
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5. No. 8, November-December 2006

Cite this article as follows: Donald G. Firesmith: “Requirements Engineering Tasks”, in Journal of
Object Technology, vol. 5, no. 8, November-December 2006, pp. 21-29
http://www.jot.fm/issues/issue_2006_11/column3

Requirements Engineering Tasks
Donald Firesmith, Software Engineering Institute, U.S.A.

Many managers and others who are not professional requirements engineers tend to
greatly over-simplify requirements engineering (RE). Based on their observations that
requirements specifications primarily contain narrative English textual statements of
individual requirements and that all members of the engineering team are reasonably
literate, there is a common myth that practically anyone with little or no specialized
training or expertise can be a requirements engineer. After all, what is there to do but ask
a few stakeholders what they want (requirements elicitation), study the resulting
requirements to make sure they are understood (requirements analysis), write the
requirements down in a document (requirements specification), and then ask the customer
if they’re right (requirements validation). Just give the team a short class in use case
modeling, and they are ready to go.

Unfortunately, the preceding is a misleading, if much too prevalent, myth. While
these four RE tasks (not sequential phases!) are commonly performed with varying
degrees of completeness, rigor, and success on most projects, a list of tasks containing
only these four is far from complete. The purpose of this paper is to provide a brief
introduction to all of the major tasks comprising RE, as well as to three essential and
highly related tasks from the management, configuration management, and quality
engineering disciplines. Depending on the top-most goals of the system development
project or product line development projects, the RE teams need to ensure that the actual
RE method to be used contains all of the essential and cost-effective RE tasks, tailored to
meet the specific needs of the endeavor.

Although not the primary topic of this paper, a brief word must be said about the
makeup of the RE teams that will be performing the requirements engineering tasks.
Because of the criticality of the requirements and the breadth of their scope and impact,
each RE team clearly must be cross-functional to be effective. In addition to requirements
engineers, the RE teams need to either include or collaborate closely with domain experts
and a representative sample of key stakeholders such as customer representatives,
marketing, business analysts, user representatives, system architects to ensure
requirements feasibility, system testers to ensure requirements verifiability, etc.

REQUIREMENTS ENGINEERING TASKS

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 8

Otherwise, important requirements will be missed (not specified), will be specified
incorrectly, or will be ambiguous.

Having well-engineered requirements is critical. This is not just due to their major
positive impact on project costs (both development and life-cycle) and schedule, which
are largely due to the extreme costs of fixing requirements defects once the system is
built and fielded. Also critical is having well-engineered functional and quality
requirements because of their positive impact on system acceptability by its many
stakeholders. These are some of the reasons why businesses gain such a high return on
investment from good requirements engineering practices. Therefore, it is typically
important to perform some or all of each of the following RE tasks, although the amount
of effort and formality will naturally vary due to many factors such as system criticality
and organizational maturity. The following tasks do not represent process for process
sake, but rather good engineering discipline for the sake of the business and the system’s
many stakeholders.

The following list of reusable RE tasks can be used to develop an endeavor-specific
RE method for a single project, a program of related projects (e.g., product line
development), or an entire business enterprise. It can also be used as a checklist to ensure
completeness during the evaluation of an existing RE method. The following specific set
of tasks comes from the OPEN Process Framework (OPF) Repository Organization
(www.opfro.org), the world’s largest repository of free, open-source, reusable method
components. Other methods and frameworks may divide RE into a different set of tasks
or include tasks that more logically belong to other disciplines such as scope management
from project management and requirements verification from quality engineering
(specifically quality control).

BUSINESS ANALYSIS

During this task, the business strategy team, technology strategy team, and cross-
functional requirements engineering team(s) collaborate to analyze the business context
in which the system shall be developed and exist. In some organizations, this task is
performed prior to the involvement of the RE teams by the other teams; in other cases, it
is incorporated into the requirements identification task and performed solely by the RE
teams. This task typically may include the following subtasks:

• Analyze the customer organization’s business enterprise to understand the:
- Business model.
- Organizational structure and relationships.
- Technology currently being used.
- Relevant planned improvements.

• Analyze the competitor organizations that produce competing systems to:
- Identify, profile, analyze, and understand the competitors.
- See how the planned system [upgrade] will improve the customer

organization’s business enterprise and help it compete.

VOL. 5. NO.8 JOURNAL OF OBJECT TECHNOLOGY 23

• Analyze current and potential/planned marketplaces in which the system must
compete to determine system properties needed to enable it to effectively
compete.

• Analyze critical technologies to determine their readiness for use in the system in
terms of their level of maturity and their compatibility with other requirements
and the proposed system architecture.

• Analyze current and intended future user communities to understand their needs
and desires and determine how the system might improve their tasks and
workflows.

• Analyze the stakeholders to:
- Identify different stakeholder persons, roles, organizations, and systems.
- Profile them including categorizing them into well-defined and well-

understood groups.
- Understand their needs, desires, responsibilities, and tasks.

• Develop a business case to determine whether the system [enhancement] should
be developed by:
- Determining is costs and benefits
- Comparing its merits relative to those of competing systems.

VISIONING

During this task, the main RE team collaborates with key stakeholders to produce a vision
of the new system (or next version of the existing system) to be developed. Although
logically distinct, some organize incorporate this task into the following requirements
identification task. This task typically includes the following subtasks:

• Define the system’s mission.
• Determine the business problems and opportunities to be solved by the system.
• Determine the most important stakeholder needs to be fulfilled by the system.
• Determine the most important business, functional, and quality goals of the

system.
• Determine any major business, technical, and legal/regulatory constraints on the

system.
• Use this information to build a consensus among key system stakeholders

regarding the vision of the system to lay a foundation on which the system
requirements can be engineered.

REQUIREMENTS IDENTIFICATION

During this task, the RE teams identify potential requirements. This task typically
includes the following subtasks:

• Identify sources of requirements (e.g., stakeholders, documents, legacy systems,
problem reports, etc).

REQUIREMENTS ENGINEERING TASKS

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 8

• Elicit needs, goals, desires, and requirements from a representative sample of all
major stakeholder types (e.g., customers, users, maintainers, operators, subject
matter experts, marketers, and certifiers). Note the use of the more general term
“requirements identification” for this overall task and the relegation of
“requirements elicitation” to a single subtask. Elicitation is only one of the useful
techniques for identifying requirements and should not be relied on totally to
identify requirements.

• Gather potential requirements from existing documents describing legacy or
competing systems, problem reports, marketing surveys, and other sources.

• Invent new requirements so that the system will be truly better than the legacy
systems it will replace and therefore worth building. Invention is a critically
important, though underutilized, technique for identifying requirements, and is
often the difference between a highly successful system and a marginally
successful system.

• Transform stakeholder desires, expectations, and needs into informal, textual,
potential requirements.

This task may produce two inconsistent sets of requirements if both the customer and
developer organizations perform this task on the same endeavor. In this case, a consensus
as to the correct set of requirements must be achieved, typically by a combination of this
task, the requirements analysis task, and the requirements validation task.

REQUIREMENTS REUSE

During this task, the RE teams reuse all or part of preexisting requirements work
products. This task typically includes the following subtasks:

• Identify any potentially relevant reusable requirements work products (e.g.,
individual requirements, requirements templates, requirements diagrams,
requirements models, and requirements specifications). This includes both
complete work products (e.g., an individual requirement) as well as parts of work
products (e.g., one use case or use case path out of an entire use case model).

• Evaluate the identified reusable requirements work products for relevancy to the
current endeavor.

• Tailor the relevant identified reusable requirements work products to meet the
needs of the current endeavor.

• Reuse the tailored reusable work products by incorporating them into the current
endeavor’s requirements work products.

VOL. 5. NO.8 JOURNAL OF OBJECT TECHNOLOGY 25

REQUIREMENTS ANALYSIS

During this task, the RE teams analyze the identified and reused requirements. Note that
new requirements are often identified during the analysis of previously identified
requirements. This task typically includes the following subtasks:

• Study, categorize, decompose and organize, model, quantify, refine, prioritize,
justify, and trace each requirement to its source(s). It is important to note that
different types of requirements require different modeling techniques. For
example, whereas use case modeling is very good for analyzing functional
requirements, it is not very good for analyzing other types of requirements. Data
modeling (e.g., logical data models, object models, and information engineering
models) are useful for data and interface requirements. Different kinds of quality
requirements also need different kinds of analysis techniques such as:
- Performance modeling for analyzing performance requirements.
- Asset, accident, hazard, and risk analysis for safety requirements.
- Asset, attack, attacker, threat, and risk analysis for security requirements.

• Transform informal textual requirements into semiformal or formal requirements
(if formal methods are used).

• Negotiate the prioritization of requirements with the requirements stakeholders,
and use the negotiated prioritization to help schedule the implementation of the
requirements. Note that this subtask is often performed concurrently with the
requirements validation task.

• Verify any related assumptions.
• Transform potential raw requirements and related information into real

requirements that have the necessary quality characteristics such as clarity (i.e.,
lack of ambiguity), completeness, consistency, correctness, feasibility (e.g.,
technical, financial, schedule, etc.), verifiability, and understandability.

• Ensure that the requirements are sufficiently well understood that they can be
properly specified.

REQUIREMENTS PROTOTYPING

During this task, the RE teams generate requirements engineering prototypes. This task
typically includes the following subtasks:

• Produce one or more requirements prototypes (e.g., paper or wireframe
prototypes of user interfaces or executable models).

• Evaluate these prototypes. This may involve analysis of static prototypes or
execution and evaluation of dynamic prototypes.

• Use these prototypes to:
- Help identify new requirements such as functional, data, and quality

requirements regarding user interfaces.

REQUIREMENTS ENGINEERING TASKS

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 8

- Better understand existing requirements.
- Identify defects in the existing requirements that drove the development of

these prototypes.
- Support the analysis of these requirements.

REQUIREMENTS SPECIFICATION

During this task, the RE teams generate and publish analyzed and/or validated
requirements in paper or electronic requirements specification documents. This task
typically includes the following subtasks:

• Generate requirements documents specifying appropriate sets information for
different audiences at different times during development:
- System, subsystem, software, and hardware requirements specifications

containing the individual requirements and associated ancillary information.
Except for interface requirements in interface requirements specifications, I do
not generally recommend banishing any class of requirements to separate
documents. For example, it is usually a mistake to specifying quality
requirements in supplementary specification documents and specifying safety
and security requirements in separate safety and security policy documents.
This typically causes such requirements to be inadequately specified, specified
too late during development, and largely ignored during the development of
the architecture, even though quality requirements often should have the
biggest impact on the architecture and are the most expensive to retroactively
implement if overlooked.

- Operational concept documents (OCDs) containing use cases, misuse or abuse
cases, and usage scenarios.

- Glossary and Domain Object Model to properly define the meaning of the
terms used in the requirements.

• Distribute the requirements specifications to their audiences or make access
available to them.

• Iterate the requirements specifications as a result of informal feedback. Note that
more formal feedback will come as part of the requirements verification subtask
of quality engineering.

REQUIREMENTS MANAGEMENT

During this task, the RE teams manage all requirements, regardless of their status. Note
that as with any other work product, the configuration management of requirements and
other requirements work products is actually a part of the configuration management
discipline. This task typically includes the following subtasks:

VOL. 5. NO.8 JOURNAL OF OBJECT TECHNOLOGY 27

• Record and store the requirements and their attributes (i.e., metadata about the
requirements) in an appropriate repository, database, or requirements management
tool.

• Control access (e.g., create, read, update, delete) to the requirements (e.g., based
on metadata such as authorization to create/read/update/delete requirements by
role, requirement state, requirement ownership, requirement responsibility, date of
last change to the requirement, etc.).

• Negotiate with the stakeholders to eliminate any inconsistencies between
requirements and their priorities.

• Report the status of the requirements (e.g., the number, percentage, and state of
the requirements and requirements categories).

• Trace the requirements (e.g., to the associated architecture, design,
implementation, and test work products).

REQUIREMENTS VALIDATION

During this task, the RE teams validate the correctness of the analyzed requirements with
their stakeholders and make any necessary corrections. This is an ongoing task that
typically includes the following subtasks:

• Identify a representative sample of all major stakeholder types (e.g., customers,
users, maintainers, operators, subject matter experts, marketers, and certifiers) to
validate the requirements.

• Ensure these stakeholders validate the correctness of the requirements.
• Iterate to fix any requirements problems.
• Certify that the requirements are an acceptable description of the system, software

application, or component to be implemented.

RELATED TASKS FROM OTHER DISCIPLINES

According to the OPEN Process Framework (OPF) Repository Organization
(www.opfro.org), the preceding tasks clearly fall completely within RE. However, there
are three other tasks that technically and logically belong to other disciplines, but which
nevertheless are absolutely critical to the success of the requirements engineering effort.
In some organizations and according to some development methods, this is why these
tasks are included within RE. In either case, they must be properly addressed when
developing a RE method. These tasks include:

• Scope Management is the management task that manages requirements changes
that could significantly change the scope of the endeavor.

• Requirements Verification is the quality engineering task that controls the quality
of the requirements and other requirements work products such as requirements
models and requirements specifications.

REQUIREMENTS ENGINEERING TASKS

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 8

• Requirements Configuration Control is the configuration management task that
manages and evaluates the impact of proposed changes to baselined requirements
and other requirements work products.

RELATIONSHIP BETWEEN THESE TASKS

On most projects, RE should not be thought of as the first phase of the waterfall
development cycle. RE tasks and subtasks should typically be performed in an iterative,
incremental, concurrent, and time-boxed manner:

• Iterative in the sense that the same tasks will typically need to be repeated on the
same work products in order to fix defects and make other improvements. In
practice, requirements are often of very poor quality, and iteration of the
requirements and other requirements work products is absolutely essential.

• Incremental in the sense that most systems are too large and complex to engineer
all requirements in a big-bang waterfall manner before beginning the tasks of
other disciplines. For example, architecting cannot typically wait until
requirements engineering is complete. Rather, requirements engineering is
typically performed in a top-down manner, layer by layer in the system’s
hierarchical architecture.

• Concurrent in the sense that:
- Requirements engineering tasks are performed simultaneously with the tasks

of many other disciplines. The project should not and cannot stop until a
complete set of perfect requirements are developed.

- The requirements engineering teams rapidly cycle between tasks while
different members of the requirements team concurrently perform different
tasks on different sets of requirements.

- When developing large and complex systems, different requirements
engineering teams are concurrently performing different requirements
engineering tasks on different components of the system architecture at
different levels of the system architecture.

• Time-boxed in the sense that the completion of requirements tasks on increments
and iterations of the requirements are scheduled to avoid analysis paralysis.

An important consequence of an iterative, incremental, and concurrent development cycle
is that the RE teams must exist from initial conception through development and delivery.
In systems being actively maintained with new versions and variants constantly being
developed, the RE teams must also continue in operation, though the number and size of
the teams may vary from phase to phase.

In addition to relationships between these tasks due to the development cycle, there
are other relationships that must be considered. As described above, these tasks have been
decomposed along logical lines to maximize their understandability. However, the way
real projects work is never so logical in practice. A certain unavoidable amount of chaos
is involved in the way teams actually work on real projects as people rapidly move from

VOL. 5. NO.8 JOURNAL OF OBJECT TECHNOLOGY 29

task to task multiple times each day, or even each hour. Except in theory, it is impossible
to successfully assign these tasks as lines in a project work breakdown structure because
there is so much overlap between them. It is better, therefore, to manage by milestones
(and inch pebbles) based on earned value associated with requirements work products
than managing by requirements task completion, something that is rarely totally finished
until the system is retired.

CONCLUSION

RE is logically comprised of many important tasks, not just the three or four that are most
often cited. Depending on the specific needs of individual projects, the RE teams should
ensure that their RE method contains all of the appropriate tasks and each of these tasks
should be tailored appropriately. Once selected and tailored, the RE tasks should be
performed in a manner that is consistent with the project’s chosen development cycle,
and this typically means iteratively, incrementally, concurrently, and constrained by
appropriate time-boxes. Only by understanding all of the RE tasks can the development
team ensure that the necessary RE tasks are appropriately staffed, scheduled, and
performed. Finally, RE is a complex and often messy process in practice. Hopefully, the
preceding summary of RE tasks will help you better perform requirements engineering
and ensure than no important work slips through the cracks.

About the author
Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute (SEI), where he helps the US
Government acquire large, complex, software-intensive systems.
Working in industrial software development since 1979, he has worked
primarily with object technology since 1984 and has written 5 books on
the subject. During the last four years, he has developed the world’s

largest (1,100+ webpage), free, and open source informational website of reusable
process engineering components. Based on the OPEN Process Framework (OPF), it is
located at http://www.opfro.org. Currently writing a book on the engineering of safety
and security-related requirements, he can be reached at dgf@sei.cmu.edu.

