more importantly, does the connectivity change

over time? Dynamic connectivity has significant implica-

tions for representing game state (the current state of the

world simulation). Designing, verifying, and maintaining a

stateful world is more complex than a stateless world.

A question is raised by identifying these three levels of

implication: Is it more appropriate to follow a traditional

iterative process and allow these issues to surface later, or

should this feedback be applied as early as possible in the

process? Intuitively, early feedback is better. However,

early feedback could have a negative effect on the creative

process: if the game design team feels that the production

team is going to reject their proposals then they may be-

come conditioned to be less creative. The effects of early

production feedback on the preproduction process merits

further investigation.

6.3. A Priori Knowledge

Building on the analysis of the prior section, we now

look more closely at the effect of a priori knowledge on

the requirements engineering process.

Figure 4. Akeladoor Puzzle Description, used with

permission

Domain specific terms, particularly abbreviations and

acronyms, are common in working papers. Figure 4 is the

game designer’s description of the Akeladoor Release Puz-

zle from the game Apocalypse Spell, currently under de-

velopment by Far Vista Studios. Upon inspection, we see

PV Movie: Partial Video, a less than full screen video clip,

puzzle HS: a puzzle Hot Spot, an interaction point for the

player, FSM: Finite State Machine, MG: Master Guidelines

(the game uses a model driven architecture whose reposi-

tory is called the Master Guidelines by the team).

If one attempts to formalize this document, they must

understand large portions of both the preproduction and

production realms. In a typical studio, this implies senior

personnel from the preproduction or production staff but

they are usually “too busy” to perform the task. Documen-

tation is often assigned to a junior staff member with the

rationalization that this task will “bring them up to speed”.

Another alternative is to add professional technical writ-

ing resources to the projects. However, there is often a per-

ception that it takes more time to explain it to the technical

writer than it does to just write it oneself. Once this ex-

cuse is in place, no writer is hired, and soon, little or no

documentation is maintained.

Significant elements of the game design documentation

are informal, often with significant visual content. Visual

content is particularly difficult to represent in a formal man-

ner: iterations are often sketched as shown in the Pyramid

Puzzle description of Figure 5. Careful examination of this

Figure reveals evidence of prior iterations that were sim-

ply erased. Maintaining an iteration history of sketches,

such as this working paper, is challenging. An electronic

form of the working paper may have captured the revisions,

but probably would not have captured the justifications for

making the changes – often an important piece of informa-

tion later in the development cycle. This information could

lead to evolutionary changes in the game engine, perhaps

even to a product family architecture.

Figure 5. Pyramid Puzzle Description, used with per-

mission

A detailed explanation of the puzzle is beyond the scope

of this paper – suffice it to say that it is a combinational

puzzle that requires the player to generate the correct se-

quence of symbols on the screens below the pyramid, one

sequence for each corner of the base of the pyramid. How-

ever, application of domain knowledge during the require-

ments capture phase led to significant changes in the design

of the puzzle.

The first issue was puzzle complexity. Solution hints

were provided in the form of inventory items that looked

like papyrus scrolls but there was no way for the player to

show the scroll and the puzzle at the same time – the game

engine simply did not support simultaneous operation of

inventory inspection and puzzle modes.

The game designer was informed of this restriction and

it was suggested that a place be made on the puzzle for

the player to “hang” the scrolls so that they could see them

while playing the puzzle. The result of this feedback was

the layout of Figure 5 where the scrolls for each corner had

a specific location.

This new layout raised an issue of screen resolution. The

puzzle design called for an upper region for special effects,

a middle region for puzzle input, and a lower region for

puzzle solution hints. Unfortunately, this layout was be-

yond the resolution of the target platform so an alternative

layout was required.

The final layout, shown in Figure 6, is a compromise be-

tween the game designer’s vision, the technical capabilities

of the game engine, and the technology constraints of the

target platform. Only one hints scroll is visible at a time,

requiring the player to shift between inventory and puzzle

modes for each corner of the pyramid – not an ideal so-

lution from a human factors perspective, but the best that

could be achieved within the constraints.

Figure 6. Pyramid puzzle prototype, used with per-

mission

In this example, success was achieved through dialog

between team members. Unfortunately, the revised re-

quirements and specifications for the final product were

never formally captured. Given that this was 1 of approxi-

mately 100 puzzles in the game, the cost of formal capture

for all puzzles is significant.

The single sheet description of the puzzle resulted in the

creation of the following assets: four new inventory items,

12 secondary screen elements for user interaction, three an-

imation sequences of four seconds duration, and sound ef-

fects for user interaction and animation support. On the

software side, four state machines for validating user input

and three state machines for the individual corner puzzles

were required. Interactions with the game world state, the

current player state, inventory management, and the save

game subsystem also had to be managed. None of these as-

sets were explicitly identified by the designer; rather, they

were implied in the description of the puzzle. It can be

argued that identifying these implied assets if a function

of the design process. However, accurately predicting the

magnitude of the production effort requires their identifica-

tion at the earliest possible stage in the process.

Given that this was just was one of approximately 100

puzzles in the game, it is highly desirable that the process

for identifying the implied assets and side-effects be effi-

cient. However, we are unaware of any work in this area.

7. Summary and Conclusions

We have analyzed the video game development process

from the perspective of requirements engineering, pre-

sented a model for video game development that integrates

preproduction with production, and situated the game de-

sign document as an artifact of the preproduction process.

Our analysis of 50 observational reports from the Post-

mortem column in Game Developer magazine showed that

project management issues are the greatest contributors to

success or failure in video game development. In the case

of failure, many of these issues can be traced back to inad-

equate requirements engineering during the transition from

preproduction to production.

Three examples from real video games provide further

evidence of the importance of properly managing the tran-

sition from preproduction to production. These examples

illustrate the challenges associated with transforming pre-

production documents to production documents, the impor-

tance of detecting implied information as early as possible,

and the effects of applying a priori knowledge from the

production domain to the transition from preproduction to

production.

The Pyramid Puzzle example showed that, if early ver-

sions of preproduction documentation are fed forward to

the production team then the production team can provide

important feedback to the preproduction team. This com-

munication cycle enables earlier identification of emergent

requirements and production constraints and may improve

the reliability of the transition from preproduction to pro-

duction. However, the introduction of production personnel

into the preproduction process may have a chilling effect on

the creativity of the preproduction team.

We show that requirements engineering practitioners

can identify at least three levels of implication: 1) those

implications that can be derived directly from the materials

presented, 2) those implications that can only be derived

with the introduction of general knowledge of the domain,

and 3) those implications that can only be derived with the

introduction of implementation details such as the target

architecture. There is a strong relationship between expe-

rience and the ability to identify issues at each level of im-

plication – indicating that a formal process for identifying

implied information would not necessarily enable individ-

uals with lesser experience to handle higher levels of im-

plication without further guidance.

We postulate that the exploratory nature of attempts to

capture the game design vision and the consequent the

number of production iterations is due to a lack of for-

mal process for managing the preproduction to production

transition. As project complexity increases, we predict that

studios will shift to more formal processes to increase the

probability of success in their development efforts despite

internal resistance to this formalization.

We conclude that creating documentation to support the

transition from game design document through formal re-

quirements and specifications is difficult, requiring signif-

icant preproduction and production domain knowledge to

perform successfully. A formal process to support this tran-

sition would likely increase the reliability of the process.

8. Future Work

There is a strong relationship between the issues ad-

dressed by Lowe [17] in web-based development and with

video game development issues, particularly those issues

that are not technology based. This merits further investiga-

tion. We are currently performing a more detailed analysis

of the observational reports from Game Developer maga-

zine and other sources. We expect to use this information

to further guide the development of a process for manag-

ing the transition between preproduction and production.

A process for identifying sources of implied information,

perhaps based on some form of syntactic analysis, would

improve the efficiency and the accuracy of the documen-

tation translation process. Mechanisms for capturing and

stating non-functional requirements, such as fun, in a man-

ner that can be measured and validated are also required.

Involving production personnel in the preproduction

may lead to more efficient development or it may lead to

reduced creativity. Further investigation is needed to quan-

tify the tradeoffs.

9. Acknowledgements

We wish to thank Game Developer magazine for con-

tinuing the Postmortem column over the years. The first

author thanks Electronic Arts for the opportunity to present

an early version of this (and related) work at their British

Columbia studios and for the valuable feedback he re-

ceived. We also thank Richard Buckley of Far Vista Studios

for access to internal game design documentation prior to

release of their game.

References

[1] Consumer Electronics Association. Digital America. Pub-

lished electronically at http://www.ce.org, 2003.

[2] Various Authors. Postmortem column. Game Developer,

6(5) through 11(6), May 1999 - June 2004.

[3] Todd Bentley, Lorraine Johnston, and Karola von Baggo.

Putting some emotion into requirements engineering. In

Proceedings of the 7th Australian Workshop on Require-

ments Engineering, 2002.

[4] Eric Bethke. Game Development and Production. Word-

ware Publishing, Inc., 2003.

[5] B. Boehm and V. Basili. Software defect reduction top 10

list. IEEE Computer, 34(1):135–137, January 2001.

[6] Karin Breitman and Julio Cesar Sampaio do Prado Leite.

Ontology as a requirements engineering product. In Re-

quirements Engineering, pages 309–319, 2003.

[7] Lawrence Chung. Non-Functional Requirements in Soft-

ware Engineering. Kluwer Academic Publishers, 2000.

[8] Stephen W. Draper. Analysing fun as a candidate software

requirement. Personal Technology, 3(1):1–6, 1999.

[9] Auston Grossman Editor. POSTMORTEMS from Game De-

veloper. CMP Books, 2003.

[10] Brian Fuson. 2003 Top Boxoffice. Published electronically

at http://www.hollywoodreporter.com, 2003.

[11] Vincenzo Gervasi and Bashar Nuseibeh. Lightweight vali-

dation of natural language requirements. Software Practice

and Experience, 32(2):113–133, 2002.

[12] J. A. Goguen and C. Linde. Techniques for requirements eli-

cination. In Proceedings of the International Symposium on

Requirements Engineering, pages 152–164, Los Alamitos,

California, 1993. IEEE CS Press.

[13] Joseph A. Goguen. The dry and the wet. In ISCO, pages

1–17, 1992.

[14] Marc Hassenzahl, Andreas Beu, and Michael Burmester.

Engineering joy. IEEE Software, 18(1):70–76, 2001.

[15] M. Jarke, K. Pohl, R. Doemges, S. Jacobs, and H. Nissen.

Requirements information management: The NATURE ap-

proach. Ingenerie des Systemes d’Informations, 2(6):609–

637, 1994.

[16] Francois Dominic Laramee, editor. Game Design Perspec-

tives. Charles River Media, Inc., 2002.

[17] David Lowe. Web system requirements: an overview. Re-

quirements Engineering, 8(2):102–113, 2003.

[18] Nenad Medvidovic and David S. Rosenblum. Domains of

concern in software architectures and architecture descrip-

tion languages. In Proceedings of the 1997 USENIX Con-

ference on Domain-Specific Languages, 1997.

[19] David Michael. The Indie Game Development Survival

Guide. Charles River Media, Inc., 2003.

[20] Donald A. Norman. The Design of Everyday Things. Dou-

bleday Books by permission of Basic Books, 1988.

[21] Francisco A. C. Pinheiro. Requirements honesty. In Inter-

national Workshop on Time-Constrained Requirements En-

gineering (TCRE’02), Essen, Germany, September 2002.

[22] Suzane Robertson. Requirements Trawling: techniques

for discovering requirements. Published electronically at

http://www.systemsguild.com/GuildSite/Robs/trawling.html,

2004.

[23] Andrew Rollings and Dave Morris. Game Architecture and

Design, A New Edition. New Riders Publishing, 2004.

[24] Katie Salen and Eric Zimmerman. Rules of Play: Game

Design Fundamentals. MIT Press, 2004.

[25] Marc Saltzzman, editor. Game Design Secrets of the Sages.

Macmillan Publishing USA, 2000.

[26] David C. Sutton. Linguistic problems with requirements

and knowledge elicitation. Requirements Engineering,

5(2):114–124, 2000.

[27] Axel van Lamsweerde. Requirements engineering in the

year 00: a research perspective. In International Conference

on Software Engineering, pages 5–19, 2000.

[28] Pamela Zave. Classification of research efforts in require-

ments engineering. ACM Computing Surveys, 29(4):315–

321, 1997.

	Introduction
	Background
	Emotional Factors
	Language and Ontology
	Elicitation, Feedback and Emergence
	Implication, Inference and Anticipation

	Video Game Development
	Development Process
	The Game Design Document

	The Transition from Preproduction to Production
	Review of Postmortem Columns
	Examples From Real Games
	Documentation Transformation
	Implication
	A Priori Knowledge

	Summary and Conclusions
	Future Work
	Acknowledgements

