
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Requirements Validation via Automated Natural Language Parsing

Sastry Nanduri and Spencer Rugaber

Georgia Institute of Technology

Abstract
object Oriented Analysis (OOA) has become a

popular method for analyzing system requirements.
Unformnately however, none of the current versions of
OOA have included a validation technique tailorad to
the object oriented approach. Most, instead, merely
recommend document reviews without specifying what
kinds of pro&xns to look for. This paper explores the
question by applying a natural language parser to a
requirements document, extracting candidate objects,
methods and associations, composing them into an
object model diagram, and then comparing the results to
those determined by manual OOA. To do this, we have
adapted an automated natural language parser and used
it to examine several high level specifications. The
results indicate that with a modest amount of effort, our
technique can give valuable feed-k to the analyst.

1 Introduction

1.1 Background
The first step in most object oriented design methods

is the construction of an object model. Many guidelines
exist for identifying the object classes, their
relationships, and their attributes from a problem
statement. Are these guidelines comprehensive enough
for automating the construction process? Probably not,
but can we instead use automatic analysis to generate a
version against which a manually generated model can
be validated? The best way to answer these questions is
by actually trying to implement a program for
generating au object diagram from a specification.

There are several papers which discuss the possibility
of automatic construction of the object model. Honiden
et al. [6] developed a standardii, formal OOA
specifications process as a precursor to automation. Seki
et al. [1 l] describe a process for deriving incrementally a
formal specification from an informal specification.
Abbot [l] details a method for generating program

design from informal English description. All these
pejm only give suggestions as to how to automate the
analysispocess.Wecould6ndnodeacr@oninthe
published literature of the actual implementation of an
object model constructor. The purpose of this paper is to
describe one such implementation.

1.2 Object oriented analysis
Traditional approaches, like Stnztured Analysis, focus

mainly on the functionality of a system. OOA, on the
other hand, focuses on the objects or static entities of the
system and the associations among them. A main reason
for its popularity is the fact that a system designed around
static entities is more robust and less affected by
subsequent changes in the requirements than one
organized functionally.

Booth [2] was the lirst to formalize the object oriented
approach. Now there are several popular object oriented
methods such as W A by Coad and Yourdon [4], Object
Oriented Design (OOD) by Roach [3] and Object
Modeling Technique (OMT) by Rumbaugh et al. [lo].
The methods have much in common. They all start with
the detection of objects in the system by textual analysis
of the specification document. After the objects are
identified, the system is understood in terms of their
attributes and the interactions among them. As originally
proposed, nouns in the specification document are good
iudicators of objects. Similarly, verbs and adjectives are
good signals for the associations and attributes of the
objects.

The method that we used for our project is OMT
because of its popularity and extensive.documentatn. Of
the three OMT models (object, dynamic, and functional),
we am only concerned with the object model as it is the
most conducive to textual analysis. The approach
recommended by Rumbaugh et al. for object modelling
has the following steps:

1. Identify objects and classes (nouns);

362
1060-3425/95$4.00@ 1996IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

2.kkxlcify 8ssoci8tions beweell ob~ts (verb
phrariies);

3.1&&y attributes of objects and associations
(lldjectives);

4. Identify operations (vmbs and adjectives);
5. Organic and simplify object classes using inherit-

afw%
6. Itorate and reline the model.

2 Approwb
The~hwetoolctoautanatingtheanalysis

~sisasfolbws.Wefirstc~~alistof~tlines
on object modelii from [lo]. We expressed the
guidelines in terms of the parsing rules far a publicly
available mutual hmguage parsec. We then applied these
guidelines to the parser output of several high level
specifications and analyzed the results. After refuting the
parsing rules, we mpeated the process for several other
specifications documents. Finally, we implemented a
program that used the re6ned guide~ms and a public
domaingm&drawingtooltodlsplaymobjectdiagram
for the specigcation analyzed.

More precisely, the steps we followed in building our
analyzer wem the following.

1. Wc gathered guidelines for creating an object model
and for identifying nouns, verbs etc. from the
OMT text

2. We used a publicly available natural language
parser to pme a specification document. We chose
a link grammar based parser because it was easily
ava&+ble, because it was able to parse a wide range
of English sentences, and because its dictionary
was easily extendible.

3. We wrote a rule based post-processor. These rules
ate nothing but the guidelines gathered in step 1
expaessexl in terms of the parser’s links.

4. We extended our tool to accumulated knowledge
between sentences. The parser we used parsed
each sentence of the input independently. So, for
the construction of an object model from a specifi-
cation document, we had to accumulate knowledge
gained f&n each of the sentences. As there is no
foolproof way of connecting the pronouns in a sen-
tence to the appropriate antecedent in the previous
sentence, we also had to apply some empirical
rules for doing this.

5. Finidly, we built and displ8yed the object model.
For displaying the object diagram gm@cally, we
used a publicly available graph drawing tool called
Edge [Sl. Edge is an easy to use, extmdible graph
editor. Graphs can be constructed eidrer inexac-
tively or by creating an input file cons&&g of a
listofnodasandedges.l%epsogramwe&vel-
opedforstcp3tookthelatcerconrtRandwrotethe
accumulated knowledge about the objects and
associationsintoaftleinalbfmatunderstandable
by Edge.

2.1 Natural language p-sing using link gram-

‘he parses we used was developed by Daniel D. Sleator
and Davy Temperley at Carnegie-Mellon University [121.
‘Thisparserisbasedonthetheoryoflink~mars.Alink
grammar consists of a set of words (the terminal symbols
of the grammar), each of which has one or more linking
requirements. A sequence of words is a sentence of the
language defined by the grammar if there exists a way to
assign links among the words so as to satisfy the following
three conditions:

1. Planarity: The links do not cross;
2. Connectivity: The links suffice to connect all the

words of the sequence together;
3. Satisfaction: The links satisfy the linking require-

ment of each word in the sequence.
The linking requirements of each word are contained in

a dictionary where they are expressed as a formula
involving the operatots and and or, parentheses, and
connector names. The + or - sufIix on a connector name
indicates the direction relative to the word being defined in
which the matching connector must lie. For example, the
linking requirements for the words “Mary” and %n” are
shown below:

Mary: 0- or S+
ran: s-
That is, “Mary” can act as a direct object if a

corresponding verb is on the left or as a subject if a
corresponding verb is on the right. “Ran” expects a subject
on its left. The linking requirements are satisfied in the
sentence “Mary ran” but not in the sentence “ran Mary”.
Hence, the latter is not accepted by the parser.

The output of the parser consists of all the words along
with the links that satisfy the linking requirements. We
found that the connectors used to exvess the linking
requirements (0 and S in the example above) are useful in
identifying the nouns and verb phrases of a sentence and,
thereby, the object classes and their associations. For

363

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

example, the output upon running the parser on the
semce Wary ran” consists of the following connectors.

+- s -+
I I

M=Y ran
This output indicates that the word “h&y,” which is on

theleftsideoftbelitkhasthecaurector s+andtlmtthe
word “ran” has tie cwmxtor S-. We can gather by looking
at the S+ connector that “Mary” is the subject in the above
sentence. Likewise, ‘km” is a veib as it has the connector
S-.

For a better understanding of how the output of the
parser can be used to identify the classes, &Uionships,
etc., considez the following sentence “The ccmpany pays
the employees”. The parser’s output fat this sentence is:

+--- 0 ---+
+-D-+-m S -3 +-v-D --+

I I I I I

the c0mpany.n pays the empl0yees.n
“Company” is recognized as a noun (the “.n” suffix),

“the” is a determiner, “pays” is a verb expecting a subject
and a direct object, with “the employees” serving that role.

By using the guideline that any sentence of the form
Subject 4% verb -Q- Object implies that the classes
Subject and Object have the association verb, we can infer
that company and employees arc the classes and that pays
is an associaiion between those two classes. Most of the
guidelines for object identification can be expressed in
ternu of links in this way. Examples of the guidelinres that
we used to implement our program is given in the next
section.

2.2 Object and association detection guidelines
Rumbaugh et al. [lo] gives some practical tips on how

to find classes, associations, and attributes in a problem
statement. They also suggests how to eliminate bad
classes, associations etc. Both these and the other
guidelines in the literature are very general. A guideline of
the form, “names that primarily &scribe individual
objects should be restated as attributes”, though very
helpful for a human designer, cannot be incorporated into
program logic easily. The main problem a pqrammer
faces when he tries to incorporate such knowledge in his
program is “how can the program find out which names
describe individual objects?” Most of our effort in
working on this project was spent on expressing the
existing guidelines in terms of the connectors etc.. That is,
we transformed the guidelines into precise rules in terms
of the parser’s output.

Examples of the rules that we used to implement our
program are given below. For every wcmi in the input
tsentence, it checks if any of the guidelines am satisfkd. If
this is the case, then the corms- infenmce is made.

l.Ifw~is”wilh”and,ifithasJandM~tors,
thentheclassdeacribedbythewordwiththeM
connector is an aggmgation of the class described
by the word with the J connector.
Explanation: A sentence con-g “building with
floors...” indicates that buildlag is an aggregation
of tloors.

2. For every verb, if there is an EV connector, get the J
connector of the EV connector, if it exisfs. Or if
thenzisaVconnector,andtheVconnectorhasan
I connector and the I connector has a TO connec-
tor and the TO connector has a S connector, get the
final S connector. If either of the above mentioned
connectors exist, the two words are possible
classes and they have an association named by the
verb.
Explanation: A sentence of the form “A system is
to be installed in a building” indicates that system
and building have an association Installed.

3. If a verb has V followed by S, get the S connector.
Also get the J connector following the EV connec-
tor. These words are classes and they have the
association verb.
Explanation: A sentence containing “candidate is
fired by the corn
association fire B

any” indicates that there is an
between candidate and corn--

PanYe
4. If the word is “has”, then the S co~cctor of the

word is an aggregation of the 0 connector.
Explanation: A sentence containing “building has
floors” indicates that building is an aggregation of
Boors.

5. If the verb is “becomes”, then the 0 connector is a
state (attribute) of the S connector.
Explanation: A sentence containing “person
becomes candidate” indicates that candidate (can-
didacy) can be an attribute of the class person.

2.3 The post-processor
The post-processor that we developed applies the

guidelines to the parser output and produces the list of
objects, their attributes, and the associations among them.
The post-processor is written in C and is integrated into
the parser code. We took this approach because the
number of guidelines that we had was not very large. If the
number of guidelines becomes larger, it may prove
advantageous to separate the post-processor code from the
parser code.

364

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Tbepost-processoralaomakesnseofasynonymsgk
whileprocessingtheoutputofthepnrser.Thesynonyrns
ilEUSCdfatW0p:
l To avoid creating redundant objects for synonymous

nouns in a specigcation document.
0 To recognize plurals (e.g “companies”, “company”)

and ditlkmm &uls@s of verbs c’ftre”, “fires”, “llred”
etc.) as the same’.
After all the sentences of the input document are parsed

and processed, the post-processor writes the gathered
information into two Bbs Oujpuulfle and graph.
Ourppufiie, the name of which is specified by the user,
contains the n&s in English. That is, it will have
statemem like ‘Wlcihg is an aggregation of floors.” The
file graph has the SBP~~ information written in a form
understandable by Edge As stated earlier, Edge is a graph
drawing tool that can generate a graph from an input file
consisting of a list of nodes and edges.

3 Example
This section describes the action of the system in

analyzing the specification of a small dambase system for
an employment agency. It is taken verbatim front [7].

3.1 The original specification
Persons apply for positions, companies sub-
scribe by offering positions, and companies
hire candidates or fire employees. A person
may ap@ly only once, thus becoming a candi-
date, losing this status when hired by a com-
pany but regaining it if fired, a company may
subscribe several times, the positive number
of offerings being added up; finally, only per-
sons that are currently candidates may be
hired, and only by companies that have
vacant positions. There are queries to check
whether a person Is a candidate, for finding
out the company a @ rson works for (provided
that the person is not a candidate), and for
finding wt the number of vacant positions a
company still has @ovided that the company
has ever subscribed). Initially, no person is a
candidate and no company has subscribed.

3.2 Modified specification
The link grammar parser has difficulty parsing certain

constructs requiring manual modification of the input
specification. The intent is to make modifications

1. An dtanative is a IOU word extnctor such 11 used by the
UNIX apltl annmlnd.

365

dpndent on the parser and not on domain knowledge
rtwited to llllbad the specitlcatim. After
lltodaatial, the specification mads as follows.

persons apply for positions, companies sub-
scribe by offering positiona, and companies
hirecan&at#orfueetnployees.Aperson
may apply only one time. The person
becomes a candidate when he applies. A per-
son loses his status as a candidate when hired
by a company. A ptzson Womes a candidate
againifhebfiredbythecotn~y.Acom-
pny may subscribe several times, Only per-
sonsthatarestillcandidatescanbehiredby
companies. Only companies that have vacant
positions can hi candidates. There is a query
tocheckifapersonisacandi&e.Tbereisa
query to find the company a person works for.
There is a query to find out the number of
vacant positions at a contpauy. Initially, no
person is a candidate and no company has
subscribed.

33 Program output
The program generates the output shown in Table 1,

where associations are indicated by triples of the form:
Object Class - Association -- Object ckrss; operations
and attributes are indicated by stating their name and the
class to which they belong: candidate subclasses and
aggregations are suggested, and synonyms are placed in
parentheses. Note also that the pamer may produce
duplicate suggestions which have been manually removed
from the table below.

3.4 Object diagram
The results of running the parser are placed in a file that

is then fed to the Edge graph drawing tool. For the input
specification given above, the diagram shown in Figure 1
is produced. Classes are contained in rectangles; arcs
denote associations. Classes contain three parts: the class
name, attributes, and operations. Note that there are
several ways in which the diagram could be easily
improved. For example, an association that holds between
one class and a second as well as between the first class
and a subclass of the second could be replaced by a single
association. Also, situations where an operation of a class
and an association on a class have the same name could be
detected and resolved.

4 Results
We applied the parser to four high-level specifications

taken from the literature. These problems are quite
commonly chosen as examples in various textbooks.

. .- -.. Y.-w1 ..-.

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

amprpnieswwnYb-~--(candidate)

Mmpank3 (cunpany) -- file -- anpbyecs (employe!e)
prtason--&&ply--dtW
-i3anattribntevalueofcla3sDerson
be4XRms(becnme)isancper&nofclassperson
3pplle3(mpply)i3aoperatbnofclasshe@ejson)
perttpn-l~s(b@-!4ttttus
bsea(bse)isanope&mofcfassperson
company -- hid (hire) -- penal I
t3md&tei3mauributevaiueofcla3sperson
he (pemon) -- ihed (tire) - company
~Y-S&&&$-~

still is an attribute value of class candidates (candidate)
hired hire) is an ooeratbn of class nersons (Demon)
vacant is 3n atttibute valne of class positions
bin: is an operation of class companies (company)
Clam cam&late can be a 3ubchtss of class nerson

Helicopter landing:
‘Ihe helicopter specification have been taken from [S].

Before running the parser on this specification, we had to
rephrase some of the sentences as simple sentences. There
was not much information that we could gather from the
parser’s output. The main problem was with the
specification itself. The specigcation described the history
of the problem rather than stating the requirements. We
felt even a manual construction of object diagram is not
possible from these specifications,

Automatic teller machine (ATM):
We gathered our second set of specifications from

chapter 8 of [IO]. Here, the problem was stated very
clearly, probably because it was used to illustrate the
construction of an object model. The results of applying
our rules to these specifications were very encouraging.
The resulting object diagram was reasonably close to that
produced by hand. There were some differences, but these
were all minor. For example, we got some extra classes
like system, cost, etc. The main reason why our approach
produced them was because recognizing these classes as

bad classes required domain knowledge which neither the
parser nor the program had.

The lift specifiication:
The lift specification is taken from [9]. Most of the

differences in the object diagram produced from using our
approach and that produced manually were due to the
inadequacy of the parser in capturing some aspects of
English grammar. And the rules that we used were not
powerful enough to offset the parser’s weakness. Here is
an example of the type of problem we had. In the sentence,
“‘Each lift has a set of buttons, one for each floor”, ideally
the parser should have recognized that the word “one”
refers to a button. From the parser’s output, we could not
derive a general rule for recognizing the classes and
associations correctly in a sentence of this form.

366

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

hir

J Fire

perrron -----
c8ndictst.e
-mm---
apply
became
lQ8G
hire

Employment database:
The results of applying our approach to these

specifications were encouraging too. But, we realii that
the rules approach to finding objects and association has
some drawbacks. We found that some of design decisions
camm easily be captmed through rules. For example,
from the sentence, “there is a query to check if a person is
a candidate”, our program identified “query” as an object
instead of an operation, which would be desirable if we
were building a general database management system but
suboptimal for a small, special-purpose program.
Furthermore, because of the way the rule is defined, our
program would have identified “way” as an object in the
following sentence. ‘There is a way to check if a person is
a candidate.”

5 Conclusions and future work
With a relatively small amount of work (about three

weeks and under 800 lines d code), we were able to build
a tool capable of producing object diagnuns that could be
comparedwiththoseIrrudttcedbyhand.Amongtheuses
of the resulting diagram would be detection of missing
classes, suggesuon of alternative design choices (attribute
versus class or opendon version association), and
discovery of missing associations.

However, as described in the previous section, the
object diagrams generated by our approach were not
completely satisfactory. The reasons for the failure in
producing completely acceptable object diagrams are the
following.
l Parsez inadequacy. While the breadth of English text

that the parser accepts is quite impressive, it still can-
not handle many sentences. For example, the parser
does not accept bypheaated words, idiomatic expres-
sions, and quotation marks. And it cannot connect a
pronoun with the corresponding noun. We had over-
come these problems to some extent by rephrasing the
sentences in the spectications in a form acceptable to
the parser. But, for the process to be completely auto-
mated the parser should be powerful enough to accept
all types of sentences.

l Ambiguous or incomplete specifications. Sentences of
the form “ATM accepts cash cards” can be difficult to
deal with when the reader is a computer. Where does
the ATM accept the cash card from? While an intelli-
gent human understands this from the context, it is
very difficult for a ptogram to do the same.

l Lack of domain knowledge. In the ATM specification
document a lot of domain knowledge was required to
generate the object diagram. Knowledge of the type
“bank holds account”, “customers have cash cards”
was assumed and not explicitly mentioned in the speci-
fication. Any practical design automator will need
domain knowledge and common sense.
There are two approaches to the solution of this prob-
lem. We can incorporate the domain knowledge rn the
parser. Or we can write the specifications without
assuming any domain knowledge on the

r
of the

user. Both the approaches have’practical di culties.
l Inadequacy of guidelines. Most of the rules we derived

work for general cases. But, they cannot handle special
cases, For example, considm the following sentence
from the placement office specifications. ‘There is a
query to check if a person is a candidate.” We can
make query a class or an operation of the class person.
A human needs to look at the overall structure of the
object diagram and use his or her experience to decide

367

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

whethertomakequeryanobjectoranope&oaLAsall
ourrulesarebasedonthestructureofthesentence.
suchdecisionscannotbemadebytheprogmm.

5.1 Future work
As noted earlier, a program that will automatically

produce a p&e42 object diagram from the specilkations
docllmentisstilla~.ButourpPgramcanbeusedto
validate an objfzt diagram given the specification
document and to generate a preliminary object diagram
that can be refined by a human designer. The folIowing
enhancemenEs suggest themselves as future directions for
our l.esemh:

Testing the tool on real-life (lower) level documents,
particularly those with a specialized domain vocabu-
lary.
Comparing the results of our semi-automatic validation
with that produced in a design review, both for thor-
oughness and cost-effectiveness.
Testing the program with a wide range of specification
documents and refining the guidelines extensively.
Using a parser other than the link grammar parser to
see if some of the parsing limitations can be overcome.

Acknowledgment
The authors wish to thank BNR, Inc. for their gift in

support of this research.

References
[l] Russell J. Abbott. Program Design by Informal English

Ihcrlptions. communicatim of the ACM. Volume 12,
Number 11, November 1983. Pages 882-894.

[2] Grady Booth. Object-Oriented DevelapnentlEEE Trmac-
rim on Sqflware Engineering, Volume 12, Number 2, Feb-
ruary 1986.

[3] Grady Booth. Object-Oriented Design with Applications.
Benjamin,Cummings Publishing., 1991.

[4] Peter Coad amI Edward Yourdon. Object-Oriented Analysis t
Second Edition. Yourdon Press,1991,

[5] Alan M. Davis. Soj?ware Requimnents 1 Revision ! Objects,
Funcfiaur, % States. Prentice Hall.

[6] Shmchi Honiden, Nobuto Kotaka Yoshinori Kiihimoto. For-
malizing Specification Modeling in OOA. IEEE Software,
Volume 10, Number 1, January 1993, Pages 54-66.

[7] M. I. Jackson. Developing Ada Programs Using the Vienna
DeveloPment Method (VDM). SopUare-Practice and Expe-
rience, Jahn Wiley & Sons, Volume 15, Number 3, Pages
305-318, March 1985.

[8] Frames l’kwbety Paul&h and Walter Tiihy. EDGE: An
ExtendibleGraphBditcu.sofhwn-PMcrke&Experience,
Vohnne 20, Number Sl. June 1990, Pages 63-88.

[9] Pmceedings of fhe Fourth Internaioatal W&shop on S4-
ware Sptxijscation and Design. April 34. 1987, Monterey,
Califamir, IEEE Computer Society, 1993.

[lo] James Rumbaugh, Michael Blaha, Williarm Premerlani, Fre-
deric Eddy, William Lorcnsen. Object-oriented Modeling
and Des* Prentice Hall, 1991.

[ll] M. Seki, H. Horai. H. Enomoto. Software Development Pro-
c-as from Natural Language Specification. 11th Intema-
tional Conference on Software Bngineering, May 1989.

[12] Daniel D. Sleator, Davy Ternpe~ley. Prsing English with a
Link Grammar, Carnegie-Mellon University, Department of
Computer Science, March 1992.

363

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

