

 University of Groningen

Requirements Reasoning for Distributed Requirements Analysis using Semantic Wiki
Liang, Peng; Avgeriou, Paris; Clerc, Viktor

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Liang, P., Avgeriou, P., & Clerc, V. (2009). Requirements Reasoning for Distributed Requirements Analysis
using Semantic Wiki. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 23-08-2022

https://research.rug.nl/en/publications/7129b403-ad22-4052-8b70-c7fdfcdd0d0e

Requirements Reasoning for Distributed Requirements Analysis using Semantic
Wiki

Peng Liang and Paris Avgeriou
Department of Mathematics

and Computing Science
University of Groningen, The Netherlands

{liangp,paris}@cs.rug.nl

Viktor Clerc
Department of Computer Science

VU University Amsterdam
The Netherlands
viktor@cs.vu.nl

Abstract

In large-scale collaborative software projects, thousands
of requirements with complex interdependencies and dif-
ferent granularity spreading in different levels are elicited,
documented, and evolved during the project lifecycle. Non-
technical stakeholders involved in requirements engineer-
ing activities rarely apply formal techniques; therefore it
is infeasible to automatically detect problems in require-
ments. This situation becomes even worse in a distributed
context when all sites are responsible to maintain their own
requirements list using various requirements models and
management tools, and the detection of requirements prob-
lems across multiple sites is error-prone, and unaffordable
if performed manually. This paper proposes an integrated
approach of basing distributed requirements analysis on se-
mantic wiki by requirements reasoning. First, the functions
concerning reasoning support provided by semantic wiki for
requirements analysis are proposed. Second, the underlying
requirements rationale model for requirements reasoning is
presented with sample reasoning rules. Third, our rationale
model is mapped to the WinWin requirements negotiation
model which further adds to its credibility.

1 Introduction

Markets globalization has dramatically impacted soft-
ware development. More projects are run in geographi-
cally distributed environments, and Global Software De-
velopment (GSD) is becoming a norm in the software in-
dustry. This trend makes a great impact in the Require-
ments Engineering (RE) and the RE practice has been a
key challenge in GSD [9]. In collocated software devel-
opment, synchronous (e.g. face-to-face) communication is
the most important way for requirements elicitation, while
in a distributed context, to overcome the time zone differ-

ence and distance barrier, asynchronous (e.g. text-based)
communication is most frequently employed. Experimental
research indicates that requirement communication (e.g. ne-
gotiations) is more effective when stakeholders conduct
asynchronous discussions prior to the synchronous commu-
nication in a distributed RE context [5].

Wiki, as a lightweight documentation and distributed
collaboration platform, has demonstrated its capability in
distributed requirements elicitation [7] and documentation
[27]. Wiki mainly addresses two challenges in distributed
RE: end users’ participation and collaboration, by providing
well-suited functions for requirements documentation, and
communication with versioning support. One of the chal-
lenges in the RE field is the integration of RE activities [4],
which logically demands the integration of RE tools (func-
tionalities) in an integrated platform supporting the whole
RE process. Wiki, as a distributed requirements documen-
tation platform, is insufficient to perform automatic require-
ments analysis (understand the requirements, detect their
overlaps and conflicts [28]) without decent semantic sup-
port. The other drawback of wikis is that they document
requirements in free-text or templates (e.g. use case descrip-
tion) which cannot ensure the correct understanding of re-
quirements due to the diversity of stakeholders’ background
(e.g. understanding the use cases) and interests, and the cul-
tural and cognitive differences in a distributed context. The
poorly understood requirements result in time-consuming
debates, unwanted work, and finally extended lead times
and costs.

Semantic wiki, as a semantic extension on plain wiki,
fairly addresses above issues by providing semantic sup-
port (e.g. semantic annotation and query) [25] and has been
employed in software engineering activities, such as ar-
chitecture design [10], software reuse [26] and RE activ-
ities as well. Most of existing semantic wikis focus on
the requirements formalization1 in order to promote the

1The “formalization” of requirements in this paper refer to the explicit

2009 Fourth IEEE International Conference on Global Software Engineering

978-0-7695-3710-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICGSE.2009.61

388

semantic-enabled requirements understanding and commu-
nication among stakeholders. Little work has been done on
the reasoning support by the formal semantics which is fun-
damental for the automatic distributed requirements anal-
ysis, since requirements analysis by human effort is error-
prone and in some cases unaffordable [8]. In this position
paper, we propose the envisioned support (use cases) by rea-
soning in semantic wiki for requirements analysis with an
underlying Requirements Rationale Model. We anticipate
that this work can contribute to the reasoning applications
of semantic wiki in the RE field.

The rest of this paper is organized as follows. In section
2, related work on using semantic wiki in RE, the reasoning
support and rationale models in RE is reviewed and dis-
cussed. The problem to be addressed in this paper is further
discussed in section 3. The use cases concerning reasoning
support for requirements analysis are proposed in section 4,
and the concept model of requirements rationale that sup-
port requirements reasoning are presented in section 5. In
section 6, a proof of concept is provided to demonstrate the
applicability of the proposed requirements rationale model.
The paper concludes with next steps in section 7.

2 Related Work

Many practitioners and researchers already found that
semantic wiki technology can be beneficial in distributed
RE, and methods and tools have been proposed and de-
veloped with various focus. The SoftWiki project aims to
provide an agile methodology for requirements elicitation
and management in distributed software development [18].
SoftWiki focuses on semantic annotation and sharing of re-
quirements artifacts using the underlying conceptual model
- SoftWiki Ontology. The shortage of SoftWiki is that the
underlying model cannot be changed, and it does not pro-
vide requirements reasoning support. The RISE (Reuse
in Software Engineering) project develops the SOP-Wiki
(Software Organization Platform) to manage requirements
elicitation and documentation by distributed stakeholders
[7]. SOP-Wiki employs the document ontology based on a
use case approach, applies the semantic annotation to wiki
pages (e.g. annotate a wiki page as a User Story or Actor),
and defines typed links between wiki pages (e.g. Actor is
PartOf User Story). SOP-Wiki offers a case-based rea-
soning support for the retrieval of similar documents (re-
quirements), but it does not allow users to add semantics to
requirement artifacts within a wiki page, which makes it in-
capable to perform automatic requirements analysis. López
et al. propose the NDR (Non-functional requirements and
Design Rationale) ontology to assist the understanding, and
facilitate the sharing and reusing of NDR knowledge across

requirements representation codified using a conceptual model or ontology
of which the exact semantics are defined, e.g. in [30].

organizations [19]. Their work mainly targets the concep-
tual support to knowledge management without much atten-
tion to the reasoning support by formal ontology.

Requirements are essentially the knowledge collected
from all the stakeholders. Reasoning over formalized re-
quirements (knowledge) to support requirements analysis
is not new in formal RE methods. There has been a long
history of using formal representation to perform automatic
reasoning for requirements analysis [32][16]. The major
problem is that formal methods in RE are definitely helpful
but rarely employed in practice due to the added cost and
learning curve for non-technical stakeholders who are the
majority in the RE process. Semantic wiki, as a lightweight
knowledge management tool and methodology, may par-
tially address this problem by providing transparent reason-
ing support.

Design rationale was originally proposed in the context
of software design as means of presenting the “why” of a
design. Rationale in RE process, which is also a design
process in a broad sense [20], plays an important role in RE
as well [3]. In RE context, the rationale is about “why” a
particular requirement is selected out of the others or prior-
itized. Most of rationale models employed in RE process
are based on or original from IBIS (Issue-Based Informa-
tion System) [14]. For example, Ramesh et al. proposed
REMAP model, which includes the IBIS model, to record
the deliberations in RE process [23]. Rooksby et al. pro-
posed a hybrid approach to the upstream requirements ne-
gotiation by combining IBIS and cognitive mapping [24].
Thurimella et al. abstracted the rationale concepts (issue
and option) from IBIS, DRL [15] and QOC [21], and pro-
posed the issue-based variability modeling for the selection
of candidate requirements based on tradeoffs in software
product line [29]. The shortage of existing rationale models
(e.g. IBIS, DRL, QOC) is that they primarily focus on the
representation and documentation of deliberation and argu-
mentation process for rationale understanding and decision-
making without automatic reasoning support.

3 Problem Statement

According to the analysis of related work on semantic
wiki for RE activities, we focus on the reasoning support
which is not fairly addressed by existing semantic wikis.
The problem can be detailed as following:

Envisioned use cases of requirements analysis system:
What tasks of requirements analysis can be supported by re-
quirements reasoning? What functions should be provided
to support the reasoning itself, such as producing the for-
malized requirements?

Underlying conceptual model for requirements reason-
ing: What concepts should be included in the conceptual
model to support the reasoning functions, such as in [29].

389

The model should be extensible for accommodating new
concepts that may arise and change in distributed RE.

Shared understanding on requirements reasoning. Due
to the diversity caused by distribution, distributed teams
and stakeholders may have different understanding (mental
models) about the requirements reasoning, so how to recon-
cile their conflicting views?

Implementation of specific features on semantic wiki
for requirements reasoning. Although wikis are well suited
for collaborative tasks, and semantic wikis provide various
semantic support in certain degree. They are not originally
built to analyze and reason about requirements. How to
implement the reasoning support based on the existing (se-
mantic) wikis in order to save development cost and facili-
tate the use of existing wikis.

Cost and benefit of using formal representation for re-
quirements reasoning. Formal representation of require-
ments is beneficial and also a prerequisite for automatic re-
quirements analysis. Producing formalized requirements in
semantic wikis is not a trivial task, which contributes added
cost and has unclear perceived benefits [11]. It is a key is-
sue for practitioners to predict the cost and benefit before
applying this method.

In this paper, we target the first two issues (use cases
model and conceptual model). The remaining issues, which
are also important, will be further investigated as next steps.

4 The Use Case Model

Reasoning is the process of deriving conclusions from
formal representations and knowledge, which is in RE con-
text constituted by the formalized requirements of a seman-
tic wiki. The “conclusions” of reasoning can be of many
different types according to different reasoning context and
purposes. Krötzsch et al. identified four functions, with
which reasoning support could provide actual benefit to
wiki users [13]. The use cases (UCs) shown in Figure 1
comprise four refined functions for and of reasoning in se-
mantic wikis [13] (UC1˜UC4) for general RE activities, and
the specific use cases supported by reasoning for require-
ments analysis (UC4a˜UC4c). For example, UC3 (Query
Requirements) is a refined function of Querying the Knowl-
edge in [13]. The use cases descriptions are presented be-
low, and the term “requirements specifications” in the use
case description refers to the composition of the Require-
ments Knowledge Entity (RKE, discussed in section 5) for-
malized and stored in a semantic wiki.

UC1 Annotate Requirements: users can select a piece
of text in a wiki page, and annotate the selected text with
a concept (e.g. Motivator). The annotated text is called a
RKE, which can be subject to semantically querying and
reasoning.

UC2
Browse

Requirements

Requirements Analysis System of
Semantic Wiki

Requirements
Analyst

UC3
Query

Requirements

UC4a
Check

Consistency

UC4c
Check

Correctness

UC4b
Check

Completeness

UC1
Annotate

Requirements

UC4
Check

Requirements

Figure 1. The Use Cases for Requirements
Analysis concerning Reasoning.

UC2 Browse Requirements: users can browse the an-
notated requirements specifications in a semantically sound
way, showing related requirements, tradeoffs and stakehold-
ers, and filtering and grouping the requirements. For exam-
ple, requirements for radio telescope data processing system
has thousands of requirements with different relationships
to other requirements, and stakeholders and motivations.
Filtering, grouping and ordering requirements is needed to
display such semantic information (e.g. some requirements
is causedBy other requirements).

UC3 Query Requirements: users can query the RKEs
using semantic query language (e.g. SPARQL [22]) by ask-
ing complicated queries, for example, query all the Candi-
date RequirementscausedBy a Motivator and without any
conflictWith a Obstacle (see Requirements Rationale
Model in section 5).

UC4 Check Requirements: users can check the prob-
lems in requirements by reasoning over the annotated RKEs
using the constraints defined in Requirements Rationale
Model (i.e. if the requirements specification does indeed
adhere to the constraints). This use case can be further de-
tailed as three use cases (UC4a˜UC4c).

UC4a Check Consistency: users can check the incon-
sistencies in the requirements specifications by reasoning
over the annotated RKEs. In RE context, inconsistent re-
quirements are those requirements which conflict with other
requirements. An inconsistent requirement can be changed,
removed or tolerated for later consideration. For example,
the requirement R1 “the system should have multiple levels
of security check.” and R2 “the system should have easy
access.” are conflicting requirements with each other.

UC4b Check Completeness: users can check the in-
completeness in the requirements specifications by reason-

390

ing over the annotated RKEs. In RE context, incomplete
requirements are those requirements whose related and in-
dispensable elements are not addressed. An incomplete re-
quirement should be improved by adding related elements.
For example, if a requirement R1 does not have any stake-
holders who propose it, then this requirement is incomplete.

UC4c Check Correctness: users can check the incor-
rectness in the requirements specifications by reasoning
over the annotated RKEs. The correctness is normally de-
fined by and in line with certain formal semantics, e.g. re-
lationships in a conceptual model. In RE context, incorrect
requirements are those requirements which violate domain
assumptions. An incorrect requirement should be changed
or removed. For example, if there is a domain assump-
tion of the system that “the users are accustomed to work
with command interface.”, then any candidate requirements
about graphical user interface are incorrect requirements.

The sample reasoning rules for consistency, complete-
ness, and correctness checking (UC4a˜UC4c) are presented
in section 5 based on the Requirements Rationale Model.

5 Requirements Rationale Model

The general objective of requirements analysis is to un-
derstand the requirements, and detect their overlaps and
conflicts [28]. Requirements analysis can be regarded as
a high level design activity in problem space, which is com-
parable to the design activity in solution space (e.g. archi-
tecture design), performed by a requirements analyst, who
needs to “design” the requirements by making tradeoff and
compromise. A prerequisite of this activity is to understand
the rationale underneath the requirements (i.e., why partic-
ular requirement is selected out of the others or prioritized,
what is the business and technical motivations for achieving
them). The rationale contains the arguments for and against
each alternative requirement, including the functional (FR)
and non-functional requirement (NFR) [3]. When this in-
formation is captured in the rationale for a requirement, it
provides reasoning facilities for detecting the conflicts be-
tween requirements (between two FRs, two NFRs or FR and
NFR) on the software system.

The Requirements Rationale Model (RRM) is heavily
based on our previous work in Griffin project [1] on the ra-
tionale model for architecture design [30], which is similar
to DRL [15] with added reasoning semantics. The initial
result of RRM, i.e. the derived concepts and their relation-
ships are presented in UML as shown in Figure 2, which is
comprised of the following concepts:

Stakeholder: anyone who has direct or indirect inter-
est to the system. Stakeholders, who can propose or
objectTo any Candidate Requirement, are the original
source of requirements.

Candidate Requirement: is any requirement proposed

Candidate
Requirement

cause
cause / conflict

conflict cause / conflict

RKE
Alternative

Requirement
Chosen

Requirement

Domain
Assumption

Stakeholder
Motivator

Obstacle

propose / object to

Figure 2. Requirements Rationale Model for
Requirements Reasoning.

by Stakeholder, and it is also a generalized requirement of
Chosen Requirement and Alternative Requirement. It re-
lates with other requirements rationale elements and itself
by conflictWith and causedBy relationships.

Chosen Requirement: for a Motivator or Obstacle,
there are sometimes multiple Alternative Requirements are
suitable, but only one of them is chosen (or some of them
are prioritized) to address the described motivator or ob-
stacle. The Chosen Requirement is the requirement being
selected or prioritized. It is a subclass of Candidate Re-
quirement.

Alternative Requirement: to address the Motivator or
Obstacle, besides the Chosen Requirement, one or more po-
tential Alternative Requirements can partially address the
motivator or obstacle. These Alternative Requirements will
be reconsidered when the system context changes. It is also
a subclass of Candidate Requirement.

Motivator: is an incentive to a Candidate Require-
ment, and it has positive impact for a requirement to be se-
lected or prioritized. Motivation of Chosen Requirement is
subClass of Motivator.

Obstacle: is a disincentive to a Candidate Requirement,
and it has negative impact for a requirement to be selected
or prioritized.

Domain Assumption: is a kind of requirement state-
ment in the “indicative” mood describing the environment
as it is in the absence of the machine or regardless of the
actions of the machine; these statements are also called Do-
main Knowledge.

RKE: since all annotated text is a kind of RKE produced
by UC1, the above concepts are all subclasses of the RKE
concept.

It is worthy to discuss the simplicity of this rationale
model which excludes the rationale concept (the reason why
a requirement is selected or prioritized) deliberately, e.g.
TradeOff, Argument or Rationale. Our argument is that
the objective of this model is to support the automatic rea-
soning for requirements checking. The rationale concept

391

Table 1. Sample Reasoning Rules for the Im-
plementation of Use Cases based on RRM

Rule Description UC
RR1 If a Candidate Requirement R1 is causedBy a Motivator T,

which is also an Obstacle conflictWith Candidate Require-
ment R2, then R1 and R2 conflictWith each other.

UC4a

RR2 Two Chosen Requirements can not conflictWith each other. UC4a
RR3 Deducted from RR1 and the subClass relationship between

Chosen Requirements and Candidate Requirements. If the Mo-
tivator and Obstacle of two Chosen Requirements are the same
RKE, then these two Chosen RequirementsconflictWith each
other.

UC4a

RR4 Each Chosen Requirement should be causedBy at least one Mo-
tivator.

UC4b

RR5 Each Candidate Requirement should be proposedBy at least
one Stakeholder.

UC4b

RR6 Any Candidate Requirement can not conflictWith any Do-
main Assumptions.

UC4c

RR7 Deducted from RR6 and the subClass relationship between
Chosen Requirements and Candidate Requirements, any Chosen
Requirement can not conflictWith any Domain Assumptions.

UC4c

is well suited to record the reason description for human
understanding, but not suitable for machine processing. It
is also a wise solution to extend the RRM model with ra-
tionale concepts for documenting the rationale knowledge,
and provide reliable information for requirements analyst to
change and evolve the system requirements.

Sample reasoning rules based on the RRM model are
presented in Table 1 described in natural language for easy
understanding. All these rules can be formally expressed
by description logic, which is the logic foundation of OWL
[6]. Both of them provide the formal representation mech-
anism underlying most of semantic wikis [25]. As men-
tioned above, the RRM is not fixed, but can be extended and
evolved according to concrete applications, which is natural
in a distributed RE context when distributed teams or stake-
holders employ various requirements models. For example,
Goal concept in [31] can be extended as a subClass of
Motivator concept, and Risk concept as a subClass of
Obstacle concept. For the tool supporting the changeabil-
ity and evolvability of RRM model, we have implemented
a tool suite for architectural knowledge management using
different underlying models [17]. This provides the techni-
cal foundation for the tool implementation in RE context.

6. From RRM to WinWin Model

To demonstrate the applicability of RRM model, we
map this model into the WinWin requirements negotiation
model, which is used for capturing requirements rationale
knowledge during requirements negotiation, and has been
successfully used in more than 100 real-world projects in
various domains [2]. The WinWin negotiation model has
four main conceptual artifacts, and the detailed mapping is
described and discussed below:

Win Condition: capturing the desired objectives and
constraints of the stakeholder . This concept can be directly
mapped to the Candidate Requirement and its related Moti-
vator (objectives) and Obstacles (constraints).

Issue: capturing the conflict between win conditions and
their associated risks. This concept can be represented by
the conflicting Candidate Requirements (Win Conditions)
and the conflictWith relationship between them. The
associated risks can be represented as a subClass of Ob-
stacle associated with Candidate Requirements.

Option: capturing a decision choice for resolving an is-
sue. This concept represents the selected requirement which
satisfies two conflicting Win Conditions, and can be per-
fectly mapped to the Chosen Requirement.

Agreement: capturing the agreed upon set of win condi-
tions which satisfy stakeholder win conditions and/or cap-
turing the agreed options for resolving issues. This is es-
sentially a set of Chosen Requirements which constitute the
agreement for WinWin conditions and agreed requirements
for the design phase.

7. Conclusions and Next Steps

In this paper, we present our initial ideas and proposi-
tions about using semantic wiki for automatic distributed
requirements analysis by requirements reasoning. Based on
the analysis of existing work of using semantic wiki in RE
field, we noticed that the reasoning support has not been
fully explored. The major contributions of this paper are the
following: (1) a use case model about what basic function-
ality semantic wikis should provide for requirements anal-
ysis in a RE perspective; and (2) an initial rationale model
(RRM) to support the requirements reasoning.

We outline our next steps and research agenda in the fol-
lowing points: (1) implement the proposed semantic wiki
for requirements reasoning based on the features survey of
existing semantic wikis and wikis for RE activities; (2) per-
form the verification & validation of the semantic wiki ap-
proach for requirements analysis in controlled experiments
(especially compared with the traditional RE tools, e.g.
DOORS); (3) perform tradeoff analysis between cost and
benefit of the proposed approach to understand its appli-
cability and efficiency as a lightweight approach (e.g. in
extreme programming); (4) extend and mature the RRM
model by introducing concepts that may arise in a dis-
tributed RE context (e.g. cognitive and cultural concepts,
speech act modality in communication, the partial satisfac-
tion of requirements, and context of motivation etc.); (5)
promote the requirements rationale understanding among
different organizations who employ diverse mental models
(e.g. [12]) by knowledge translation (e.g. conceptual model
mapping); (6) how to transform the tacit (personalized) RK
into formalized RK for reasoning is a challenging issue.

392

References

[1] GRIFFIN: a GRId For inFormatIoN about architectural
knowledge. http://griffin.cs.vu.nl/.

[2] B. Boehm and H. Kitapci. The WinWin Approach: Using
a Requirements Negotiation Tool for Rationale Capture and
Use. Rationale Management in Software Engineering, pages
173–190, 2006.

[3] J. Burge, J. Carroll, R. McCall, and I. Mistrik. Rationale
and Requirements Engineering. Rationale-Based Software
Engineering, pages 139–153, 2008.

[4] B. Cheng and J. Atlee. Research Directions in Requirements
Engineering. In Proceedings of the 29th International Con-
ference on Software Engineering (ICSE), pages 285–303,
2007.

[5] D. Damian, F. Lanubile, and T. Mallardo. On the Need
for Mixed Media in Distributed Requirements Negotiations.
IEEE Transactions on Software Engineering, 34(1):116–
132, 2008.

[6] M. Dean, G. Schreiber, S. Bechhofer, F. Van Harmelen,
J. Hendler, I. Horrocks, et al. OWL Web Ontology Lan-
guage Reference. W3C recommendation, 10, 2004.

[7] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki-
Based Stakeholder Participation in Requirements Engineer-
ing. IEEE Software, 24(2):28–35, 2007.

[8] S. Easterbrook and B. Nuseibeh. Managing Inconsistencies
in an Evolving Specification. In Proceedings of the 2nd
IEEE Symposium on Requirements Engineering (RE), pages
48–55, 1995.

[9] T. Gorschek, S. Fricker, R. Felt, C. Wohlin, and M. Matts-
son. 1st International Global Requirements Engineering
Workshop - GREW’07. ACM SIGSOFT Software Engineer-
ing Notes, 33(2):29–32, 2008.

[10] H. Happel and S. Seedorf. Ontobrowse: A Semantic Wiki
for Sharing Knowledge about Software Architectures. In
Proceedings of the 19th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE),
pages 506–512, 2007.

[11] M. Heindl and S. Biffl. Risk Management with Enhanced
Tracing of Requirements Rationale in Highly Distributed
Projects. In Proceedings of the 1st International Work-
shop on Global Software Development for the Practitioner
(GSD), pages 20–26. ACM New York, NY, USA, 2006.

[12] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the
Core Ontology and Problem in Requirements Engineering.
In Proceedings of the 16th IEEE International Requirements
Engineering Conference (RE), pages 71–80, 2008.

[13] M. Krötzsch, S. Schaffert, and D. Vrandečić. Reasoning in
Semantic Wikis. In Proceedings of the 3rd Reasoning Web
Summer School, pages 310–329, 2007.

[14] W. Kunz and H. Rittel. Issues as Elements of Information
Systems. Institute of Urban and Regional Development, Uni-
versity of California, 1970.

[15] J. Lee and K. Lai. What’s in Design Rationale? Human-
Computer Interaction, 6(3):251–280, 1991.

[16] E. Letier and A. van Lamsweerde. Reasoning about Partial
Goal Satisfaction for Requirements and Design Engineer-
ing. In Proceedings of the 12th International Symposium on
Foundations of Software Engineering (FSE), pages 53–62,
2004.

[17] P. Liang, A. Jansen, and P. Avgeriou. Knowledge
Architect: A Tool Suite for Capturing and Managing
Software Architecture Knowledge. Technical Report
RUG-SEARCH-09-L01, University of Groningen, 2009,
http://www.cs.rug.nl/˜liangp/download/liang2009kat.pdf.

[18] S. Lohmann, T. Riechert, and S. Auer. Collaborative Devel-
opment of Knowledge Bases in Distributed Requirements
Elicitation. In Proceedings of the Software Engineering
Workshops (SE), pages 22–28, 2008.

[19] C. López, L. M. Cysneiros, and H. Astudillo. NDR On-
tology: Sharing and Reusing NFR and Design Rationale
Knowledge. In Proceedings of the 1st International Work-
shop on Managing Requirements Knowledge (MaRK), pages
1–10, 2008.

[20] K. J. Lyytinen, P. Loucopoulos, J. Mylopoulos, and W. R.
(Eds.). Design Requirements Engineering: A Ten-Year Per-
spective. Springer, 2009.

[21] A. MacLean, R. Young, V. Bellotti, and T. Moran. Ques-
tions, Options, and Criteria: Elements of Design Space
Analysis. Human-Computer Interaction, 6(3):201–250,
1991.

[22] E. Prudhommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Working Draft, 20, 2006.

[23] B. Ramesh and V. Dhar. Supporting Systems Develop-
ment by Capturing Deliberations During Requirements En-
gineering. IEEE Transactions on Software Engineering,
18(6):498–510, 1992.

[24] J. Rooksby, I. Sommerville, and M. Pidd. A Hybrid Ap-
proach to Upstream Requirements: IBIS and Cognitive
Mapping. Rationale Management in Software Engineering,
pages 137–154, 2006.

[25] S. Schaffert, F. Bry, J. Baumeister, and M. Kiesel. Semantic
Wikis. IEEE Software, 25(4):8–11, 2008.

[26] S. Shiva and L. Shala. Using Semantic Wikis to Support
Software Reuse. Journal of Software, 3(4):1–8, 2008.

[27] C. Silveira, J. Faria, A. Aguiar, and R. Vidal. Wiki Based Re-
quirements Documentation of Generic Software Products.
In Proceedings of the 10th Australian Workshop on Require-
ments Engineering (AWRE), pages 42–51, 2005.

[28] I. Sommerville. Integrated Requirements Engineering: a Tu-
torial. IEEE Software, 22(1):16–23, 2005.

[29] A. Thurimella, B. Bruegge, and O. Creighton. Identify-
ing and Exploiting the Similarities between Rationale Man-
agement and Variability Management. In Proceedings of
the 12th International Software Product Line Conference
(SPLC), pages 99–108, 2008.

[30] J. van der Ven, A. Jansen, J. Nijhuis, and J. Bosch. De-
sign Decisions: The Bridge between Rationale and Archi-
tecture. In Rationale Management in Software Engineering,
A.H. Dutoit, et al., (Eds.), pages 329–346. Springer, 2006.

[31] A. van Lamsweerde. Goal-Oriented Requirements Engi-
neering: A Guided Tour. In Proceedings of the 5th IEEE In-
ternational Symposium on Requirements Engineering (RE),
pages 249–262, 2001.

[32] E. Yu. Towards Modelling and Reasoning Support for Early-
phase Requirements Engineering. In Proceedings of the 3rd
IEEE International Symposium on Requirements Engineer-
ing (RE), pages 226–235, 1997.

393

