
Requirements Engineering meets Trust
Management?

Model, Methodology, and Reasoning

Paolo Giorgini1, Fabio Massacci1, John Mylopoulos1,2, and Nicola Zannone1

1 Department of Information and Communication Technology
University of Trento - Italy

{massacci,giorgini,zannone}@dit.unitn.it
2 Department of Computer Science

University of Toronto - Canada
jm@cs.toronto.edu

Abstract. The last years have seen a number of proposals to incorpo-
rate Security Engineering into mainstream Software Requirements Engi-
neering. However, capturing trust and security requirements at an orga-
nizational level (as opposed to a design level) is still an open problem.
This paper presents a formal framework for modeling and analyzing se-
curity and trust requirements. It extends the Tropos methodology, an
agent-oriented software engineering methodology. The key intuition is
that in modeling security and trust, we need to distinguish between the
actors that manipulate resources, accomplish goals or execute tasks, and
actors that own the resources or the goals. To analyze an organization
and its information systems, we proceed in two steps. First, we built a
trust model, determining the trust relationships among actors, and then
we give a functional model, where we analyze the actual delegations
against the trust model, checking whether an actor that offers a service
is authorized to have it.
The formal framework allows for the automatic verification of security
and trust requirements by using a suitable delegation logic that can be
mechanized within Datalog. To make the discussion more concrete, we
illustrate the proposal with a Health Care case study.

keywords : Requirements Engineering for Security and Trust, Agent-
Oriented Technologies, Security Engineering, Trust Models for Modeling
Business and Organizations

1 Introduction

Trust Management is one of the main challenges in the development of dis-
tributed open information systems (IS). Not surprisingly, Security Engineering
? This work has been partially funded by the IST programme of the EU Commission,

FET under the IST-2001-37004 WASP project and by the FIRB programme of MIUR
under the RBNE0195K5 ASTRO Project. We would like to thank the anonymous
reviewers for useful comments.



has received substantial attention in the last years [3, 7, 10]. Looking at tradi-
tional approaches to software requirements engineering, we find that security is
treated as a non-functional requirement [6] which introduces quality constraints
under which the system must operate [24, 26]. Software designers have recog-
nized the need to integrate most non-functional requirements (such as reliability
and performance) into the software development processes [8], but security still
remains an afterthought. Worse still, trust is often left entirely outside the pic-
ture.

This often means that security mechanisms have to be fitted into a pre-
existing design which may not be able to accommodate them due to potential
conflicts with functional requirements or usability. Moreover, the implementation
of the software system may assume trust relationships among users or between
users and the system that are simply not there. Alternatively, the implementation
may introduce protection mechanisms that just hinder operation in a trusted
domain that was not perceived as a trusted domain by the software engineer.
In a nutshell, current methodologies for IS development do not resolve security-
and trust-related concerns early on [25].

This has spurred a number of researchers to model security and trust re-
quirements into “standard” software engineering methodologies. Jürjens pro-
poses UMLsec [16], an extension of the Unified Modelling Language (UML),
for modeling security related features, such as confidentiality and access con-
trol. Lodderstedt et al. present a modeling language, based on UML, called
SecureUML [21]. Their approach is focused on modeling access control policies
and how these (policies) can be integrated into a model-driven software devel-
opment process. McDermott and Fox adapt use cases [22] to analyze security
requirements, by introducing the abuse case model: a specification of complete
interaction between a system and one or more actors, where the result of the
interaction is harmful to the system, one of the actors, or one of the stakeholders
of the system. Guttorm and Opdahl [15] model security by defining the concept
of a misuse case as the inverse of a use case, which describes a function that the
system should not allow.

One of the major limitations of all these proposals is that they treat security
and trust in system-oriented terms, and do not support the modeling and anal-
ysis of trust and trust relationships at an organizational level. In other words,
they are targeted to model a computer system and the policies and access con-
trol mechanisms it supports. In contrast, to understand the problem of trust
management and security engineering we need to model the organization and
the relationships between all involved actors, the system being just one possible
actor. For instance, Jürjens introduce cryptographic functions which represent
a particular implementation of some trust-protection mechanism at the digital
level. However, an analysis of operational Health Care systems suggests that
(for better or worse) most medical data are still only available in paper form. In
such a setting, cryptographic mechanisms are largely irrelevant, whereas physical



locks are very useful in avoiding untrusted access to sensitive medical data3. Yet,
once we focus on the digital solution, we end up having little room to specify
physical protection requirements at the organizational (as opposed to IS) level.

Thus, we need to focus on requirement engineering methodologies that al-
low for modeling organizations and actors, and enhance these with notions of
trust and trust relationships. To this extent, Tropos - an agent-based software
engineering methodology [4, 5] are particularly well suited. For example, in [19,
20] Liu et al. have shown how to use Tropos to model privacy and security con-
cerns of an organization. However, in [13] the authors have shown that Tropos
lacks the ability to capture at the same time the functional and security features
of the organization. In [23] a structured process integrate security and system
engineering has been proposed. However, a formal framework for modeling and
analyzing security requirements within Tropos is still missing.

In this paper we introduce a process that integrates trust, security and system
engineering, using the same concepts and notations used during “traditional” re-
quirements specification. Building upon [23], we propose a solution that is based
on augmenting the i*/Tropos framework to take trust into account. The key
intuition is to distinguish and make explicit the notion of offering a service and
owning a service4 and the notions of functional dependency and trust depen-
dency. A functional dependency can lead to the delegation of tasks, whereas a
trust dependency can lead to the delegation of permissions.

Next (§2) we provide an brief description of the Tropos methodology and
introduce a simple Health Care information system that will be used as case
study throughout the paper. Then we describe the basic concepts and diagrams
that we use for modeling trust (§3), followed by their formalization (§4), and
implementation, along with some experimental results (§5). Finally, we conclude
the paper with some directions for future work (§6).

2 Case Study

This section presents a simple health care IS to illustrate our approach. Secu-
rity and trust are key issues for health care information systems, with privacy,
integrity and availability of health information being the major security con-
cerns [2].

The Tropos methodology [4, 5] strives to model both the organizational en-
vironment of a system and the system itself. It uses the concepts of actor, goal,

3 For example, the file of a patient waiting for a kidney transplant in a high-profile
nephrology center contains many paper documents that are copies of reports from
surgeons or clinicians from the referring hospitals of the patient. These documents
are by far more sensitive than the patient’s date and place of birth or waiting list
registration number in the medical information system.

4 Here it is an example derived from EU privacy legislation: a citizen’s personal data
is processed by an information system (which offer a data access service) but it is
owned by the citizen himself whose consent is necessary for the service to be delivered
to 3rd parties.



task, resource and social dependency for defining obligations of actors (depen-
dees) to other actors (dependers). Actors have strategic goals within the system
or the organization and represent (social) agents (organizational, human or soft-
ware), roles etc. A goal represents some strategic interest of an actor. A task
represents a way of doing something (in particular, a task can be executed to
satisfy a goal). A resource represents a physical or an informational entity. In the
rest of the paper, we say service for goal, task, or resource. Finally, a dependency
between two actors indicates that one actor depends on another to accomplish
a goal, execute a task, or deliver a resource.

We start the Health Care example by considering the following actors:

– Patient, that depends on the hospital for receiving appropriate health care;
– Hospital, that provides medical treatment and depends on the patients for

having their personal information.
– Clinician, physician of the hospital that provides medical health advice and,

whenever needed, provide accurate medical treatment;
– Health Care Authority (HCA) that control and guarantee the fair resources

allocation and a good quality of the delivered services.

Figure 1 shows the dependency model among these actors. Actors are rep-
resented as circles; dependums - goals, tasks and resources - are respectively
represented as ovals, hexagons and rectangles; and dependencies have the form
depender → dependum → dependee. The Patient depends on the Hospital for
receiving medical treatments, and in turn, the Hospital depends on the Clin-
ician for providing such treatments. Clinician depends on Patients for their
personal information and on the Hospital for specific professional consultancies
and for patient personal information. The Hospital depends on other Clinicians
for providing professional consultancies and on HCA for checking equity resource
distribution. Finally, HCA depends on Patient for personal information.

Finally we introduce the Medical Information System as another actor who,
according the current privacy legislation, can share patient medical data if and
only if consent is obtained from the patient in question. The Medical Information
System manages patients information, including information about the medical
treatments they have received. Figure 2 shows the final dependency model.

3 Security-Aware Tropos

The Tropos models so far say nothing about security requirements. Loosely
speaking, the dependee is a server and the depender is a client. There is an
implicit trust and delegation relationship between the two. In our extended mod-
eling framework, we identify four relationships:

trust (among two agents and a service), so that A trust B on a certain goal G;
delegation (among two agents and a service), whenever A explicitly delegates

to B a goal, or the permission to execute a task or access a resource;
offer (between an agent and a service), so that A can offer to other agents the

possibility of fulfilling a goal, executing a task or delivering a resource;



Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information

personal

Hospital

medical
treatment

medical
treatment

information
personalrequest

consultancy consultancy
provide

Fig. 1. The first Health Care System dependency model (without the Medical Infor-
mation System actor)

ownership (between an agent and a service), whenever an agent is the legite-
mate owner of a goal, task or resource.

Note the difference between owning a service and offering a service. For exam-
ple, a patient is the legitemate owner of his personal data. However the data may
be stored on a Medical Information System that offers access to the data. This
distinction explains clearly why IS managers need the consent of the patient for
data processing. Also note the difference between trust and delegation. Delega-
tion marks a formal passage in the requirements modeling: a TM certificate will
have to be eventually issued for the delegatee when implementing the system.
Such certificate needs not to be digital, but it marks presence of a transaction.
In contrast, trust marks simply a social relationship that is not formalized by a
“contract” (such as digital credential). There might be cases (e.g. because it is
impractical or too costly), where we might be happy with a “social” protection,
and other cases in which security is essential. Such decision must be taken by
the designer and the formal model just offers support to spot inconsistencies.
The basic effect of delegation is augmenting the number of permission holders.

Intuitively, we have split the trust and delegation aspects of the dependency
relation. Moreover, we do not assume that a delegation implies a trust. Using
this extension of the modeling framework, we can now refine the methodology:

1. design a trust model among the actors of the systems;
2. identify who owns goals, tasks, or resources and who is able to fulfill goals,

execute tasks or deliver resources;
3. define functional dependencies and delegations of goals among agents build-

ing a functional model.

The basic idea is that the owner of an object has full authority concerning
access and disposition of his object, and he can also delegate it to other actors.



Medical

System
Information

information
personal

Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information

personal

Hospital

medical
treatment

medical
treatment

update
patient
record

access
patient
record

request
consultancy consultancy

provide

Fig. 2. The final Health Care System dependency model (with the Medical Information
System actor)

Hospital Patient

personal
information

medical
treatment

T T

O

O

(a) Trust Model

Hospital Patient

personal
information

medical
treatment

D
DD

P
P

DD

(b) Functional Model

Fig. 3. Patient-Hospital Basic Dependencies

We represent this relationship as an edge labelled by O. We use trust (T) to
model the basic trust relationship between agents and permission (P) to model
the actual transfer of rights in some form (e.g. a digital certificate, a signed paper,
etc.), and D for a Tropos dependency. There are other relations in Tropos, but
we do not use them here.

The new constructs and the methodology make it possible to analyze the
trust relationship between actors and the consequent integrated security and
functional requirements. Figure 3-a and Figure 3-b show, respectively, the trust
model and the functional model with just Patient and Hospital, as a first mod-
eling attempt. Here, the Hospital owns medical treatments, the Patient owns
his own personal information and trusts the Hospital for his personal data. In
the functional model, Patient depends on Hospital for medical treatments. Since
Hospital needs personal information to provide accurate medical treatment, Pa-
tient permits the use of his personal information to Hospital.

We refine the system building the trust model (Figure 4) corresponding to the
original Tropos model of Figure 1. Clinician owns medical treatments. Patient



Authority
Health Care

distribution
resource

check equity

Patient

information
personal

Clinician
information
personal

Hospital

medical
treatment

information
personal

O

O

O

O

information
personal

O

consultancy
request

consultancy
provide

TT

T

T

T

T

TT

TT

T

TT

T

T

T

Fig. 4. Health Care System-2 trust model

trusts HCA and Clinician for his personal information, and HCA trusts Hospital
for it. Further, Hospital trusts HCA for checking equity resource distribution.
Clinician trusts Hospital for medical treatment and for requesting specific pro-
fessional consulting, and Hospital trusts Clinician for providing such consulting
and for patient personal information. Notice at top of Figure 4 that there is a
trust relationship between two actors (HCA and Hospital) on a resource that is
owned by neither of them.

The next step is to add the Medical Information System and its relation-
ship with other actors. Figure 5 and Figure 6 corresponding to the dependencies
model in Figure 2, show respectively the trust model and the functional model.
In the trust model we consider the trust relationship between Hospital and Med-
ical System Information for patient personal information, and in the functional
model the dependency between Clinician and Medical Information System to
access patient record and to update patient record.

An interesting feature of Tropos is the refinement analysis and the usage of
rationale diagrams that explain relationships among actors. Specifically, the goal
of accessing a patient record introduced in Figure 2, can be and-decomposed in
three subgoals: request patient personal data, check authorization and send med-
ical information. To save on space, we merge the trust model and the functional
model for the rationale diagram in Figure 7. We can see that after Medical In-
formation System requests patient personal information to Clinician, it requests
also an authorization to send patient medical information to Clinician. It can
get it directly by the Patient or by the Clinician through delegation.

4 Formalization

In the “trust-management” approach to distributed authorization, a “requester”
submits a request, possibly supported by a set of “credentials” issued by other



Medical

System
Information

information
personal

Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information
personal

Hospital

medical
treatment

update
patient
record

access
patient
record

O

O

O

O

O

consultancy
request

consultancy
provide

T

T T

T

T

T

T

T
T

T

T T T

TTT

Fig. 5. Health Care System-3 trust model

Medical

System
Information

information
personal

Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information

personal

Hospital

medical
treatment

medical
treatment

update
patient
record

access
patient
record

request
consultancy consultancy

provide

D D
D D

D

D

P

P

P P

D

D

D

D

P

P

D
DP P

D

P

P

D

D D

D,PD,P

D
D

DD

Fig. 6. Health Care System-3 functional model

parties, to an “authorizer”, who controls the requested resources. To this end,
we consider some features of delegation logics to model security requirements.
Particularly, we follow Li et al [18] that provides a logical framework for rep-
resenting security policies and credentials for authorization in large-scale, open,
distributed systems. To simplify authorization in a decentralized environment,
Li, Grosof and Feigenbaum use a system where access-control decisions are based
on authenticated attributes of the subjects, and attribute authority is decentral-
ized. They then develop a logic-based language, called Delegation Logic (DL)
[17], to represent policies, credentials, and requests in distributed authorization
that satisfy the above requirements. Note that they use the term authorization
to denote the process of “authentication + access control”.



O

access
patient
record

check
authorization

Clinician

verificationrequest
authorization

Patient

O

patient
medical

information

authorization
direct delegation

O O

patient
personal

data

AND

Information
Medical

System

AND

OR

T,P
T,P

T,P
T,P

Fig. 7. Rationale Diagram

Formal Tropos Secure Tropos

fulfilled(Service : s) owns(Actor : a, Service : s)
has(Actor : a, Service : s)
offers(Actor : a, Service : s)
fulfills(Actor : a, Service : s)

Table 1. Properties for the single agent

At first we introduce the predicates used for modeling properties of an actor
(Table 1) and relationships between actors (Table 2). In defining these predicates,
we don’t distinguish between goals, tasks and resources, and treat them all as
services, instead. Thus, we say “fulfill a service” for “accomplish a goal”, “execute
a task”, or “deliver a resource”. The intuition behind predicate owns is that
owns(a, s) holds if the agent a owns the service s. The owner of a service has
full authority concerning access and disposition of his service, and he can also
delegate this authority to other actors. The basic idea of has is that when
someone has a service, he has authority concerning access and disposition of
the service, and he can also delegate this authority to other actors if the owner
of the service agrees. When an actor has the capabilities to fulfill a service, he
offers it. This means that offers(a, s) holds if a offers s. We assume that a can
offer the service if he has it. The predicates fulfilled and fulfills are true when
the service are fulfilled by an actor. Particularly, predicate fulfills(a, s) holds if
actor a fulfills the service s, and predicate fulfilled(s) holds if s has been fulfilled.
Formal Tropos already includes the predicate fulfilled [12].



Formal Tropos

depends(Actor : a, Service : s, Actor : b)

Secure Tropos

trustBL
(
Actor : a, Service : s, Actor : b,N+ ∪ {∗} : n, ActorSet : B

)
delegBL

(
id : idC, Actor : a, Service : s, Actor : b,N+ ∪ {∗} : n, ActorSet : B

)
Table 2. Relationship between actors

Example 1. The patient owns his data and he has full authority concerning its
access and disposition. In particular, the owner of the service has the service. In
our framework we model these notions, respectively, as owns(patient1, record1)
and has(patient1, record1).

Example 2. Once the Health Care Authority has the patient records and the
hospital gives it the goal to check behavior of patients and of the doctors, the
HCA offers the goal and then fulfills it. Following we show as we model this in
Secure Tropos offers(hca, check) and fulfills(hca, check).

As for trust, we present predicate trustBL : trustBL(a, s, b, n,B) holds is actor
a trusts actor b for service s; n is called the trust depth (“*” means unlimited
depth); and B is called black list. As suggest by Li et al. [17] for their delegation
logics, trust has depth, which is either a positive integer or “*” (“*” means
unlimited depth). One way to view trust depth is the number of re-delegation
of permission steps that are allowed, where depth 1 means that no re-delegation
of permission is allowed, depth 2 means that one further step is allowed, depth
3 means that two further steps are allowed, and depth * means that unlimited
re-delegation of permission is allowed. The black list is the set that the actor
a distrusts at least for what concerns this permission. delegBL(idC, a, s, b, n,B)
holds is actor a delegates the service s to actor b. The actor a is called the
delegater ; the actor b is called the delegatee; idC is the certificate identifier; n
is the delegation depth; and B is called black list. The latter represents the set
of actors that the delegater doesn’t want to have the object. The idea behind
black-lists in trust and delegation is modeling exceptions along the chain of trust.
For example, a patient may want to delegate the permission to read his personal
data to his general practitioner and to all agents trusted by him (delegation
with depth 1). However, he may want to restrict such blank transfer of rights
to avoid that the information goes to somebody he distrusts (e.g. his previous
general practitioner). A delegation has depth, as for trust. We can also define
an abbreviation for a delegation chain as

delegBLChain(a, o, b) ≡

{ ∃k s.t. ∃a1 . . . ak ∃n1 . . . nk−1 ∃B1 . . .Bk−1

∀i ∈ [1 . . . k − 1] delegBL(idi, ai, o, ai+1, ni,Bi) ∧
a1 = a ∧ ak = b

Example 3. Patient trusts Clinician on his medical data.

trustBL(patient1, record1, clinician1, 1, ∅)



Trust model

Ax1: has(A, S)← owns(A, S)
Ax2: trustBL(A, S, B, N − 1,B)← trustBL(A, S, B, N,B) ∧N > 2
Ax3: trustBL(A, S, C, P,B1 ∪ B2)← trustBL(A, S, B, N,B1)∧

trustBL(B, S, C, M,B2)∧
N > 2 ∧ P = min{N − 1, M}

Functional model

Ax4: has(B, S)← delegBL(ID, A, S, B, N,B)
Ax5: fulfilled(S)← fulfills(A, S)
Ax6: fulfills(A, S)← has(A, S) ∧ offers(A, S)

Table 3. Axioms for trust model and functional model

When the Clinician visits his patient he requests to the Medical Information
System the patient record. The Medical Information System delegates patient
record to the patient’s clinician. The clinician cannot delegate the record to
others actors. Formally this is delegBL(m1,medicalIS, record1, clinician1, 1, ∅).

In Table 3 we present the axiom for the trust model and for the functional
model. As mentioned earlier, the owner of a service has full authority concerning
access and disposition of it. Thus, Ax1 states that if an actor owns a service,
he has it. Ax2 states that if someone trusts with depth N , then he also trusts
with smaller depth. Ax3 describes the trust relationship, i.e, it completes the
trust relationship between actors. Ax4 says that a delegatee has the service he
was delegated. Ax5 states that an actor fulfills a service, then the service is
(eventually) fulfilled. Ax6 states that if an actor has a service and offers it, then
he (eventually) fulfills it.

Properties are different from axioms: they are constraints that must be
checked. It is up to designer to choose which properties his own design should
respect. If the set of constraints is not consistent, i.e. they cannot all be si-
multaneously satisfied, the system is inconsistent, and hence it is not secure. In
Table 4 we use the A⇒? B to mean that one must check that each time A holds,
it is desirable that B also holds. Pro1 and Pro2 state that if an agent offers or
delegates, he should have the object. Pro3 says that to fulfill a goal an actor
must be able to use and offer it. Pro4, Pro5 and Prop6 state that if an actor
has, offers, or fulfills a goal and this goal belongs to another actor, the last has
to trust the first one. Pro7, Pro8 are used to verify whether the delegatee is not
in the black list. Pro9 and Pro10 state that an actor who delegates something
to an other, has to trust him. Rights or privileges can be given to trusted agents
that are then accountable for the agents to whom may further delegate this right
to. So the agents should only delegate to agents that they trust. This forms a
delegation chain. If any agent along this chain fails to meet the requirements
associated with a delegated right, the chain is broken and all agents following
the failure are not permitted to perform the action associated with the right.
Thus, Prop11 is used to verify if the delegate chain is valid.



Pro1: offers(A, S)⇒? has(A, S)
Pro2: delegBL(ID, A, S, B, N,B)⇒? has(A, S)
Pro3: fulfills(A, S)⇒? offers(A, S)
Pro4: has(B, S) ∧ owns(A, S)⇒? ∃N ∃B trustBL(A, S, B, N,B)
Pro5: offers(B, S) ∧ owns(A, S)⇒? ∃N ∃B trustBL(A, S, B, N,B)
Pro6: fulfills(B, S) ∧ owns(A, S)⇒? ∃N ∃B trustBL(A, S, B, N,B)
Pro7: delegBL(ID, A, S, B, N,B) ∧ owns(A, S)⇒? ∀X ∈ B ¬has(X, S)
Pro8: delegBL(ID, A, S, B, N,B)⇒? B /∈ B
Pro9: delegBL(ID, A, S, B, N,B1)⇒? ∃M ≥ N ∃B2 trustBL(A, S, B, M,B2)∧B /∈ B1∪B2

Pro10: delegBLChain(A, S, B)⇒? ∃N ∃B trustBL(A, S, B, N,B) ∧B /∈ B

Pro11: delegBLChain(A, S, B)⇒?
∃M ∃A1 . . . AM ∃N1 . . . NM−1 ∃B1 . . .BM−1

∀i ∈ [1 . . . M − 1] delegBL(IDi, Ai, S, Ai+1, Ni,Bi)∧
A1 = A ∧ AM = B ∧ Ni > Ni+1 ∧ Bi ⊆ Bi+1 ∧ Ai+1 /∈ Bi

Table 4. Desirable Properties of a Design

has(A,S) :- owns(A,S).

has(B,S) :- delegate(ID,A,S,B,N).

fulfill(A,S) :- has(A,S), offer(A,S).

fulfilled(S) :- fulfill(A,S).

trustBL(A,S,B,N) :- #succ(N,M), trustBL(A,S,B,M), N>0.

trustBL(A,S,C,P) :- -bL(C), #succ(P,N), trustBL(A,S,B,N),

trustBL(B,S,C,M), M>=N, N>1.

trustBL(A,S,C,M) :- -bL(C), trustBL(A,S,B,N), trustBL(B,S,C,M), N>M, N>1.

Table 5. Axioms in Datalog

There are additional properties that we have not listed due to a lack of space,
such as checking delegation to actors that cannot have a service directly.

5 Implementation and Experimental Results

In order to illustrate our approach we formalize the case study and check-model it
in Datalog [1]. A datalog logic program is a set of rules of the form L:-L1∧...∧Ln

where L, called head, is a positive literal and L1, ..., Ln are literals and they are
called body. Intuitively, if L1, ..., Ln are true in the model then L must be true in
the model. The definition can be recursive, so defined relations can also occur in
bodies of rules. Axioms of the form A← B∧C can be represented as A : − B, C.
In Datalog properties can be represented as the constraint : −A, not B.

We use the DLV system [9] for the actual analysis. Consistency checks
are standard checks to guarantee that the security specification is not self-
contradictory. Inconsistent specifications are due to unexpected interactions among
constraints in the specifications. The consistency checks are performed automat-
ically by DLV. The simplest consistency check verifies whether there is any valid
scenario that respects all the constraints of the security specification.



:- offer(A,S), not has(A,S).

:- delegate(ID,A,S,B,N), not has(A,S).

:- offer(B,S), owns(A,S), not trustNP(A,S,B), A<>B.

:- fulfill(B,S), owns(A,S), not trustNP(A,S,B), A<>B.

:- delegateChain(A,S,C,N), not trustBL(A,S,C,N).

Table 6. Some properties in Datalog

trustFull(Pat,Rec,X) :- isHCA(X), owns(Pat,Rec).

trust(Pat,Rec,Cli,1) :- isClinicianOf(Cli,Pat), owns(Pat,Rec).

trustFull(hca,Rec,hospital) :- isRecord(Rec).

trustFull(hospital,Rec,mIS) :- isRecord(Rec).

trustFull(hospital,Rec,X) :- isClinician(X), isRecord(Rec).

Table 7. Health Care System-3 trust relationship in Datalog

Example 4. For model checking purposes we consider two patients, three clini-
cians, and one HCA. Patients trust completely the HCA for their personal in-
formation. Then we rapresent the relation between Patient and Clinician shown
in Figure 4, that is, the Patient trusts his clinicians with depth 1. Further, HCA
trusts completely Hospital for patients personal informations. Finally, we present
the relationship between Hospital and Clinician on patient personal information.
Below we introduce the constraint to verify whether only the clinicians of the
patient can have patient information.

:- trust(Pat,Rec,Cli,N), owns(Pat,Rec), isClinician(Cli),

not isClinicianOf(Cli,Pat).

The DLV system reports an inconsistency since all Clinicians are authorized
to have the personal information of any patient. Ideally we would authorize only
the clinician of the patient to have patient data.

Example 5. The trust relationship among actor in Figure 6 and in Figure 7 is
formalized in Table 7 and is described below:

1. Patient trusts completely HCA and he trusts directly his Clinician,
2. HCA trusts completely Hospital,
3. Hospital trusts completely Medical Information System, and
4. Medical Information System trusts completely Clinicians.

We can check whether only the clinicians of the patient can have patient
personal information according to Example 4. The DLV system report an incon-
sistency: in the current design every Clinician is implicitly authorized to have
patient personal information. To resolve this problem, we have to change the
trust model using the following trust relation between the Medical Information
System and the Clinician.



trust(mIS,Rec,Cli,1) :- isClinicianOf(Cli,Pat),owns(Pat,Rec).

In other words, the Medical Information System allows an actor to access
directly the records of a patient if the actor is the physician of the patient.

We can now analyze the complete trust and functional model. In particular,
we check whether the delegater trusts the delegatee. The refined result is that
patient’s consent must be sought for any other agent such as clinician’s colleagues
to be able to access at patient medical information, and the patient must be
notified of every access. So the clinician has to request a consulting to colleagues
through the hospital and the patient must give the permission to access the data.

It is also possible to make additional queries aimed at verifying a number of
security principles such as least-privilege, or need-to-know policies as done by
Liu et al. [20] in their security requirements model formalized in Alloy.

6 Conclusions

The main contribution of this paper is the introduction of a formal model and a
methodology for analyzing trust during early requirement engineering. To this
end, we have proposed an enhancement of Tropos that is based on the clear
separation of functional dependencies, trust and delegation relationships. This
distinction makes it possible to capture organization-oriented security and trust
requirements without being caught into the technical details about how these
will be realized through digital certificates or access control mechanisms. The
modeling process we envision has the advantage of making clear why and where
trust management and delegation mechanisms are necessary, and which trust
relationships or requirements they address.

The framework we proposed supports the automatic verification of security
requirements and trust relationships against functional dependencies specified
in a formal modeling language. The model can be easily modified to account for
degrees of trust. Levels of trust can be captured by using a qualitative theory
for goal analysis. See [14] for details.

Plans for future work include adding time to trust models and analyzing
these new features with the Formal Tropos T-Tool [11].

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. R. Anderson. A security policy model for clinical information systems. In Proc. of
the 15th IEEE Symp. on Security and Privacy. IEEE Comp. Society Press, 1996.

3. R. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley Computer Publishing, 2001.

4. P. Bresciani, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An Agent-
Oriented Software Development Methodology. JAAMAS, (To appear).

5. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Inform. Sys., 27(6):365–389, 2002.



6. L. Chung and B. Nixon. Dealing with non-functional requirements: Three experi-
mental studies of a process-oriented approach. In Proc. of ICSE’95, 1995.

7. R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security requirements engineering:
When anti-requirements hit the fan. In Proc. of RE’02. IEEE Computer Society,
2002.

8. A. Dardenne, A. V. Lamsweerde, and S. Fickas. Goal-directed requirements acqui-
sition. Science of Computer Programming, 1991.

9. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions
in disjunctive logic programming: Semantics, complexity, and implementation in
dlv. In Proc. of IJCAI’03. Morgan Kaufmann Publishers, 2003.

10. P. T. Devanbu and S. G. Stubblebine. Software engineering for security: a roadmap.
In ICSE - Future of SE Track, pages 227–239, 2000.

11. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and
analyzing early requirements: Some experimental results. In Proc. of ICRE’03,
page 105. IEEE Computer Society, 2003.

12. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early
requirements specifications in tropos. In Proc. of RE’01, pages 174–181, Toronto,
August 2001. IEEE Computer Society.

13. P. Giorgini, F. Massacci, and J. Mylopoulos. Requirement Engineering meets
Security: A Case Study on Modelling Secure Electronic Transactions by VISA and
Mastercard. In Proc. of ER’03, Chicago, Illinois, 13-16 October 2003.

14. P. Giorgini, E. Nicchiarelli, J. Mylopoulous, and R. Sebastiani. Formal reasoning
techniques for goal models. J. of Data Semantics, 1, 2003.

15. S. Guttorm. Eliciting security requirements by misuse cases. In Proceedings of
TOOLS Pacific 2000, 2000.

16. Jan Jürjens. Towards Secure Systems Development with UMLsec. In Proc. of
FASE’01, 2001.

17. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach
to distributed authorization. ACM TISSEC 03, 6(1):128–171, 2003.

18. N. Li, W. H. Winsborough, and J. C. Mitchell. Beyond proof-of-compliance: Safety
and availability analysis in trust management. In Proc. of Symposium on Security
and Privacy, 2003.

19. L. Liu, E. Yu, and J. Mylopoulos. Analyzing security requirements as relationships
among strategic actors. In Proc. of SREIS’02, North Carolina, 2002. Raleigh.

20. L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis
within a social setting. In Proc. of RE’03, pages 151–161, 2003.

21. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In J.-M. Jezequel, H. Hussmann, and S. Cook,
editors, Proc. of UML’02, volume 2460, pages 426–441. Springer, 2002.

22. J. McDermott and C. Fox. Using abuse care models for security requirements
analysis. In Proc. of ACSAC’99, December 1999.

23. H. Mouratidis, P. Giorgini, and G. Manson. Modelling secure multiagent systems.
In Proc. of AAMAS’03, pages 859–866. ACM Press, 2003.

24. I. Sommerville. Software Engineering. Addison-Wesley, 2001.
25. T. Tryfonas, E. Kiountouzis, and A. Poulymenakou. Embedding security prac-

tices in contemporary information systems development approaches. Information
Management and Computer Security, 9:183–197, 2001.

26. E. Yu and L. Cysneiros. Designing for privacy and other competing requirements.
In Proc. of SREIS’02, North Carolina, 2002. Raleigh.


