
IEEE International Requirements Engineering Conference (RE02), Essen Germany, September 2002

Requirements Patterns for Embedded Systems

Sascha Konrad and Betty H.C. Cheng
�

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824 USA

Email:
�
konradsa,chengb � @cse.msu.edu

Abstract

In software engineering, design patterns propose solu-
tion skeletons for common design problems. The solution
skeleton is described in such a way that the design can be
used for other projects, where each application tailors the
design to specific project constraints. This paper describes
research into investigating how a similar approach to reuse
can be applied to requirements specifications, which we
term requirements patterns. Specifically, we explore how
object-oriented modeling notations, such as the Unified
Modeling Language (UML), can be used to represent com-
mon requirements patterns. Structural and behavioral in-
formation are captured as part of a requirements pattern. In
order to maximize reuse, we focus on requirements patterns
for embedded systems. This paper also describes case stud-
ies that illustrate how we have applied these general pat-
terns to multiple embedded systems applications from the
automotive industry.

1. Introduction

In recent years, many research and development efforts
in software engineering have focused on the identification
and use of design patterns. Given the detailed descriptions
of commonly used design patterns captured by Gamma
et al. [6], the software engineering community is becoming
more aware of other types of patterns applicable to other
parts of the software development process. Fowler [5] iden-
tified high-level analysis patterns that might be used to rep-
resent conceptual models of business processes, such as ab-
stractions from accounting, trading, and organizational re-
lationships. Geyer-Schulz and Hahsler [7] add more struc-
ture to their descriptions of analysis patterns and focus

�
Please contact B. Cheng for all correspondences.

on the domain of cooperative work and collaborative ap-
plications. Gross and Yu [8] discuss the relationship be-
tween non-functional requirements and design patterns, and
Robertson [16] discusses the use of event/use case model-
ing to identify, define, and access requirements process pat-
terns. Sutcliffe et al. [20] describe how scenarios of use
cases can be investigated to identify generic requirements
for different application classes. Others have attempted to
identify software architecture patterns [18], database access
patterns [11], fault-tolerant telecommunication system pat-
terns [1], patterns for distributed systems [19], design pat-
terns for avionics control systems [14], etc.

This paper describes research into how an approach simi-
lar to design patterns can be applied to requirements specifi-
cations, which we term requirements patterns. Specifically,
we explore how object-oriented modeling notations, such
as the Unified Modeling Language (UML), can be used to
represent common requirements patterns. Structural and be-
havioral information are captured as part of a requirements
pattern. We use a slight variation of the patterns template
developed by Gamma et al. [6], which we tailored to con-
tain information more specific to requirements engineering.

In order to maximize reuse, we focus on requirements
patterns for embedded systems. We note that design pat-
terns have also been identified specifically for embedded
systems [4], but they are focused on language-specific or
communication-related issues. In addition, architectural
patterns have a similarity to our requirements patterns in
that both use diagrams to denote structural patterns; how-
ever, architectural patterns depict information more specific
to detailed design and implementation. In contrast, require-
ments patterns can be used to capture specific functional or
non-functional requirements of a system that can be refined
with more design and implementation details, potentially
involving the use of architectural and design patterns. Fur-
thermore, we note that the integral role that the physical
elements of an embedded system play dictates the need to

specify the distinction between the hardware and software
elements in the requirements patterns, including what func-
tionality will be handled respectively [3]. In other contexts
or domains, such a level of functional decomposition might
be considered being architectural or design-level specific.
As part of the validation effort, this paper also describes
case studies that illustrate how we have generalized these
patterns to apply to multiple automotive embedded systems
applications.

The remainder of this paper is organized as follows:
Section 2 gives a template for describing a pattern and
overviews the patterns found so far. Section 3 gives de-
tailed descriptions of two commonly used requirements pat-
terns (the complete description of patterns may be found
elsewhere [12]). Section 4 describes how we applied the
patterns to two different applications from the automotive
domain. Finally, conclusions and future work are discussed
in Section 5.

2. Describing Requirements Patterns

This section gives the template used to describe require-
ments patterns, enumerates the list of patterns, and presents
a set of criteria for organizing and classifying the patterns.

2.1. Requirements Pattern Template

In contrast to other informal presentation styles for pat-
terns, this paper uses a template similar in style to that used
by Gamma et al. [6] in order to facilitate its understanding
and application. The template uses problem frames [9] to
describe the problem and its context, and UML diagrams
are used to give structural and behavioral information. In
the spirit of Ryan’s work [17] on the use of natural language
for requirements engineering, we use natural language to
supplement diagrams in order to describe important aspects
of the patterns as a mean for facilitating the understanding
the requirements from different viewpoints.

The original design pattern template has been modified
in several aspects to address the needs of requirements en-
gineering. Specifically it has been extended with “Con-
straints”, “Behavior” and “Design Patterns”. The sections
“Implementation” and “Sample Code” have been removed
because they were too specific to software design and im-
plementation. The “Behavior” section contains sequence
and state diagrams that illustrate sample behavior. In con-
trast, the “Collaborations” section contains a textual de-
scription of the general behavior that is possible among col-
laborators within a pattern.

Pattern Name and Classification: The pattern name consists of

a description of the pattern; the classification provides the purpose
of the pattern.

Intent: A brief description of the problems that the pattern ad-
dresses.

Motivation: A description of sample goals and objectives of a
system that motivate the use of the pattern Problem frame dia-
grams are used to provide context for the problem specified by the
requirement of the pattern. Furthermore, use-cases and use-case-
diagrams describe the goals of the pattern application. (These dia-
grams are not included in the examples due to space constraints.)

Constraints: Restrictions that are applied to the system. For
example, constraints can elucidate the system’s special hardware
constraints and timing restrictions. Any environmental, domain,
or implementation-imposed constraints should be included here;
these may be functional or non-functional by nature. Safety should
also be viewed in this section due to its importance in embedded
systems.

Applicability: Provides a description concerning the conditions
in which the pattern may be applied.

Structure: A representation of the classes and their relationships
depicted in terms of UML class diagrams.

Behavior: Provides an illustrative representation of scenarios for
class and object interaction. Also gives a description of the behav-
ior of the pattern by using UML state and sequence diagrams.

Participants: Itemizes the classes/objects that are included in the
requirements pattern and their responsibilities.

Collaborations: Describes how objects and classes interact, as
well as their roles for carrying out various responsibilities.

Consequences: How are the objectives supported by a given pat-
tern? Using the pattern, what are the trade-offs and outcomes?

Design Patterns: Applicable design patterns that can be used to
refine the requirements patterns.

Also Known As: Lists alternative names for the Requirements
Pattern.

Related Requirements Patterns: What requirements patterns are
related to this one? What are the advantages and shortcomings of
this pattern compared to different ones and which pattern should
be used?

2.2. Requirements Patterns Catalogue Overview

Below is an enumeration of the requirements patterns
that have been identified from analyzing several embedded
systems.

� Controller Decompose: How to decompose an embedded
system into different components according to their respon-
sibilities.

� Actuator-Sensor Pattern: How to specify various kinds of
sensors and actuators in an embedded system.

� Watchdog Pattern: How to monitor a device and initiate
corrective action if it does not behave properly.

� Examiner Pattern: How to monitor a device and store oc-
curring errors.

� Fault Handler Pattern: How to integrate fault handling
functionality into an embedded system.

� Mask Pattern: How to reduce the burden placed on the
computing component when many sensors and actuators are
present, whose values need to be sorted or filtered into single
values for the computing component.

� Moderator Pattern: How to provide an interface to support
decoupling of complex subsystems.

� User Interface Pattern: How to specify a user interface that
is extensible and reusable.

� Channel Pattern: How to arrange communication between
two components.

� Monitor-Actuator Pattern: How to increase safety and re-
liability by monitoring actuator behavior for errors.

3. Example Requirements Patterns

The following is an abbreviated description of two com-
monly used requirements patterns found in automotive em-
bedded systems development. The names of requirements
patterns are denoted in italics, and the elements of a require-
ments pattern are named in a san serif font, including class
and state names.

Actuator-Sensor: Structural Pattern

Intent:
How to specify various kinds of sensors and actuators in an

embedded system.

Motivation:
Embedded systems usually have various kinds of sensors and

actuators. These sensors and actuators are all either directly or
indirectly connected to the control unit. Although many of the
sensors and actuators look quite different, their behavior is sim-
ilar enough to structure them into a pattern. The pattern shows
how to specify the sensors and actuators for a system, including
attributes and operations. The Actuator-Sensor Pattern is us-
ing a pull mechanism (explicit request for information) for Pas-
siveSensors and a push mechanism (broadcast of information)
for the ActiveSensors. Additional information about pull and
push mechanism can be found elsewhere [13].

Figure 1 shows the problem frame diagram for the Actuator-
Sensor Pattern. This pattern can be used to build the Input-
/Output-Modeler, meaning this Input-/Output Modeler translates
the data of the actuators and sensors from the environment into a
model for which the system was designed. For example, a value of
a temperature sensor is transformed into a five-digit integer num-
ber or a transformation from Celsius to Fahrenheit. Explicitly,
the diagram shows the requirement ComputingComponent - Model
in a dashed circle, from which arrows point to the Input-/Output
Model and the ComputingComponent domain, meaning that the
requirement constrains both of those domains because data can

flow in both directions. The ComputingComponent receives data
from the sensors and sends data to the actuators. The machine
domain Input-/Output Modeler is the machine that has to be built
for the ComputingComponent to access data in the Input-/Output
Model domain. The latter one is a designed domain; it has to be
designed by the developer of the system who is free to define the
data structures.

Input-/ Output-
Modeler

Input-/
Output
Model

Computing
Component

~ Model

Computing
Component

Figure 1. Problem Frame Diagram of the
Actuator-Sensor Pattern

Constraints:

� Each passive sensor must have some method to read sensor
input and attributes that represent the sensor value.

� Each active sensor must have capabilities to broadcast update
messages when its value changes.

� Each active sensor should send a life tick, a status message
issued within a specified time frame, to detect malfunctions.

� Each actuator must have some method to invoke the appro-
priate response determined by the ComputingComponent.

� Each sensor and actuator should have a function imple-
mented to check its own operation state.

� Each sensor and actuator should be able to test the validity
of the values received or sent and set its operation state if the
values are outside of the specifications.

Applicability:
Actuator-Sensor pattern is applicable

� in all embedded systems, especially when many actuators
and sensors are present.

Structure:
A UML class diagram for the Actuator-Sensor Pattern can be

found in Figure 2. Actuator, PassiveSensor and ActiveSensor
are abstract classes and denoted in italics. There are four different
types of sensors and actuators in this pattern. The boolean, integer
and real classes represent the most common types of sensors and
actuators. The complex classes are sensors or actuators that use
values that cannot be easily represented in terms of primitive data
types, such as a radar device. Nonetheless, these devices should

PassiveSensor
Computing
Component

Actuator

PassiveBoolean
Sensor

1

ActiveSensorPassiveComplex
Sensor

PassiveReal
Sensor

PassiveInteger
Sensor

Boolean
Actuator

Complex
Actuator

Real
Actuator

Integer
Actuator

ActiveBoolean
Sensor

ActiveComplex
Sensor

ActiveReal
Sensor

ActiveInteger
Sensor

1

1

0..* 0..*

0..*

reads affects

sets

Figure 2. UML class diagram of the Actuator-Sensor Pattern

still inherit the interface from the abstract classes since they should
have basic functionalities such as querying the operation states.

Behavior:
Figure 3 shows a UML sequence diagram for an example of

the Actuator-Sensor Pattern in a climate control system. Here the
ComputingComponent queries a sensor (a passive temperature
sensor) and an actuator (one radiator valve) to check the opera-
tion state for diagnostic purposes before reading or setting a value.
The messages “Set Physical Value” and “Get Physical Value” are
not messages between objects, instead, they describe the interac-
tion between the physical devices of the system and their software
counterparts. In the lower part of the diagram, below the horizon-
tal line, the TemperatureSensor reports that the operation state
is zero. The ComputingComponent then sends the error code for
a temperature sensor failure to the FaultHandler that will decide
how this error affects the system and what actions are required.

Participants:
� PassiveSensor

�
abstract � : Defines an interface for passive

sensors.
� PassiveBooleanSensor: Defines passive boolean sensors.
� PassiveIntegerSensor: Defines passive integer sensors.
� PassiveRealSensor: Defines passive real sensors.
� ActiveSensor

�
abstract � : Defines an interface for active

sensors.
� ActiveBooleanSensor: Defines active boolean sensors.
� ActiveIntegerSensor: Defines active integer sensors.
� ActiveRealSensor: Defines active real sensors.
� Actuator

�
abstract � : Defines an interface for actuators.

� BooleanActuator: Defines boolean actuators.
� IntegerActuator: Defines integer actuators.

� RealActuator: Defines real actuators.
� ComputingComponent: The central part of the controller;

it gets the data from the sensors and computes the required
response for the actuators.

� ActiveComplexSensor: Complex active sensors have the
basic functionality of the abstract ActiveSensor class, but
additional, more elaborate, methods and attributes, need to
be specified.

� PassiveComplexSensor: Complex passive sensors have the
basic functionality of the abstract PassiveSensor class, but
additional, more elaborate, methods and attributes need to be
specified.

� ComplexActuator: Complex actuators also have the base
functionality of the abstract Actuator class, but additional,
more elaborate methods and attributes need to be specified.

Collaborations:
� When the ComputingComponent needs to update the value

of a PassiveSensor, it queries the sensors, requesting the
value by sending the appropriate message.

� ActiveSensors are not queried. They initiate the transmis-
sion of sensor values to the computing unit, using the ap-
propriate method to set the value in the ComputingCompo-
nent. They send a life tick at least once during a specified
time frame in order to update their timestamps with the sys-
tem clock’s time.

� When the ComputingComponent needs to set the value of
an actuator, it sends the value to the actuator.

� The ComputingComponentcan query and set the operation
state of the sensors and actuators using the appropriate meth-
ods. If an operation state is found to be zero then the error
is sent to the FaultHandler who is responsible for handling

Computing Component Radiator Valve ActuatorTemperature Sensor

Get Operation State

Get Value

Get Operation State

Set Value

Fault Handler

Get Operation State

Store Error

{TemperatureSensor.OperationState
= 1}

{TemperatureSensor.OperationState
= 0}

Sensor Input Device
Temperature Sensor

Actuator Output Device
Radiator Valve

Get Physical Value

Set Physical Value

Figure 3. UML sequence diagram example of the Actuator-Sensor Pattern

error messages, such as starting a more elaborate recovery
mechanism or a backup device. If no recovery is possible,
then the system can only use the last known value for the
sensor or the default value.

� The ActiveSensors offer methods to add or remove the ad-
dresses or address ranges of the components that want to re-
ceive the messages in case of a value change.

Consequences:
1. Sensor and actuator classes have a common interface.

2. Class attributes can only be accessed through messages and
the class decides whether or not to accept the message. For
example, if a value of an actuator is set above a maximum
value, then the actuator class may not accept the message, or
it might use a default maximum value.

3. The complexity of the system is potentially reduced because
of the uniformity of interfaces for actuators and sensors.

Design Patterns:
� Factory Method Design Pattern [6]: This pattern and re-

lated ones can be used to handle the object creation of the
actuators and sensors.

� Observer Design Pattern [6]: Use this pattern for active sen-
sors to notify dependents if the sensor values change.

� Feature Coordination Design Patterns [4]: These patterns
describe different strategies to handle message sequences.

Also Known As:
To be determined.

Related Requirements Patterns:
� Controller Decompose Pattern: The Actuator, Sensor and

ComputingComponent relation can also be found in this
pattern and it refers to the Actuator-Sensor Pattern in its
specification.

� Channel Pattern: This pattern shows several ways to in-
crease safety by using different strategies to add sensors and
actuators to a system.

� Monitor-Actuator Pattern: The Monitor-Actuator Pattern
shows how to use redundant sensors to add a monitor chan-
nel.

Fault Handler: Behavioral Pattern

Intent:
How to integrate a fault handler into an embedded system.

Motivation:
Fault handling is essential for embedded systems. Embedded

systems frequently need to determine what responses are neces-
sary to recover from errors. Consider a flight control system in
an airplane, where the system should never shut down completely
in response to an error. The system has to decide if the error is
sufficiently severe to perform a partial shutdown and offer basic
functionality, or if the error is not a threat and logging the error
is sufficient. This fault handler must offer the possibility for other
devices to read the error log. But it should also have access to
the user interface to signal to the user that errors have occurred.
An important function of the fault handler is to send the system
into different states depending on the severity of the error. These
mechanisms have to be implemented in the computing unit, for
example, the operation for performing an emergency stop. If an
error is reported to the fault handler justifying this action, then it
will send this message to the ComputingComponent.

Therefore this fault handler acts as a centralized coordinator
for safety monitoring and hence control of system recovery. The
following inputs are usually captured [3]:

� Timeout message by the Watchdog or Examiner Pattern.
� Assertions of software errors.
� Built-in-tests (BITs) that run on a periodic or continuous ba-

sis.

� Faults identified by monitors, such as that described for the
Monitor-Actuator Pattern.

The centralized safety control facilitates the verification and
validation of the safety measures and eases the reuse of the fault
handler in different systems.

Due to space constraints the problem frame diagram is not in-
cluded [13].

Constraints:

� The fault handler should be hardware implemented if there
are performance constraints and it is not likely to change.

� The fault handler should be protected against against corrup-
tion in environments where intensive interference occurs, for
example radiation.

� Every possible error message should be classified and, de-
pending on the error severity, safety actions should be de-
fined for each error.

� A user interface should be present to signal errors.
� Hardware and software used in this pattern should have

proven its reliability in the past; new technology has to be
applied very carefully.

Applicability:
Fault Handler Pattern is applicable

� in any embedded system that does not have the need for dis-
tributed fault handling.

Structure:
The UML class diagram of the Fault Handler Pattern can be

seen in Figure 4. The FaultHandler sends messages to the User-
Interface to activate warning levels and sends the Computing-
Component into different safety states. For every safety state
defined in the requirements, an operation in the ComputingCom-
ponent is needed. The safety states are listed in the Behavior
Section.

The FaultHandler also receives error messages from watch-
dogs and monitors, and decides if recovery devices should be ac-
tivated or what other actions are required. The Device is rep-
resentative for all possible devices in the system. These devices
send error messages to the FaultHandler. These devices can be
monitored by watchdogs and/or monitors. They also report error
messages to the fault handler. Depending on the safety measures
and policies, the fault handler decides what to do, for example,
activating the FailSafeDevice.

Behavior:
Figure 5 shows the state diagram of the ComputingCompo-

nent of the Fault Handler Pattern. The state diagram shows which
states are possible and what messages activate them. Not all of
the states are needed in every system, for example ABS systems
generally do not have a partial shutdown state because the sys-
tem constraints usually require that an inactive system should not
affect the functioning of the brakes, although there is no longer
skid prevention. Therefore, in this case, an emergency stop state
where the ABS system shuts off power immediately is sufficient.
These states have to be defined in the ComputingComponent.
The FaultHandler decides, when an error occurs, which state is

ComputingComponent FaultHandler UserInterface

Watchdog Device FailSafeDevice

Monitor

communicate

1

1
activates

1

1

se
n

d
s

er
ro

s
to acivatesreports

monitors

m
o

n
it

o
rs

rep
o

rts

1

1

1
1

1

1

0..*

0..*

0..*

0..*1

1

0..* 0..*

backs up

Figure 4. Fault Handler Pattern

appropriate and sends to the ComputingComponent the appro-
priate message to activate the corresponding state. It also activates
the user interface to notify the user of the system if needed. The
definitions for the states are as follows [3]:

� Normal Behavior: This state captures the system when no
errors have occurred and it is working normally.

� Manual/External: In this state, the system is not controlled
by a central component but from the outside, either from the
user or another system, such as a diagnostic device.

� Emergency Stop: Here the system turns off power immedi-
ately, regardless of the current condition. This state is simple,
but it is shown in the state diagram to illustrate the differ-
ences between the three types of stop states.

� Production Stop: This state is useful, for example, when a
human enters a hazardous area. The system should be able
to complete its current task and secure the environment, but
it should shutdown as soon as possible.

� Protection Stop: Ceases operation immediately, but does
not turn off power. This state is useful, for example, when a
machine needs to be stopped, but a cooling aggregate should
continue to operate to avoid overheating.

� Partial Shutdown: The system only offers basic functional-
ity; for example, medical devices may remain in a monitor-
ing state.

� Hold: No functionality is provided in this state, but safety
actions are taken; for example, a rocket self-destructs in the
case of abnormal functions.

� Reset: In this state the system initializes itself.
� Power Off: In this state, the system might be connected to a

power supply, but is not yet activated. For example, a televi-
sion set can operate in standby mode.

Participants:

� FaultHandler: Stores errors and decides which recovery ac-
tions are necessary. Contains safety measures and policies.

� ComputingComponent: Component controlling the sys-
tem.

Fault_Handler_Computing_Component_States.dom

Reset

Partial Shutdown Hold

Manual/External Control

Normal Behavior

Emergency Stop

Production Stop

do/complete current task

Protection Stop

Power Off

[]/PowerOff()

[]/PowerOff()

ShutdownPtS()[]/

Manual()[]/

Error()[]/

Automatic()[]/

Reset()[]/

Reset()[]/

[Initialization OK]/Automatic()

PowerOn()[]/

Hold()[]/

PowerOff()[]/

PowerOff()[]/

PowerOff()[]/

Reset()[]/

ShutdownPdS()[]/

ShutdownES()[]/

[Initialization failed]/PowerOff()

ShutdownES[]/

ShutdownPdS[]/

ShutdownPtS[]/

Figure 5. UML State Diagram of the ComputingComponent in the Fault Handler Pattern

� UserInterface: Class offering functionality to notify user
about errors.

� Device: Device monitored by watchdog(s) and/or moni-
tor(s).

� Watchdog: Watchdog monitoring the device.
� Monitor: Monitor monitoring device actuation.
� FailSafeDevice: Device activated in case of failure of the

main device.

Collaborations:

� The FaultHandler receives all error messages and stores
them in an error list.

� It also decides, depending on the safety measures and poli-
cies, if a fail-safe state should be entered, or whether the user
interface or recovery device should be activated.

� Watchdog and Monitor monitor the device.
� FailSafeChannel is activated to recover from faults.

Consequences:

1. Required safety states should be implemented in the compo-
nent.

2. Only one fault handler should exist in the system and should
handle all error messages to avoid inconsistent handling of
faults [3].

3. The fault handler becomes one of the most crucial parts in
the system concerning safety issues, so the development and
the testing should be thorough.

4. Hardware and software redundancies exist in the system,
thus meaning higher system costs.

5. Overall safety of the system is usually significantly im-
proved.

Design Patterns:

� Singleton Design Pattern [6]: Use this pattern to assure
only one fault handler exists in the system.

Also Known As:
To be determined.

Related Requirements Patterns:

� Controller Decompose Pattern: This requirements pattern
defines the need for a fault handler in an embedded system.

� User Interface Pattern: This pattern can be used for the user
interface described in the Fault Handler pattern.

4. Validation

This section briefly overviews how the patterns have
been applied to two systems from the automotive domain,
and it describes how these patterns affected the structure and
the behavior of the systems. The first system is an Adaptive
Cruise Control System [10]. In this system, radar was added
to a standard cruise control system to provide automated
support for collision avoidance when encountering slower
targets. The class diagram of the system is shown in Figure

6. The second system is an Electronically Controlled Steer-
ing System that uses the current car speed, in an embedded
system to continuously compute the amount of torque as-
sistance needed from an electrical motor as the driver turns
the steering wheel. The class diagram of the system can
be found in Figure 7. The problem description, constraints,
documents, and prototypes for both systems may be found
elsewhere [21].

The two class diagrams look uniform in their structure,
although the systems have completely different functional-
ities. The bold ComputingComponent in the diagrams
is an essential part in both systems shown. The abstract
classes PassiveSensor and Actuator, denoted by a dashed
outline, can also be found in both systems. These classes
come from the Actuator-Sensor Pattern that was applied to
both systems. All sensors and actuators of the system in-
herit their interfaces from the classes in this pattern, which
is illustrated by the dashed inheritance relationships.

The next pattern that can be found in both systems is
the Fault Handler Pattern. The FaultHandler class, which
is denoted by a dashed-dotted outline, is the central class
responsible for fault handling in both systems. It receives
error messages from the whole system and sends the Com-
putingComponent into the fail-safe states and activates the
UserInterface if needed, which can be seen by the dash-
dotted associations to both classes.

For the Fault Handler Pattern, both systems are ana-
lyzed for which fail-safe states are needed. For the Adaptive
Cruise Control System, the Emergency Stop state is ap-
propriate because the system shutdown does not affect the
ability to operate the car safely. In the Electronically Con-
trolled Steering System, a Production Stop state is used
instead of an Emergency Stop state because the system
should ramp down the steering assistance for two seconds
and then perform a shutdown, otherwise the driver of the
car could be so surprised by the sudden lack of assistance at
the steering wheel that an accident could result. The result-
ing ComputingComponent state diagram for the Adaptive
Cruise Control System is given in Figure 8, where the state
diagram for the Electronically Controlled Steering System
is exactly the same, except that instead of an Emergency
Stop state, a Production Stop activity state is used with a
rampdown activity.

Several other patterns have been applied to the sys-
tems, for example the User Interface Pattern. And the En-
gineControlModule in the Adaptive Cruise Control Sys-
tem is implemented using the Moderator Pattern, but due
to space constraints, we are not able to include the descrip-
tions here [12]. Using these patterns greatly facilitated the
modeling of these systems, especially because many parts
of the first system could be reused in the second one. Also,
the patterns enable the developer to consider elements of the
system early in the modeling process that otherwise would

ACC_CC_States.dom

Computing Component

Emergency Stop Power Off

ResetNormal Behavior

PowerOn()[]/ShutdownES()[]/

[]/PowerOff

[Initialization OK]/Automatic()

[Initialization failed]/PowerOff()

Figure 8. ComputingComponent for Adaptive
Cruise Control

have been overlooked; for example, should a particular sen-
sor be active or passive or how should the user interface
be constructed. Upon visual inspection, it is clear that the
class and state diagrams of the systems have a more uni-
form structure; and once a system is understood it is easier
to develop future systems.

5. Conclusions

While this paper describes the early stages of our work
into identifying requirements patterns for embedded sys-
tems, we have found these patterns to be useful in facili-
tating the requirements engineering process. We have made
three general observations. First, due to the limited num-
ber of classes typically used in embedded systems, even
having a small number of frequently used requirements pat-
terns can greatly assist novices in the specification of fairly
complete embedded systems. For example, most, if not all,
embedded systems will use the Actuator-Sensor pattern [2].
There are other patterns to be specified that will likely be
used by most embedded systems, such as those relating to
timing. Second, the requirements patterns facilitate reuse
at the design and code levels. For example, if a developer
must have fault handling capabilities within a system, the
Fault Handler pattern is useful for indicating the basic com-
ponents of a fault handler. Each specific fault handler im-
plementation will have different constraints on the actual
implementation that will provide variations in functional-
ity and costs. All of these implementations indexed by their
functionality and costs can be associated with these require-
ments pattern for future use. Third, using requirements pat-
terns enable a more uniform construction of system speci-
fications, thus facilitating their understanding and mainte-
nance.

AdaptiveCruiseControl

Watchdog

PassiveSensor

Computing
Component

UserInterface ActuatorFaultHandler

IndicatorControl

IntervalAdjust

ComplexRadar

EngineControl
Module

Concrete
Indicators

(*)

BrakeActuator

1

1

1

1

1

1

1
1 1

1
1

1

1

1

1

0..*

1

0..*

1 1

sends errors to

11

monitors

11

1

1

1 1

controls reads

collaborate

activates
11

collaborate

controls

11 1

1

se
nd

s
ta

rg
et

 in
te

rr
up

ts

1

1

* Not all indicators
shown due to space

constraints

fault handling

11

Figure 6. UML Class Diagram of the Adaptive Cruise Control System

1

ElectronicSteeringSystem

Watchdog

PassiveSensor

Computing
Component

UserInterface ActuatorFaultHandler

Indicator

BatteryVoltage
Sensor

TorqueSensor

Communicaton
Module

TorqueSensor2

Malfunction
IndicatorLight

SerialStatusLink

1

1

1

1

1

1

1
1 1

1
1

1

1

1
1

0..*

fault handling

1 1

sends errors to

11

monitors

11

1

1

collaborate

activates 1

collaborate
controls

11 1

1

1

TorqueSensor1

SpeedSensor PID

DCMotor

11

1

reads errors

1 1

11

s e
ts

controls

controls/reads

Figure 7. UML Class Diagram of the Electronically Controlled Steering System

Future work includes applying these patterns to more ap-
plications as well as expanding the repository of require-
ments patterns. Also, we plan to integrate this work with our
research in formalizing UML diagrams [15] that will enable
us to analyze the requirements patterns for various proper-
ties such as consistency within and between diagrams, in-
troduce specification patterns into the template that will use
model checking to establish concurrent processing proper-
ties, and use simulation to validate the behavior component
of the requirements pattern specifications.

6 Acknowledgements

The authors are grateful to Erik Kamsties (University of Es-
sen) and Laura Campbell and other members of the Software Engi-
neering and Network Systems Laboratory at Michigan State Uni-
versity for helpful comments on this work. We also appreciate
Tony Torre’s (formerly at Siemens Automotive and now at Detroit
Diesel Corp.) contributions of the automotive applications and an-
swering our numerous questions.

This work is supported in part by NSF grants EIA-0000433,
CDA-9700732, CDA-9617310, CCR-9633391, CCR-9901017,
Department of the Navy, and Office of Naval Research under Grant
No. N00014-01-1-0744. The first author completed a portion of
this work while studying under an International Exchange Pro-
gram through the University of Kaiserslautern.

References

[1] M. Adams, J. Coplien, R. Gamoke, R. Han-
mer, F. Keeve, and K. Nicodemus. Fault-
tolerant telecommunication system patterns, 1995.
http://www.bell-labs.com/user/cope/
Patterns/PLoP95_telecom.html.

[2] B. H. Cheng and W. McUmber.
CSE 470: Software Engineering, Fall 2001.
http://www.cse.msu.edu/˜cse470/F01/.

[3] B. P. Douglass. Doing Hard Time: Developing Real-
Time Systems with UML, Objects, Frameworks and Patterns.
Addison-Wesley, 1999.

[4] EventHelix.com. Realtime mantra, 2001.
http://www.eventhelix.com/RealtimeMantra.

[5] M. Fowler. Analysis Patterns: Reusable Object Models.
Addison-Wesley, 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[7] A. Geyer-Schulz and M. Hahsler. Software engineering
with analysis patterns, 2001. http://wwwai.wu-
wien.ac.at/˜hahsler/research/
virlib_working2001/virlib/.

[8] D. Gross and E. S. K. Yu. From non-functional require-
ments to design through patterns. Requirements Engineer-
ing, 6(1):18–36, 2001.

[9] M. Jackson. Problem Frames: Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[10] W. D. Jones. Keeping cars from crashing. IEEE Spectrum,
September 2001.

[11] W. Keller. Object/relational access layers - a roadmap, miss-
ing links and more patterns.

[12] S. Konrad. Identification, classification, and application of
requirements patterns. Technical Report MSU-CSE-02-6,
Computer Science and Engineering, Michigan State Univer-
sity, East Lansing, Michigan, February 2002.

[13] S. Konrad and B. H. Cheng. Requirements patterns for em-
bedded systems. Technical Report MSU-CSE-02-4, Com-
puter Science and Engineering, Michigan State University,
East Lansing, Michigan, February 2002.

[14] D. Lea. Design patterns for avionics control systems. Tech-
nical Report ADAGE-OSW-94-01, 1994.

[15] W. E. McUmber and B. H. C. Cheng. A general framework
for formalizing UML with formal languages. In Proceedings
of IEEE International Conference on Software Engineering
(ICSE01), Toronto, Canada, May 2001.

[16] S. Robertson. Requirements patterns via events/use cases,
1996.

[17] K. Ryan. The role of natural language in requirements en-
gineering. Proceedings of the IEEE Int. Symposium on RE,
San Diego California, pages 80–82, 1993.

[18] M. Shaw. Some patterns for software architectures. Pattern
Languages of Program Design 2 (J.Vlissides, J. Coplien,
and N. Kerth eds.), pages 255–269, 1996.

[19] A. R. Silva. Dasco project - development of dis-
tributed applications with separation of concerns, 2000.
http://www.esw.inesc.pt/˜ars/dasco/.

[20] A. G. Sutcliffe, N. A. Maiden, S. Minocha, and D. Manuel.
Supporting scenario-based requirements engineering. Soft-
ware Engineering, 24(12):1072–1088, 1998.

[21] A. Torre. Project specifications for adaptive cruise control
system and electronically controlled steering system, 2000.
http://www.cse.msu.edu/˜cse470/F01/Projects/.

