
Requirements for QoS-based Web Service Description and Discovery

Kyriakos Kritikos and Dimitris Plexousakis
Foundation for Research and Technology-Hellas (FORTH)

Institute of Computer Science (ICS)
P.O. Box 1385, GR-711 10, Heraklion, Crete, Greece

kritikos@ics.forth.gr and dp@ics.forth.gr

Abstract

The goal of Service Oriented Architectures is to enable
the creation of business applications through the automatic
discovery and composition of independently developed and
deployed (Web) services. Automatic discovery of Web Ser-
vices (WSs) can be achieved by incorporating semantics
into a richer WS description model (WSDM) and the use
of Semantic Web (SW) technologies in the WS matchmaking
and selection models. A sufficiently rich WSDM should en-
compass not only functional but also non-functional aspects
like Quality of Service (QoS). QoS is a set of performance
attributes that has a substantial impact on WS requesters’
expectations. Thus, it can be used as a discriminating fac-
tor of functionally-equivalent WSs. The focus of this paper
is twofold: to analyze the requirements of a semantically
rich QoS-based WSDM and to provide SW and constrained-
based mechanisms for enriching syntactic QoS-based WS
Discovery (WSDi) algorithms. In addition, a roadmap of
extending WS standard techniques for realizing semantic,
functional and QoS-based WSDi is presented.

1. Introduction

WSs are modular, self-describing and loosely-coupled
software applications that can be advertised, located and
used across the Internet using a set of standards such as
SOAP, WSDL and UDDI. They can be dynamically dis-
covered and integrated at runtime in order to develop and
deploy business applications. However, the standard WS
techniques (such as WSDL and UDDI) fail to realize dy-
namic WSDi, as they rely on static descriptions of service
interfaces and other non-functional service attributes for
publishing and finding WSs. As a result, syntactic WSDi
mechanisms return results with low precision and recall. In
addition, no means are provided in order to select among
multiple functionally equivalent WSs.

The key to dynamicity or automation of WSDi is the in-

corporation of semantics into a richer WSDM. Ontologies
should be used in order to provide formal meaning to every
term of the WSDM and in order to utilize the reasoning
mechanisms of the SW. Reasoning provides discovery re-
sults with high precision and recall, thus leading to automa-
tion. A rich WSDM should incorporate both functional and
non-functional aspects. Both of these aspects should unfold
in great detail. In this way, more detailed WS specifications
will result in more constrained WSDi result sets.

The functional part of WS description actually contains
specifications of Inputs, Outputs, Preconditions and Effects.
The non-functional part comprises the following: a subset
of all possible WS non-functional properties is QoS. Usu-
ally, QoS is used as a synonym of performance. In our view,
QoS is a broader term. QoS (for WS) is a set of WS prop-
erties that have an impact on the quality of the service of-
fered by the WS, where quality is synonymous with meeting
specifications. Each QoS property is measured by a QoS
metric. A QoS metric describes in detail how the measure-
ment is conducted, by whom, in what units and value types
and when it is measured. In other words, a QoS metric is a
realization of a QoS property. QoS WS specifications (ad-
vertisements or requests) are actually constraints over these
QoS metrics.

While a lot of research has dealt with the semantic, func-
tional WS description, little has been done for the non-
functional part. Most of the research is concentrated on syn-
tactic non-functional WS descriptions [6, 2, 3, 9, 5, 13, 15].
Additionally, the semantic research efforts lack a rich QoS-
based WSDM [19]. The purpose of this paper is to analyze
the requirements for a rich semantic QoS-based WSDM.
In addition, semantic mapping algorithms and extensions
to the most prominent WSDi algorithms [5, 19] are pro-
vided in order to equip WS requesters with semantic WSDi
tools, which will produce results with high precision and re-
call. Last but not least, a roadmap is supplied that provides
guidelines on how to extend the standard WS mechanisms
in order to incorporate and use the semantic QoS-based WS-
DMs and discovery tools. The ultimate goal is to provide a



complete semantic framework for automating WSDi.

2. Requirements for QoS-based WS Descrip-
tion and OWL-Q

After reviewing related work in QoS-based WS Descrip-
tion, we have come up with the following requirements that
must be satisfied by a QoS-based WSDM:

Extensible and formal semantic QoS model: In the pres-
ence of multiple WSs with overlapping or identical func-
tionality, WS requesters need objective QoS criteria to dis-
tinguish WSs. However, it is not practical to come up with
a standard QoS model that can be used for all WSs in all do-
mains. This is because QoS is a broad concept that encom-
passes a number of non-functional properties such as pri-
vacy, reputation and usability. Moreover, when evaluating
WS QoS, domain specific criteria must be taken into consid-
eration. For example, in the domain of phone service provi-
sioning, the penalty rate for early termination of a contract
and compensation for non-service, offered in the service
level agreement are important QoS criteria in that domain.
Therefore, an extensible QoS model must be proposed that
includes both the generic and domain specific criteria. In
addition, new domain specific criteria should be added and
used to evaluate QoS without changing the underlying com-
putation (i.e. matchmaking and ranking) model. Last but
not least, the semantics of QoS concepts must be described
in order to have terms/concepts with specific meaning for
both WS requesters and providers. In this way, QoS at-
tributes like ”application availability”, which may have dif-
ferent meanings if not formally defined, will have a spe-
cific meaning in QoS description. The solution to the above
problems is the use of ontologies. Ontologies provide a for-
mal, syntactic, and semantic description model of concepts,
properties and relationships between concepts. They give
meaning to concepts so that they are human-understandable
and machine-interpretable while they provide the means for
interoperability. Moreover, they are extensible as new con-
cepts, properties or relationships can be added to them. In
addition, SW techniques can be used for reasoning about
concepts or for mapping between ontologies. These tech-
niques can lead to syntactic and semantic matching of onto-
logical concepts and enforcement of class and property con-
straints (e.g. type checking, cardinality constraints, etc.).
Therefore, by providing semantic description of concepts
and by supporting reasoning mechanisms, ontologies cater
for better WSDi with high precision and recall. Last but not
least, ontologies can help specialized brokers in performing
complex reasoning tasks like WSDi or mediation.

Standards compliance: It is important for the QoS-based
WSDM to comply with already widely-accepted standards.
In this way, it will be easily adopted by the research commu-
nity. In addition, it will use all freely-available tools related

to these standards for its development.
Syntactical separation of QoS-based and functional

parts of service specification: QoS specifications should be
syntactically separated from other parts of service specifica-
tions, such as interface definitions. This separation allows
us to specify different QoS properties for different imple-
mentations of the same interface. Moreover, while func-
tional constraints rarely change during runtime, QoS con-
straints can change during runtime. So the separation of
service offerings from WSDL descriptions permits service
offerings to be deactivated, reactivated, created, or deleted
dynamically without any modification of the underlying
WSDL file. Last, an offer could be referenced from mul-
tiple WSDL files and thus be reused for different services.

Support refinement of QoS specifications and their con-
structs: As previously described, syntactical separation pro-
vides reusability. But except from reusability, another form
of extensibility is equally important. QoS specifications
should not only be reused but also refined. This means that
we can create a new WS QoS offering by referencing an
older one and by adding constraints like refinement of an
older QoS restriction or creation of a new one. In addition,
templates of QoS offerings can be created and appropriately
extended for every domain.

Allow both provider and requester QoS specification: It
should be possible to specify both the QoS properties that
clients require and the QoS properties that services provide.
Moreover, these two aspects should be specified separately
so that a client-server relationship has two QoS specifica-
tions: a specification that captures the client’s requirements
and a specification that captures service provisioning. This
separation allows us to specify the QoS characteristics of a
component, the QoS properties that it provides and requires,
without specifying the interconnection of components. The
separation is essential if we want to specify the QoS char-
acteristics of components that are reused in many different
contexts. Finally, QoS demands and offers should be spec-
ified in a symmetric way. Symmetric approaches usually
achieve a greater deal of expressiveness to specify quality-
of-service, since there is usually no restriction on the num-
ber of involved parameters or type of operators, so that non-
linear or more complex expressions are allowed.

Allow fine-grained QoS specification: It should be pos-
sible to specify QoS properties/metrics at a fine-grained
level. As an example, performance characteristics are
commonly specified for individual operations. A QoS
model must allow QoS specifications for interfaces, oper-
ations, attributes, operation parameters, and operation re-
sults. Generally speaking, any service object can have QoS
attributes/metrics (e.g., elements defined in WSFL).

Extensible and formal QoS metrics model: For each do-
main, the attributes in that domain are important inputs to
the overall QoS of a service. Some attributes are common



across domains and some are specific to domains. Each
attribute is measured with the help of a metric. Each at-
tribute/metric has the following aspects:

• The value set for the metric (and its allowed value
range).

• The domains that this attribute belongs to. For in-
stance, is it a cross-domain attribute or an attribute spe-
cific for a domain?

• The weight of the metric relative to its domain and user
preferences. This weight can also help in calculating
the rank of a QoS offering.

• The characteristic of the function from metric values
to overall QoS values. For instance, some attributes
such as price are monotonic, at least in typical business
scenarios.

• The temporal characteristic of the metric value.
Matrics may have decaying values where the decay
function can vary from exponential to a step function.

• There must be a description (mathematical or other-
wise formal) of how a QoS metric’s value of a com-
plex WS can be derived from the corresponding QoS
metrics’ values of the individual WSs that constitute
the complex one. For example, the execution time Tc
of a complex WS C, which is defined as a sequence
of two Web Services A and B, can be computed as the
sum Ta + Tb of the execution times of the two indi-
vidual Web Services. This description is essential for
the automated estimation of the values of QoS met-
rics for a complex Web Service that is composed of
other Web Services and individual operations. So this
description is needed for automating the QoS analy-
sis process, a prerequisite for a successful QoS-based
WSDi. In addition, it helps automating the WS com-
position process and delaying individual WS selection
as late as possible (i.e., at runtime).

• In [14], the authors argue for the need for several on-
tologies that would be used in the formal representa-
tion of QoS and other constraints. These ontologies
include: ontology of measurement units, ontology of
currency units, ontology of measured properties and
ontology of measurement methods. So these ontolo-
gies must also be developed.

Allow classes of service specification: Class of Ser-
vice [15] means the discrete variation of the complete ser-
vice and QoS provided by one WS. It makes sense to discuss
Class of Service at the level of WSs and not at the level of
constraints or guarantees that are part of the overall service
and QoS. Classes of service can differ in usage privileges,

service priorities, response time guarantees, etc. The con-
cept of classes of service also supports different capabilities,
rights and needs of potential customers of the WS, includ-
ing power and type of the devices they execute on. Further-
more, different classes of service may imply different uti-
lization of the underlying hardware and software resources
and, consequently, have different prices. Additionally, dif-
ferent classes of service can be used for different payment
models. The issues of QoS and balancing of limited under-
lying resources are particularly motivating for having mul-
tiple classes of service for Web Services. If the underly-
ing resources were unlimited, all consumers would always
get the highest possible QoS. Unfortunately, this is not the
case, so it is suitable to provide different QoS to different
classes of consumer. Providers of Web Services want to
achieve maximal monetary gain with optimal utilization of
resources. Providing different classes of service and their
balancing helps in achieving this goal because of the flexi-
bility to accommodate several classes of consumer. On the
other hand, consumers of such Web Services can better se-
lect service and QoS they need and are willing to pay for,
while minimizing their price/performance ratio.

Based on the above requirements, we have developed an
upper ontology for QoS-based WS Description, which is
called OWL-Q [4]. This ontology describes in a syntactic
and semantic way all possible parts of QoS metrics and of
QoS constraints. It is an ontological description carefully
designed into several facets that can easily be extended and
enriched. This ontological description also complements
OWL-S [12], a W3C submission for Semantic WS descrip-
tion, by subsuming OWL-S concepts or relating them to
QoS concepts. Based on our upper ontology, we also pro-
pose the development of a mid-level ontology that will de-
fine all domain independent QoS metrics. Finally, based on
the upper and mid-level ontology, new QoS metrics can be
defined.

3. Requirements for QoS-based WS Discovery

The (QoS-based) WSDi process is decomposed into two
sub-processes: matchmaking and selection. In the first sub-
process, the (QoS-based) WS descriptions (advertisements
and request) are matched and the outcome is a list of WS
advertisements that completely satisfy the constraints of the
request. In the second sub-process, this output list is sorted
based on given weights of QoS metrics of the WS requester.
Both of these sub-processes depend on the (QoS-based) WS
descriptions.

Suppose, now, that a WS provider and requester provide
QoS-based descriptions that include differently-defined
metrics. That is their descriptions refer to metrics defined in
different ontologies. It may also be the case that the units or
value types used are different. This problem is solved by in-



troducing mapping algorithms that try to map or relate con-
cepts of two or more ontologies. However, although there
are general mapping algorithms, we believe that a special-
ized mapping algorithm must be used in the QoS metrics
case because it will take advantage of the semantics of the
QoS context. Thus, we have developed a QoS metric match-
ing (QMM) algorithm [4], which is not evaluated yet.

The QMM/mapping algorithm is a tool that transforms
syntactic QoS-based WS matchmaking algorithms to se-
mantic ones as it enables them to semantically compare QoS
metrics. One of the most prominent syntactic QoS-based
WS matchmaking approaches [5] transforms a QoS WS de-
scription into a Constraint Satisfaction Problem (CSP) [16].
Before matchmaking, the CSP of QoS-based WS descrip-
tion is checked for consistency (if it has any solution).
Matchmaking is performed according to the concept of con-
formance (if every solution of the offer is a solution to the
demand). The algorithm returns two lists: a list of con-
formant advertisements and a list of non-conformant ones.
Next, we show how to extend a QoS-based WS match-
making algorithm like the above with the help of OWL-Q
(or any other QoS-based WS description language) and the
QMM algorithm by pursuing the following steps:

1. OWL-Q advertisements and OWL-Q request are trans-
formed to CSP problems via XSLT as OWL-Q descrip-
tion files are expressed in XML. However, this trans-
formation must be performed carefully according to
the following two directives:

(a) Only metrics which are semantically equivalent
should correspond to the same CSP variable.
That is by using the requester’s QoS description,
we check every provider’s QoS description as
follows: for each QoS metric X of the requester,
we try to find a provider’s QoS metric Y that is
semantically equivalent. If Y is eventually found,
then Y is set to X i.e. the two metrics are assigned
to the same CSP variable.

(b) If two equal metrics do not use the same units,
then we consider the request’s metric unit as
the default and a unit transformation procedure
(from the provider’s unit to the requester’s) is
performed.

2. We check all CSPs. If a CSP of an advertisement does
not contain all the variables of the CSP of the request,
it is considered as partial match.

3. We solve all advertisement CSPs and the CSP of the
request with a known and efficient CSP engine.

4. Now for every solution of the CSP of the request, we
check if it is contained in the solution space of the CSP

of an advertisement. If this is not the case, the adver-
tisement is considered as fail match. Otherwise, if the
advertisement has more variables than the request it is
considered as super match. If it has the same amount
of variables, the advertisement is considered as exact
match. Partial match advertisements must be handled
in a different way: The solution space of both the CSP
of the partial match advertisements and the CSP of
the request is constrained only to the variables that are
common. Then, it is checked if every partial solution
of the CSP of the request is contained in the partial so-
lution space of the CSP of an advertisement. If this not
the case, then the advertisement is moved to the fail
match category.

The above algorithm produces four types of results. Su-
per matches are the best type as they include QoS adver-
tisements that not only satisfy QoS request constraints but
also provide for more QoS constraints. Exact matches are
also preferable (but not as strong as the super matches) as
they completely satisfy all the QoS request constraints. Par-
tial matches are the next preferable as they contain those
QoS advertisements that satisfy the QoS request only for
the QoS metrics that appear in both types of specifications.
Fail matches are useful as a result because sometimes all
requester’s QoS constraints are not satisfied although all
requester’s QoS metrics also appear at the provider’s con-
straints. In this case, the requester can select the best failed
result or perform a looser query.

In practice, it may be the case that the results of the QoS-
based WS matchmaking sub-process always belong to the
fail match category. The reason is obvious: not all of the
QoS constraints of the WS requester could possibly be sat-
isfied by any QoS offer. There is a solution to overcome this
problem.

The requester’s query should be refined. This can be
done with the characterization of the constraints as hard and
soft [10]. Hard constraints are obligatory and are dealt as
before i.e. they must definitely be satisfied by QoS offers.
Soft constraints are optional and can be used not only for
better characterization of the matchmaking results but also
for a first-time ordering of all the results. Now, the charac-
terization of the matchmaking results is the following:

• subsume matches are the QoS offers that not only sat-
isfy the requester’s QoS hard and soft constraints but
also impose more constraints;

• perfect matches are the QoS offers that satisfy all the
requester’s QoS hard and soft constraints;

• partial matches are the QoS offers that satisfy all the
hard constraints and zero or more soft constraints of
the requester;



• fail matches do not satisfy the hard and soft constraint
of the requester.

The subsume matches are the best and can be ordered if
they are applied to the selection sub-process. The perfect
matches are the next best and they can also be ordered dur-
ing the selection process. The partial matches are satisfac-
tory as they satisfy all the hard constraints of the requester.
This type of results can be ordered based on the number
of soft constraints satisfied. If the situation is not clear
enough, then the results are further ordered based on the
selection sub-process. The purpose of the introduction of
this category is clear. If we do not have subsumed or per-
fect matches, then we choose the QoS offer that satisfies all
of the hard constraints and most of the soft constraints of
the requester. The fail matches are not satisfactory at all. If
we only have failed results, then either the user applies the
procedure described in the previously described first way or
he must further alter the characterization of his constraints
(transform more hard constraints into soft ones).

Due to space limitations, we cannot show how to extend
syntactic QoS-based WS selection algorithms. However,
the extension procedure follows easily: we execute the first
step of the above matchmaking extension algorithm. In this
way, we guarantee that: a) all different metrics do not match
with each other; b) all expressions are transformed appro-
priately if two matching metrics are found.

4. Roadmap

In this section, we comment on how to extend the current
WS standard technology to enable it to perform semantic
QoS-based WS description and discovery (WSDD). Addi-
tionally, there will be a discussion on what are the obliga-
tions of the parties involved in the WSDi Architecture (i.e.,
providers, requesters and registry).

First, two standard WS description languages are exam-
ined. The first one is WSDL. This language is just an inter-
face description language specialized to specify how to call
a WS. This language is not used for discovery purposes.
However, in [11] an extension of WSDL called WSDL-S is
proposed. Additional constructs and included terms refer-
ring to ontological concepts are added, independently of the
ontology language used. Moreover, a semantic framework
is proposed that maps WSDL-S to UDDI and enhances the
facilities of UDDI registries to support semantic discovery
queries. This framework is included in the METEOR-S
framework [8]. The latter framework is a complete frame-
work supporting semantic functional and non-functional
discovery and composition of WSs. Unfortunately, the dis-
covery process does not include semantic QMM algorithms
and only deals with simple inequality constraints while the
composition process takes into account the composed val-
ues of only three QoS attributes.

The second language under inspection is UDDI. This
language is a syntactic structural language for WSDD. It
does not include non-functional descriptions of WSs. In [9],
an extension of UDDI is proposed (with additional elements
and tModel concepts mapped to QoS attributes) that enables
the QoS-based description and discovery of WSs. However,
this extension is not semantic and only simple constraints
are expressed and enforced.

In our view, to enable semantic QoS-based WS descrip-
tion, an ontology language like OWL-Q must be proposed,
developed and supported, which will enable the use of the
semantic facilities of reasoning and concept mapping. If
this language is mapped to UDDI and appropriate semantic
tools (UDDI mapper, QoS metric matcher, semantic discov-
ery engine) are available, then UDDI registries will be ex-
tended to support QoS-based WSDD. For the functional WS
description, two equivalent languages are available: OWL-
S and WSMO [1], each one having a supported functional
WSDi framework. OWL-S can be mapped to UDDI [7] and
there is already a framework supporting this mapping. So, a
semantic QoS-based WS description language like OWL-Q
would be ideal for QoS-based WS description as it extends
and complements OWL-S, which is mapped functionally to
UDDI. Only the QoS-based mapping to UDDI (actually to
the [9] UDDI extension) is pending and must be provided
by our semantic QoS-based WS framework. To sum up,
we believe that OWL-S, OWL-Q and a supporting seman-
tic framework that maps these languages to UDDI (and its
extension) is ideal for successful QoS-based WS descrip-
tion. If this framework is enriched with the semantic QMM
and QoS-based WSDi algorithms, then semantic QoS-based
WSDi can be realized.

Assuming that a complete functional and QoS-based
WSDi framework is available, the new obligations of WS
providers, requesters and registries are analyzed. WS
providers must use simulation and other performance analy-
sis tools in order to discover the QoS constraints of each
class of service. Then they should use and feed their QoS
offers to a tool that will produce OWL-Q (or other lan-
guage) offers associated to the WS functional offer (of
OWL-S or WSMO). This tool must be able to load and asso-
ciate many ontologies (QoS attribute, metric, unit, measure-
ment method). Moreover, they should publish these offers
to registries where they have already published the asso-
ciated functional descriptions of their WS implementations.
A prerequisite of the above is the providers’ frankness about
their offerings.

WS requesters must be able to understand the needs of
their applications and with the help of appropriate tools
translate them to functional and QoS-based requests. They
should comprehend that if they specify many hard con-
straints, then they may not get any discovery result or, on
the other hand, if they are vague, then they will get too many



results. Thus they must be wise to express a specific num-
ber of constraints (hard or soft) and they should also provide
weights and utility functions for every QoS metric that in-
terests them. In the end, they should use appropriate tools
to produce OWL-Q files and send them as queries to WS
registries.

WS registries, if enriched semantically with a complete
semantic framework, must provide an API for the semantic
advertisement and enquiry of the functional and QoS-based
parts of WSs. They should also implement APIs for the
management of QoS and functional offers (activation, de-
activation, creation, deletion). They should carefully asso-
ciate functional with corresponding QoS offers (of the same
WS) so as to avoid cases where a deletion of a functional
offer does not cause the deletion of the corresponding QoS
offers. Moreover, a leasing mechanism must be available
that will deactivate QoS offers when they expire and delete
them after a specific time period has passed without be-
ing renewed/reactivated. Last but not least, WS registries
should interact with WS reputation and requester-feedback
registries in order to update their WS reputation and appro-
priate QoS offer metric values entries.

5. Conclusion

In this paper, an analysis of the requirements for seman-
tic QoS-based WSDD were provided. Additionally, a pro-
posal of how to extend the current standard WS technology
to incorporate and use an appropriate semantic QoS-based
WS framework was supplied. Last but not least, the respon-
sibilities of the participating entities in the WSDi architec-
ture were analyzed in sight of the incorporation of the re-
ferred QoS-based framework.

We’re currently completing the specification of OWL-Q
that has already been presented in [4] and the implementa-
tion of our semantic QMM algorithm. An extension to this
work would realize QoS-based WS composition by enforc-
ing global QoS constraints and using for every QoS metric,
metric evaluation functions imposed on any possible work-
flow (WS) composition construct to produce global QoS
metric values [17] through construct reduction.

References

[1] D. F. et. al. Web Service Modelling Ontology. ESSI WSMO
working group, http://www.wsmo.org, 2004.

[2] L. Jin, V. Machiraju, and A. Sahai. Analysis on service level
agreement of web services. Technical Report HPL-2002-
180, Software Technology Laboratories, HP Laboratories,
2002.

[3] A. Keller and H. Ludwig. The wsla framework: Specifying
and monitoring service level agreements for web services.
Technical Report RC22456 (W0205-171), IBM, 2002.

[4] K. Kritikos and D. Plexousakis. Semantic qos metric match-
ing. In ECOWS, pages 265–274. IEEE Computer Society,
2006.

[5] O. Martı́n-Dı́az, A. R. Cortés, D. Benavides, A. Durán, and
M. Toro. A quality-aware approach to web services procure-
ment. In B. Benatallah and M.-C. Shan, editors, Technolo-
gies for E-Services (TES), volume 2819 of Lecture Notes in
Computer Science, pages 42–53. Springer, 2003.

[6] E. M. Maximilien and M. P. Singh. Conceptual model of
web service reputation. SIGMOD Rec., 31(4):36–41, 2002.

[7] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara.
Semantic matching of web services capabilities. In ISWC
’02: Proceedings of the First International Semantic Web
Conference on The Semantic Web, pages 333–347, London,
UK, 2002. Springer-Verlag.

[8] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma.
Meteor-s web service annotation framework. In S. I. Feld-
man, M. Uretsky, M. Najork, and C. E. Wills, editors, WWW,
pages 553–562. ACM, 2004.

[9] S. Ran. A model for web services discovery with qos. SIGe-
com Exch., 4(1):1–10, 2003.

[10] F. Rossi. Preference reasoning. In P. van Beek, editor, CP,
volume 3709 of Lecture Notes in Computer Science, pages
9–12. Springer, 2005.

[11] K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A. Miller.
Adding semantics to web services standards. In Zhang [18],
pages 395–401.

[12] K. Sycara et al. OWL-S 1.0 Release. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.0/, 2003.

[13] M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, and
T. Voigt. Qos integration in web services. Gesellschaft fur
Informatik DWS 2003, Doktorandenworkshop Technolo-
gien und Anwendungen von XML (Ph.D. students workshop
Technologies and Applications of XML), October 2003.

[14] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel. On re-
quirements for ontologies in management of web services.
In CAiSE ’02/ WES ’02: Revised Papers from the Interna-
tional Workshop on Web Services, E-Business, and the Se-
mantic Web, pages 237–247, London, UK, 2002. Springer-
Verlag.

[15] V. Tosic, B. Pagurek, and K. Patel. Wsol - a language for the
formal specification of classes of service for web services.
In Zhang [18], pages 375–381.

[16] P. Van Hentenryck and V. Saraswat. Strategic directions
in constraint programming. ACM Computing Surveys,
28(4):701–726, 1996.

[17] T. Yu and K.-J. Lin. Service selection algorithms for com-
posing complex services with multiple qos constraints. In
B. Benatallah, F. Casati, and P. Traverso, editors, ICSOC,
volume 3826 of Lecture Notes in Computer Science, pages
130–143. Springer, 2005.

[18] L.-J. Zhang, editor. Proceedings of the International Con-
ference on Web Services, ICWS ’03, June 23 - 26, 2003, Las
Vegas, Nevada, USA. CSREA Press, 2003.

[19] C. Zhou, L.-T. Chia, and B.-S. Lee. Daml-qos ontology for
web services. In ICWS ’04: Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS’04), page 472,
Washington, DC, USA, 2004. IEEE Computer Society.


