
1

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

Abstract
Multiprocessor deterministic replay has many

potential uses in the era of multicore computing,
including enhanced debugging, fault tolerance, and
intrusion detection. While sources of nondeterminism
in a uniprocessor can be recorded efficiently in
software, it seems likely that hardware support will be
needed in a multiprocessor environment where the
outcome of memory races must also be recorded.

We develop a memory race recording mechanism,
called Rerun, that uses small hardware state (~166
bytes/core), writes a small race log (~4 bytes/kilo-
instruction), and operates well as the number of cores
per system scales (e.g., to 16 cores). Rerun exploits the
dual of conventional wisdom in race recording: Rather
than record information about individual memory
accesses that conflict, we record how long a thread
executes without conflicting with other threads. In
particular, Rerun passively creates atomic episodes.
Each episode is a dynamic instruction sequence that a
thread happens to execute without interacting with
other threads. Rerun uses Lamport Clocks to order
episodes and enable replay of an equivalent execution.

1. Introduction
A system exhibiting deterministic replay

capability can record sufficient information during an
execution to enable a replayer to (later) create an
equivalent execution despite inherent sources of
nondeterminism that exist in modern computer
systems. The information required includes initial state
(e.g., a checkpoint) and nondeterministic events [39].
Recording a uniprocessor execution is viable in
software (e.g., hypervisor), because the sources of
nondeterminism, such as I/O, DMA fills, and
interrupts, are relatively rare events. Deterministic
replay of a uniprocessor machine has already proven
useful for debugging [41] and intrusion detection [7]
applications.

Most future systems, however, will use multicore
chips that provide software with a shared memory
model. This model adds memory races—conflicting
accesses to both synchronization and data variables—
as an additional source of nondeterminism to be
recorded. Unfortunately, memory races have the
potential to occur on almost every memory reference,
making efficient analysis difficult for software.

Fortunately, recent work has proposed hardware
support for multithreaded deterministic replay, in
general, and, memory race recording, in particular [25,
26, 39, 40]. These systems log the outcome of memory
races as they occur. To keep the storage and bandwidth
needs reasonable, these systems only record a subset of
all races that cannot be implied transitively, i.e. races
that are not implied through the combination of a
previously recorded dependence and program order
semantics. The Flight Data Recorder (FDR), both
original [39] and enhanced [40], however, uses
substantial hardware state to perform this reduction
(e.g., 4-24KB per core). Hardware vendors would like
to see this state reduced, in part, because it is cost paid
even when recording is disabled. Strata [25] reduces
this state, performs well for four-core systems, but,
suffers a substantial increase in per-core log sizes as
the number of cores per system grows (Section 5).

We advance the state of the art by proposing a new
memory race recorder, called Rerun, that achieves
scalable race log sizes on par with prior work at only a
fraction of the hardware state. While races are typically
described in terms of conflicts that occur between
individual memory accesses, Rerun records the dual of
this information: how long a thread executes without
conflicting with any other thread in the system.

Rerun uses atomic episodes as the fundamental
unit of ordering. An episode is a series of dynamic
instructions from a single thread that happen to execute
without conflicting with any other thread in the system.
Episodes are created passively by observing system
behavior without altering the normal execution flow.
When recording is enabled, the entire system execution

Rerun: Exploiting Episodes for Lightweight Memory Race Recording

Derek R. Hower Mark D. Hill
Computer Sciences Department

University of Wisconsin-Madison
http://www.cs.wisc.edu/multifacet

{drh5,markhill}@cs.wisc.edu

2

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

is viewed as a collection of ordered episodes so that
every dynamic instruction logically resides within the
boundaries of an episode.

Rerun records the outcome of an execution by
simply logging the length and order of episodes. A
causal ordering among episodes from different threads
is established using Lamport Scalar Clocks [15], which
is a standard mechanism from distributed systems used
to create a global notion of logical time in systems
where no single point of ordering exists. Using this
mechanism, Rerun associates each episode with a
timestamp that correctly places the episode in a partial
order of execution and preserves inter-thread
dependencies.

We implement Rerun by augmenting cores in the
system with a small amount of state (~166
bytes/thread) and by piggybacking on an existing
coherence protocol. The coherence protocol allows
Rerun to ensure that no two concurrently active
episodes conflict with one another and provides a
substrate for keeping logical time consistent.

With respect to prior memory race recorders, we
show that Rerun is simultaneously comparable to (a)
the recorder with the smallest hardware state (like
Strata with snooping) and (b) the recorder with the
slowest log growth rate (like enhanced FDR [40]).

The rest of the paper is organized as follows.
Section 2 presents the key ideas for Rerun. Section 3
discusses our implementation in a base system and
then elaborates on how Rerun can be extended to
alternate architectures. In Section 4 we explain our

evaluation methods and in Section 5 we present
empirical results. We discuss related work and
conclude in Sections 6 and 7, respectively.

2. Episodic Memory Race Recording
This section develops the insights behind Rerun. It

motivates Rerun with an example, gives key
definitions, and explains how Rerun establishes and
orders episodes.

2.1. Motivating Example and Key Ideas
Consider the execution in Figure 1 that highlights

two threads i and j executing on a multiprocessor
system. Dynamic instructions 1-4 of thread i happen to
execute without interacting with instructions running
concurrently on thread j (or thread k). We call these
instructions, collectively labeled E1, an episode in
thread i’s execution. Similarly, instructions 1-3 of
thread j execute without interaction and constitute an
episode E2 for thread j. As soon as a thread’s episode
ends, a new episode begins. Thus, every instruction
execution is contained in an episode, and episodes
cover the entire execution (right side of Figure 1).

Rerun must solve two sub-problems in order to
ensure that enough episodic information is recorded to
enable a deterministic replay of all memory races.
First, it must determine when an episode ends and, by
extension, when the next one begins (Section 2.3). To
appear atomic, an episode E must end when another
thread issues a memory reference that conflicts with
references made in episode E. Two memory accesses
conflict if they reference the same memory block, are

r5 := X
r4 := Q
S := r3
r5 := X

F := 1
r1 := A
B:= 23
F := 0

r6 := E
D := r7
S := r4
C := r3

W := r10

Y := 54
T := r3
W := r4
r4 := U
r3 := P
r2 := I
H := r4
r8 := X
r9 := Y
Q := r8

r1 := F
r2 := B
A := 7

Z := 34
r3 := 54

Ti Tj

...

1: F = 1
2: r1 = A
3: B = 23
4: F = 0

Initial State:
1: r1 = F
2: r2 = B
3: A = 7

R: {A} W: {B,F}
REFS: 4

Timestamp: 43

R: {...} W: {...}
REFS: 97

Timestamp: 5

R: {B,F} W: {A}
REFS: 3

Timestamp: 44

R: ∅ W: ∅
REFS: 0

Timestamp: 44
E2

E1

Ti Tj
Tk

Figure 1: Example of episodic recording. Dotted lines indicate episode boundaries created during
execution. In the blown up diagram of threads i and j, the shaded boxes show the state of the

episode as it ends, including the read and write sets, memory reference counter, and the
timestamp. The darker shaded box in the last episode of thread i shows what the episode state is

initialized to when an episode begins.

3

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

from different threads, and at least one is a write. For
example, episode E1 in Figure 1 ends because thread j
accesses the variable F that was previously written
(i.e., F is in the write set of E1).

Second, Rerun must order episodes across threads
such that episode causal dependencies are respected
(Section 2.4). An active episode E is causally
dependent on an episode F from another thread if E
either (a) reads a variable written in F or (b) writes a
variable read or written in F. Rerun records episode
dependencies using Lamport scalar clocks. This
technique guarantees that the timestamp of any episode
E executing on thread i has a scalar value that is greater
than the timestamp of any episode on which E is
dependent and less than the timestamp of any episode
that is dependent on E. In our example, since the
episode E1 ends with a timestamp of 43, the
subsequent episode executing on thread j (E2), which
uses block F after thread i, must be assigned a
timestamp of (at least) 44.

A replayer (not shown) uses information about
episode duration and ordering to reconstruct an
execution with the same behavior (Section 3.5). If
episodes are replayed in timestamp order, then the
replayed execution will be logically equivalent to the
recorded execution.

2.2. Key Definitions
Let an episode E be a contiguous sequence of

dynamic instructions executed by one thread without
conflicting with other threads via memory. Let threadE
denote the thread executing E, referencesE denote the
number of dynamic memory references in E, and
timestampE denote the Lamport scalar clock associated
with E. Finally, let RE denote the memory blocks read
in E (its read set) and WE denote the memory blocks
written in E (its write set).

Two episodes E and F from different threads avoid
conflicts when the write set of one has no blocks in
common with the union of the read and write sets of
the other and vice versa. Formally, the full no-conflict
condition is:

(EQ 1)

2.3. Establishing Episodes
A new episode begins whenever a thread begins

execution. When a thread starts a new episode E, it
resets referencesE to zero and empties the read and
write sets, RE and WE. As the thread executes dynamic
memory references, it increments referencesE and adds
memory blocks to RE and WE as appropriate.
Whenever a thread terminates an episode, it writes

referencesE into a per-thread log, immediately begins a
new episode, and repeats. Thus, a thread’s execution
will be logged as a series of episodes without affecting
the execution.

Episode E must end if, for any episode F from
another thread, the following half-no-conflict condition
may become false at threadE:

(EQ 2)

By symmetry, threadF’s logic will check:

(EQ 3)

Together, these checks ensure that one thread or
the other will always end its episode before the full
non-conflict condition (EQ 1) becomes false. This
ensures that concurrently executing episodes never
conflict.

Importantly, while a thread must end an episode
for conflicts, Rerun may end an episode early for any or
no reason, since any subset of an atomic region in an
execution is itself atomic (and, unlike transactional
memory, programmers do not specify what should be
atomic). In Section 3, we will ease implementation cost
by ending some episodes early.

2.4. Ordering Episodes
Episodes must be correctly ordered to enable a

faithful deterministic replay. Rerun’s ordering
mechanism meets three conditions sufficient for a
Lamport Scalar Clock [15] implementation:
1) When an episode E begins, its timestampE begins

with a value one greater than the timestamp of the
previous episode executed by threadE (or 0 if
episode E is threadE’s first episode).

2) When an episode E adds a block to its read set RE
that was most-recently in the write set WD of
completed episode D, it sets its timestampE to
maximum[timestampE, timestampD+1].

3) When an episode E adds a block to its write set
WE that was most-recently in the write set WD0 of
completed episode D0 or in the read-set of any
episode D1 ... DN, it sets its timestampE to
maximum[timestampE, timestampD0+1,
timestampD1+1, ..., timestampDN+1].

Finally, when each episode E ends, Rerun logs its
timestampE, along with referencesE, in a per-thread
log. The Lamport clock algorithm ensures that the
execution order of all conflicting episodes corresponds
to monotonically increasing timestamps. Two episodes
can only be assigned the same timestamp if they do not
conflict and, thus, can be replayed in any alternative
order without effecting replay fidelity.

WE RF WF∪()∩ ∅=[] RE WF∩ ∅=[]
WF RE WE∪()∩ ∅=[] RF WE∩ ∅=[]

∧ ∧
∧

WE RF WF∪()∩ ∅=[] RE WF∩ ∅=[]∧

WF RE WE∪()∩ ∅=[] RF WE∩ ∅=[]∧

4

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

3. Rerun Implementation
Here we develop a Rerun implementation for a

system based on a cache-coherent multicore chip.

3.1. Base System
Our base system is a multicore chip together with

DRAM and I/O. Figure 2 displays the multicore chip,
while Table 1 gives key parameters. These include
private L1 write-back caches, a shared L2 cache, an
MESI directory protocol, and a sequentially consistent
memory model. We discuss varying these assumptions
in Section 3.6.

3.2. Rerun Hardware
As Figure 2 depicts, Rerun adds modest hardware

state to the base system. To each core, Rerun adds:
• Write and Read Bloom filters, WF and RF, to track

the current episode’s write and read sets (e.g., 32
and 128 bytes, respectively (see Section 5.1)),

• A timestamp register (TS) to hold the Lamport
Clock of the current episode executing on the core
(e.g., four bytes), and

• A memory reference counter (REFS) to record the
current episode’s references (e.g., two bytes).
To each L2 cache bank, Rerun also adds a

“memory” timestamp register (MTS) (e.g., four bytes).

This register holds the maximum of all timestamps for
victimized blocks that map to its bank. A victimized
block is one replaced from an L1 cache, and its
timestamp is the timestamp of the core at the time of
victimization.

Finally, coherence response messages—data,
acknowledgements, and writebacks—carry logical
timestamps. Bookkeeping state, such a per-core pointer
to the end of its log, is not shown.

3.3. Rerun Operation
Rerun implements episodic race recording

(Section 2) via the algorithm of Figure 3. When a core
writes (reads) a block b, it increments REFS and
logically adds the address of b to its WF (RF), perhaps
redundantly. When a core receives data on a miss, the
core also sets its TS to the maximum of TS and one
more than the value of the incoming timestamp
(Section 2.4 Rules 2 and 3) Neither of the above
actions cause Rerun to end the current episode.

Rerun detects conflicts among episodes when the
base system’s coherence protocol either directs a
request to this core for a block in its WF or an exclusive
request in its RF (half-no-conflict condition (EQ 2)
violated). These Bloom filters may detect a true
conflict (episode must end) or false conflict (episode
may end early). In either case, Rerun ends the episode
by logging the episode’s REFS and TS. By recording
the end of every episode with its associated timestamp,
a complete partial order of episode execution is
preserved in the log. The system then prepares for a
new episode by clearing WF, RF, and REFS, and
incrementing TS (Section 2.4 Rule 1). Regardless of
whether a coherence request ends an episode, Rerun
always appends its current TS on the coherence
response message so that a causal ordering can be
established among interacting episodes.

Table 1: Base System Configuration
Cores 16, in-order, 3GHz

L1 Caches Split I&D, Private, 32K 4-way set associative,
write-back, 64B lines, LRU replacement, 3 cycle
hit

L2 Cache Unified, Shared, Inclusive, 8M 8-way set
associative, write-back, 16 banks, LRU
replacement, 37 cycle hit

Directory Full bit vector in the L2

Memory 4G DRAM, 300 cycle access

Coherence MESI Directory, silent replacements

Consistency
Model

Sequential Consistency (SC)

Figure 2: (a) Base system configuration (b) Rerun hardware added to each L2 bank (c) Rerun
hardware added to each core

L2
Bank

0
..
.

L2
Bank

14

L2
Bank

15

Interconnect

Core
0

Core
1

Core
14

Core
15..

.

D
R

A
M

2

-3

D
R

A
M

0

-1

L2
Bank

1

Data Array

Directory

Coherence Controller

Tags

MTS

Pipeline

Rerun
State

Rerun StateCoherence Controller

L1 I L1D

Write Filter (WF)

Read Filter (RF)

Timestamp (TS)

References (REFS)

(a)

(b)

(c)

5

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

Rerun might miss a conflict if a block in a thread’s
read or write set was victimized from its private cache
because, in the case of a directory protocol, coherence
requests may no longer be forwarded to the core. To
guard against this, Rerun ends an episode whenever a
block b in WF or RF is victimized. When notifying the
L2 of the vicitimization, a core also appends its current
TS to the coherence message sent to block b’s bank.
The bank then sets its MTS to the maximum of its
current value and the incoming TS. Future responses
for any block from this bank will carry a timestamp
greater than or equal to the TS of the thread that
victimized b.

Rerun allows programmers to view logs as per
thread, rather than per core, by gracefully handling
virtualization events. At a context switch, the OS ends
the core’s current episode and writes its REFS and TS
state to the log. When the thread is rescheduled, it
begins a new episode with reset WF, RF, and REFS, and
a timestamp equal to the max of the last logged TS for
that thread and the TS of the core on which the thread
is rescheduled. Similarly, Rerun can handle paging by
ensuring that TLB shootdowns end episodes.

Rerun also ends episodes when implementation
resources are about to be exhausted. Ending episodes
just before 64K memory references, for example,
allows REFS to be logged in two bytes.

3.4. Rerun Discussion
Some comments on Rerun operation are in order.

First, Rerun’s passing of timestamps in coherence
messages may seem complex. Nevertheless, it is a
classic message-passing implementation of Lamport
Clocks that uses coherence messages in a manner
similar to FDR. Rerun, however, carries a globally-
meaningful Lamport Clock in messages, while FDR’s
messages carry a per-core instruction count.

Second, one might expect that Rerun’s log size
could be much larger than FDR, for example, because
Rerun does not perform an explicit transitive reduction.
To the contrary, we will show Reruns logs are
comparable to FDR. To see why this might be the case,
let us return to the example in Figure 1 of Section 2.
Here, FDR would note conflicts on memory blocks A,
B, and F, but only log one 8-byte entry for block F,
since this entry implies the others by transitivity. In this
case, Rerun also makes a single log entry (when
episode E1 ends) but does so with two fewer bytes,
leading to a potentially slower log growth.

Third, one might be concerned that Rerun’s
conservative policy of ending an episode when a block
in WF or RF is victimized might inordinately shorten
episode duration. We have found this fear unjustified,

perhaps because recently-referenced blocks are less
likely to be replaced by most cache replacement
algorithms. Similarly, ending all episodes on a paging
or other virtualization event has a small impact on log
size due to the rarity of these events.

3.5. Rerun Replay
For testing Rerun, we developed a stand-alone

single-threaded software replayer. This replayer
replays episodes in Lamport scalar clock order. It scans
the logs of all threads, picks an episode with the
smallest timestamp, executes it, and repeats until no
episodes remain. While the replay process is mostly
sequential, there is a limited opportunity for
parallelism when replaying episodes from different
threads that have the same recorded timestamp.

Many applications of deterministic replay may not
need a fast replayer (e.g., debugging). However, replay
speed may be critical in other proposed applications

State per Core
REFS: Dynamic Memory Reference Count
TS: Timestamp
WF: Write Filter
RF: Read Filter
LOG: Race Log

State per Shared Cache Bank
MTS: Timestamp

Core Actions
On commit of a memory operation memop

REFS++
if(memop is a store)

WF.insert(memop.address)
if(memop is a load)

RF.insert(memop.address)

On receiving data with timestamp t
TS = MAX(t+1, TS)

On sending data/ack for block b
SEND(b, TS)
if(WF.find(b.address) ||

(RF.find(b.address) &&
request == GETX))

LOG.append(REFS, TS)
WF.clear()
RF.clear()
REFS = 0
TS++

Before replacing block b
SEND(b, TS)
if(WF.find(b.address) ||

RF.find(b.address))
LOG.append(REFS, TS)
WF.clear()
RF.clear()
REFS = 0
TS++

Shared Cache Bank Actions
On sending a response for block b

SEND(b, MTS)
On receiving data with timestamp t

MTS = MAX(t, MTS)

Figure 3: Rerun Algorithm

6

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

such as replay-based fault tolerance [3, 19, 28, 29].
Future work will examine techniques for faster replay,
possibly including an alternative timebase during
recording, preprocessing logs to sort episodes, or use
of hardware acceleration.

3.6. Extensibility
Though we have described an implementation of

Rerun in terms of a specific base system, Rerun can be
applied to other systems. We briefly discuss some
variants here and note any changes that may be needed
over the base implementation.

Memory Consistency Model. Until this point, the
Rerun system we have described requires sequential
consistency (SC). Thus, Rerun works with both simple
and aggressive implementations of SC [6, 9, 10, 13, 34,
37], including SC implementations of relaxed models.

We have designed, but not implemented, an add-
on to Rerun that extends episodic recording to the TSO
consistency model [36]. The extended Rerun design
separately logs load operations that could result in a
violation of sequential consistency. We add logic to the
system that detects potentially SC-violating loads
using techniques developed by Xu et al. [40]. When
troubling loads are detected, the extended Rerun will
either log the value that the load returned (as was done
by Xu, et al.), or log a timestamp that corresponds to
the correct value the load received, depending on
whichever is easiest to implement. In the latter case,
the recorded timestamp will be equal to the timestamp
of the thread when the load returned a value. A
replayer can use the extra timestamp to reconstruct the
value of the load by monitoring that location in the
replayed memory image.

Future work may include extending Rerun to the
x86 memory consistency model [12] (not much weaker
than TSO), as well as more relaxed models.

Out-of-Order and/or Multithreaded Cores. It is
straightforward to adapt Rerun for out-of-order cores
by associating Rerun logic with commit logic, in part,
because Rerun activities never cause mis-speculation.

Rerun also adapts well for systems with hardware
multithreading. In such a system, each hardware thread
context would require its own WF, RF, and REFS.
Replicating this state costs less than for other recorders
because Rerun’s state is small (166 bytes). The major
algorithmic difference over our base system is that
each read or write by a thread context has to check
filters for other threads contexts on same core to detect
conflicts that might not cause coherence events.

Cache Design. Our base system uses a write-back
private L1 cache at each processing node. If instead a
write-through L1 cache were used, Rerun could still

use a private write-back L2 to maintain logging
efficiency. More work is needed to make Rerun, as well
as FDR and Strata, efficient in the absence of private
write-back caches.

There is a great deal of flexibility in the design of
other levels of the memory hierarchy. Rerun only
requires that the level of shared memory closest to the
core (e.g. the shared L2 in our base system) has an
MTS register to maintain a consistent ordering of
evicted blocks. Multiple banks of shared memory, so
long as the addressable content of each bank is disjoint,
work well under Rerun without additional
modification.

Snooping Coherence. Replacing directory-based
coherence with bus-based snooping coherence alters
Rerun in two ways. First, bus-based snooping does not
provide invalidation acknowledgement messages that
can carry timestamps, as is required in the base Rerun
design. Xu [38] sketches a solution for FDR with
snooping that can be adapted for Rerun. The key idea is
to piggyback timestamps on a subset of request
messages rather than acknowledgements at a cost of
bandwidth overhead. Systems that implement snooping
protocols over a point-to-point network would likely
have the ability to send data on acknowledgements, and
as such would work with an unmodified Rerun
algorithm. Second, snooping coherence protocols
broadcast all requests. This eliminates the need to end
episodes on block evictions.

Hardware Transactional Memory. Rerun has the
potential to interact favorably with hardware
transactional memory [16]. For example, many flat and
closed-nested transactions can be recorded as a single
episode corresponding to the outermost transaction, as
done for Atlas [14]. Future work can examine how
Rerun interacts with transactional memory subtleties,
such as open-nested transactions and compensating
actions [22, 24].

4. Evaluation Methods
We evaluate the Rerun recording system using the

Wisconsin GEMS [20] full system simulation
infrastructure, which models an enterprise-level
SPARC server running an unmodified Solaris 10
operating system. The simulator configuration matches
that of the baseline shown in Table 1 with the addition
of Rerun hardware support. All experiments were run
using the Wisconsin Commercial Workload suite [1],
which consists of a task-parallel web server (apache), a
pipelined web server (zeus), a java middleware
application (jbb), and a TPC-C-like online transaction
processing (oltp) workload on DB2. Since results from
alternative workloads are similar, we present most data

7

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

for an average workload computed as if each
benchmark ran for an equal number of instructions.

For comparison purposes, we also model two
hardware race recording systems previously proposed,
namely the Flight Data Recorder and Strata, on the
same system configuration. When it is important to
distinguish, we name the original FDR of 2003 [39]
FDR-1 and the enhanced version of 2006 [40] FDR-2.
Our performance studies use FDR-2, which artificially
creates stricter dependencies to reduce the log size. We
use Xu et al.’s FDR-2 code and so have a high
confidence in our comparisons.

We reimplemented Strata with directories (Strata-
Dir) [25] so that it can be used in our simulation
infrastructure. Because we do not have the same
workloads used in the original evaluation of Strata, we
can not validate the correctness of our implementation
by a direct comparison to previously published results.
However, we can indirectly validate our
implementation using results published for Strata-Dir,
FDR-1, and FDR-2.

With four cores, Strata asserts a log size ~6x
smaller than FDR-1, while FDR-2 claims to be ~25x
smaller than FDR-1. Thus, to a first order, we would
expect Strata-Dir’s log to be ~4x (25x/6x) larger than
FDR-2’s. Results (not shown) confirm the ratio
approximately holds. Results presented in Section 5
show a ~6x increase due, in part, to the smaller cache
sizes we assume. Finally, we use the Strata paper’s
observation that Strata with snooping (Strata-Snoop)
and directories (Strata-Dir) create logs of similar size.

5. Experimental Results
We next refine Rerun by selecting good

implementation parameters. Then we analyze Rerun’s
sensitivity to private cache size. Finally, Section 5.3 we

compare Rerun’s overall performance with the state of
the art: the enhanced FDR-2 [40] and Strata-Dir [25].

5.1. Refining Rerun
An effective Rerun implementation must

determine appropriate sizes of REFS, WF, and RF.

Counting References (REFS). When a episode
ends, Rerun logs the final value of REFS to record the
number of memory references in the episode. A
tradeoff exists in the selection of REFS’s size: a large
size (e.g., four bytes) lets episodes grow to their natural
length resulting in less frequent logging, while a small
size (e.g., two bytes) reduces the size of an individual
log entry but requires extra logging when REFS
reaches its maximum value (e.g., 64K). An optimal
balance that achieves an efficient log size is dictated by
the distribution of episode lengths.

To determine how large episodes naturally grow
for our workloads, we ran experiments using infinite
caches, perfect (i.e. no false positives) filters, and an
unbounded REFS counter. Figure 4a shows the
cumulative distribution function (CDF) of episode
lengths for all four workloads, measured in the number
of dynamic memory references. Over 99.9% of all
episodes are less than 45,000 memory references long.
Thus, assuming that the REFS structure is limited to
byte boundaries, a 16-bit counter will suffice to capture
nearly all episodes without adding unnecessary bits to
the log.

We validated that the 16-bit REFS strikes the best
balance between log entry size and log frequency for
our workloads by running experiments with perfect
filters and 8-, 16-, and 32-bit counters. Results (not
shown) revealed that the 16-bit REFS counter did
indeed produce the smallest log.

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1
Episode Length CDF

F
(x

)

all
apache
jbb
zeus
oltp

0 50 100
0

0.2

0.4

0.6

0.8

1
Write Set CDF

bl k
0 50 100

0

0.2

0.4

0.6

0.8

1
Read Set CDF

bl k

Figure 4: Distribution of episode lengths for all workloads.

(a) (b) (c)

8

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

Write and Read Filters (WF/RF). Write/read
filters with a high rate of false positives could degrade
the logging performance of Rerun. Figures 4b and 4c
show the cumulative distribution functions for episode
write and read set sizes, which have a direct impact on
false positive rate. The 99th percentile of the
distributions are 70 blocks for the write set and 113
blocks for the read set.

The amount of aliasing incurred by the WF and RF
Bloom filters is influenced by three design dimensions:
the size of the bit field, the number of hashing
functions, and the type of hashing function. We
empirically examine WF/RF alternatives by varying
filter size from 64 to 1024 bits and the number of hash
functions from one to four. We consider two different
hashing functions, namely bit selection, where the hash
comes from a simple subset of the block address, and
H3, which is a near-universal hash function that
produces more uniformly distributed hash values [4,
33].

We ran experiments varying all three Bloom filter
design dimensions to determine the impact on logging
performance, though due to space constraints, only
show results for filters using four hash functions in
Figure 5. Results for filters with less than four hash
functions performed equal to or worse than their four-
hash counterparts in all cases. Filters of length 1024
bits with four different hash functions perform on par
with a perfect (infinite size) filter for both the read and
write sets. However, for the write set, filters with only
256 bits and either two or four hash functions also
perform nearly identically to a perfect filter. These
results are consistent with Sanchez et al. [35], whose
analytic equations predict that Bloom filter sizes

should be much larger than the mean read/write sets
avoid significant aliasing.

Our results in Section 5.3 will assume that Rerun
implements write and read filters using four H3 hash
functions, where each WF is 256 bits (32 bytes) and
each RF is 1024 bits (128 bytes).

5.2. Sensitivity to Private Cache Size
Rerun is designed for systems where each core has

a private L1 and may have a private L2 cache.
Designers select cache sizes based on many
considerations. Ultimately, this cache size choice will
affect Rerun’s logging performance. Smaller caches
can lead to more frequent evictions, any one of which
could prematurely end an episode if the address of the
evicted block hits in a write/read filter. To evaluate the
impact of the private cache size on logging
performance, we performed a sensitivity study on a
system with perfect filters and a 16-bit REFS counter.
For this study, we model a private L1/L2 hierarchy as
an artificially-large private L1 cache. As Figure 6
shows, log sizes increase for private caches smaller
than our base case of 32K-bytes and decrease for larger
caches.

Importantly, Rerun log size is acceptable across all
cache sizes studied. Thus, Rerun will operate robustly
with cache sizes 8K-bytes and larger. We also note that,
on average, log sizes improve until 256K-bytes and
then plateau. This size presumably represents the point
when all episodes grow large enough so that they often
end due to conflicts with other threads. We attribute the
occasional increase in log size from a smaller to a
larger cache capacity in our results (e.g. zeus 256K to
512K) to simulation variance, as the observed
differences are within a 5% margin of error.

0

2

4

6

8

10
B

yt
es

/K
ilo

-i
ns

t

Bit H3
64

Bit H3
256

Bit H3
1024 Inf

0

2

4

6

8

10

B
yt

es
/K

ilo
-i

ns
t

Bit H3
64

Bit H3
256

Bit H3
1024 Inf

Figure 5: Write (a) and Read (b) filter sensitivity analysis for Bloom filters of varying size and
hashing function. Sizes are presented in bits. Hashing functions are Bit Selection (Bit) and H3 (H3)
with four hash functions per filter. Log sizes are in bytes/1000-instructions (without compression).

(a) (b)

9

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

5.3. Performance Analysis
Refined Rerun. Using empirical data from

Section 5.1, we select the following parameters for an
effective Rerun implementation: 1024-bit H3 read filter
with four hash functions, 256-bit H3 write filter with
four hash functions, a 32-bit timestamp, and a 16-bit
reference counter. In total, we add 166 bytes/core of
state to the base system (not including a small amount
for the log bookkeeping).

Rerun Logging Performance. As shown in
Figure 7, Rerun achieves a log growth rate just under
four bytes/1000 instructions on average for our
workloads on the base 16-core system (see Table 1).
Results for other workloads will differ. In particular,
workloads with more-frequent sharing will log more
bytes per instruction. Because there is not a notable
difference among the workloads, we average results for
further performance analysis.

Rerun vs. FDR-2 and Strata-Dir. Figure 8 shows
the log growth rate of Rerun, FDR-2, and Strata, as the
number of cores varies from 2 to 16. (All logs are
uncompressed.) In the four core system previously
evaluated by FDR and Strata, we see that Rerun
produces a log of comparable size to FDR-2 and
significantly less than Strata. Importantly, Rerun
achieves a log size on par with FDR with a small
fraction of the hardware cost.

Scaling the Number of Cores. Figure 8 also
shows how the log performance of Rerun, FDR-2, and
Strata-Dir changes as the number of cores scales from
two to 16 (the current limit of our workloads). Both
Rerun and FDR-2 scale well since their techniques
exploit local interactions among cores and create log
entries sized independently of the number of cores.
Nevertheless, precise values can go up or down,

depending how workload behavior changes with the
number of cores (e.g, we omit zeus from the 16-core
FDR-2 average, since its behavior is anomalous).
Strata-Dir, however, scales less well, because any
interaction among a pair of cores logs a stratum whose
size is proportional to the number of cores (see Section
6 for a sketch of the Strata algorithm).

Hardware. Table 2 gives an overview of the per-
core hardware requirements for Rerun and several
versions of previously proposed systems. State
overheads are calculated based on an implementation
extending the system in Table 1. Importantly, Strata-
Snoop requires a broadcast snooping protocol instead
of a directory.

Figure 9 shows how the hardware overheads scale
in large systems. Strata-Dir results assume each
doubling of the number of cores adds 2MB to L2 cache
size. Results show that Rerun and Strata-Snoop require
much less state than Strata-Dir, FDR-1, and FDR-2.
Thus, Strata-Snoop may be preferred for near-term
multicore chips using snooping. Recalling log

Cache Size (KBytes)

0

2

4

6
B

yt
es

/K
ilo

-i
ns

t

8 16 32 64 128 256 512 1024

Figure 6: Private cache size sensitivity.

0

2

4

6

B
yt

es
/K

ilo
-i

ns
t

apache jbb oltp zeus avg

Figure 7: Refined Rerun log size.

10858

0

10

20

30

B
yt

es
/K

ilo
-i

ns
t

Rerun
FDR-2
Strata-Dir

2p

4p

8p

16p

Figure 8: System scalability comparison.

10

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

performance results of Figure 8, however, Rerun
should be preferred in larger multicore chips.

Bandwidth. Rerun and FDR-2 append payloads of
identical size to the same subset of coherence
messages. Thus, the interconnection bandwidth
overhead due to piggybacked timestamps is the same in
both systems. Including the additional bandwidth
needed to write the log to the memory system, Rerun
requires just under a 10% increase in total on chip
bandwidth. This is similar to FDR-1 and FDR-2, which
both report a 10% increase, and Strata-Snoop and
Strata-Dir, which report a 10% and 12% increase,
respectively.

6. Related Work
Rerun builds on the pioneering work in hardware

memory race recording. In 1991, Bacon and Goldstein
[2] recorded all coherence traffic on a snooping bus.
Rerun has much smaller logs and does not require a
bus. The Flight Data Recorder (FDR) was proposed in
2003 [39], used in BugNet [26], and enhanced in 2006
[40]. FDR adapts Netzer’s transitivity reduction [27] so
that coherence messages can carry scalar, not vector,
instruction counts and relies on substantial per-core
state to reduce log size. Rerun also uses coherence
messages to carry values, but these values are globally-
meaningful Lamport Clocks. More importantly, Rerun

substantially reduces per-core state by tracking non-
conflicting episodes rather than conflicting memory
accesses. At the same time, Rerun modestly decreases
log size. ReEnact [31] uses thread level speculation
techniques to record and replay a multiprocessor
execution. This required substantial hardware support,
including versioning caches and rollback capability.
CORD [30] uses Lamport clocks to order memory
races, but does so at the granularity of a cache block.
Rerun uses one logical timestamp to represent the
entire memory image, which substantially lowers the
required hardware overhead. Strata [25] partitions a
multiprocessor execution into global strata, where a
stratum ends when a core seeks to read or write a block
written by another core in the current stratum. While
Rerun also ends its episodes on such conflicts, episodes
differ from strata. Most importantly, each Rerun
episode is local to a core, while each stratum is global
across the system. In part for this reason, our results
show that as the number of cores per system increases,
Rerun’s log size scales better than Strata’s.

Rerun also builds on software race recorders that
used Lamport Clocks to establish a partial ordering of
the system execution. ROLT [18] applied ordering only
to synchronization primitives and not general memory
operations. As a result, deterministic replay is provided
only for executions that are data-race-free.
InstantReplay [17] also used Lamport Clocks for
ordering in the system, although unlike ROLT,
InstantReplay recorded races between all memory
operations by wrapping every shared object access
with monitor code. However, due to the extra monitor
code, the execution overhead of InstantReplay was
obtrusive. In contrast, Rerun uses hardware to record
memory races at low overhead. ReVirt [8] records a

Table 2: Hardware added to the base
system for each recorder

System Added Structures

State/
Core

(bytes)

Strata -
Snoop
[25]

Per Core:
1 dependence bit / cache line
Dynamic Mem. Instruction Counter
Eviction Bloom filter

190

Strata -
Dir
[25]

Per Core:
1 dependence bit / cache line
Dynamic Mem. Instruction Counter

Per Directory:
1 dependence bit / directory entry
Memory IC vector

1.25K

FDR-1
[39]

Per Core:
1 timestamp / cache line
Dynamic instruction counter
Vector of instruction counts

4K

FDR-2
[40]

Per Core:
Timestamp Memory,
Dynamic instruction counter
Vector of instruction counts
Sliding Window

24K

Rerun
(this
paper)

Per Core:
Dynamic Mem. Instruction Counter
Timestamp Register
Read/Write Bloom Filters

Per L2 Bank:
Timestamp Register

166

50 100 150 200 250

cores

0

200

400

600

800

1000

K
ilo

by
te

s

FDR-2
FDR-1
Strata-Dir
Strata-Snoop
Rerun

Figure 9: Hardware overheads as the number

11

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

multiprocessor execution on a page granularity. Write
permissions are granted exclusively, allowing the
system to record races by remembering the grant order.
This mechanism limits concurrency during recording,
resulting in significant slowdowns.

Rerun’s episodes derive inspiration from
aggressive implementations of sequential consistency.
BulkSC [6] builds chunks of dynamic instructions that
it seeks to commit atomically by transmitting
signatures to other cores or a memory controller. On
success, the chunk commits “in bulk;” on failure, a
chunk aborts “in bulk” (e.g., back to a checkpoint). In
contrast, Rerun never aborts an execution, but rather
passively records the core’s execution. Also, Rerun’s
Bloom filters are never transmitted. Store-wait-free
[37] builds small atomic sequences when memory
references are performed out of order, which then
either commit or abort atomically. Once again, Rerun
never alters or aborts execution. Furthermore, Rerun’s
episodes are always active and much larger than store-
wait-free’s atomic sequences.

Rerun also builds on ideas from hardware
transactional memory. First, Rerun’s episodes look
somewhat like the implicit transactions some systems
use to execute critical sections in parallel [32, 21].
However, these systems trigger aborts (Rerun doesn’t)
and do not record races (Rerun does). Second,
Transaction Coherence and Consistency (TCC) [11]
assumes “all transactions all the time” and can enable
deterministic replay by recording the total order in
which transactions obtain the “commit token.” While
Rerun assumes “all episodes all the time,” all its
episodes are transparent to programmers, never abort,
and are ordered via a distributed implementation of
Lamport Clocks without a commit token
implementation. Third, Rerun’s read and write set
filters borrow from transactional memory
implementations that use signatures [5, 42, 23, 35].
Rerun uses these filters to passively record execution
and not to enable aborts of concurrent conflicting
programmer-specified transactions.

7. Conclusions
We develop Rerun, a memory race recorder that

uses episodes to efficiently log memory reference
order. Episodes are identified by length, determined by
how long a thread executes without conflicting with
other threads, and ordered with Lamport Clocks. We
show Rerun uses small hardware state, generates a
small race log, and scales well as number of cores per
system grows. Future work will seek to speed replayer
execution and reduce coherence protocol overhead.

Acknowledgements
We thank Dan Gibson, Mike Marty, Dan Sorin,

Mike Swift, Min Xu, the Wisconsin Multifacet group,
and the Wisconsin Computer Architecture Affiliates
for their comments and/or proofreading. Finally, we
thank the Wisconsin Condor project, the UW CSL, and
Virtutech for their assistance.

This work is supported in part by the National
Science Foundation (NSF), with grants CCR-0324878,
CNS-0551401, and CNS-0720565, as well as
donations from Intel and Sun Microsystems. Hill has in
significant financial interest in Sun Microsystems. The
views expressed herein are not necessarily those of the
NSF, Intel, or Sun Microsystems.

References
[1] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. K.

Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluating
Non-deterministic Multi-threaded Commercial Workloads. In
Proc. 5th Workshop on Computer Architecture Evaluation
Using Commercial Workloads, pages 30–38, Feb. 2002.

[2] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Replay of
Multiprocessor Programs. Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, pages 194–206, 1991.

[3] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault
Tolerance. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating Systems Principles, 1995.

[4] J. L. Carter and M. N. Wegman. Universal Classes of Hash
Functions (extended abstract). In Proceedings of the 9th Annual
ACM Symposium on Theory of Computing, pages 106–112,
1977.

[5] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk
Disambiguation of Speculative Threads in Multiprocessors. In
Proc. of the 33nd Annual Intnl. Symp. on Computer
Architecture, June 2006.

[6] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk
Enforcement of Sequential Consistency. In Proc. of the 34th
Annual Intnl. Symp. on Computer Architecture, June 2007.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. In Proc. of the 2002 Symp. on Operating
Systems Design and Implementation, pages 211–224, Dec.
2002.

[8] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fetterman.
Execution Replay on Multiprocessor Virtual Machines. In
International Conference on Virtual Execution Environments
(VEE), 2008.

[9] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques
to Enhance the Performance of Memory Consistency Models.
In Proceedings of the International Conference on Parallel
Processing, volume I, pages 355–364, Aug. 1991.

[10] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In
Proc. of the 26th Annual Intnl. Symp. on Computer
Architecture, pages 162–171, May 1999.

[11] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional Memory Coherence and
Consistency. In Proc. of the 31st Annual Intnl. Symp. on
Computer Architecture, June 2004.

12

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

[12] Intel. Intel 64 Architecture Memory Ordering White Paper.
Technical Report SKU 318147-001, Intel Corp., Aug. 2007.
http://developer.intel.com/products/processor/manuals/318147.
pdf.

[13] A. Kamil, J. Su, and K. Yelick. Making Sequential Consistency
Practical in Titanium. In Proc. of SC2003, pages 15–30, Nov.
2003.

[14] C. Kozyrakis and K. Olukotun. ATLAS: A Scalable Emulator
for Transactional Parallel Systems. In Workshop on
Architecture Research using FPGA Platforms, Feb. 2005.

[15] L. Lamport. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7):558–
565, July 1978.

[16] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2007.

[17] T. J. Leblanc and J. M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on
Computers, C-36(4):471–482, Apr. 1987.

[18] L. Levrouw and K. Audenaert. Minimizing the Log Size for
Execution Replay of Shared-Memory Programs. In Lecture
Notes In Computer Science; Vol. 854, Parallel Processing:
CONPAR 94 - VAPP VI, Third Joint International Conference
on Vector and Parallel Processing, Linz, Austria, September 6-
8, 1994, Proceedings, pages 76–87, 1994.

[19] D. Lucchetti, S. K. Reinhardt, and P. M. Chen. ExtraVirt:
Detecting and recovering from transient processor faults. In
2005 Symp. on Operating System Principles work-in-progress
session, Oct. 2005.

[20] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. Computer Architecture News,
pages 92–99, Sept. 2005.

[21] J. F. Martínez and J. Torrellas. Speculative Synchronization:
Applying Thread-Level Speculation to Explicitly Parallel
Applications. In Proc. of the 10th Intnl. Conf. on Architectural
Support for Programming Languages and Operating Systems,
pages 18–29, Oct. 2002.

[22] A. McDonald, J. Chung, B. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural Semantics for
Practical Transactional Memory. In Proc. of the 33nd Annual
Intnl. Symp. on Computer Architecture, June 2006.

[23] C. C. Minh, M. Trautmann, J. Chung, A. Mcdonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
Effective Hybrid Transactional Memory System with Strong
Isolation Guarantees. In Proc. of the 34th Annual Intnl. Symp.
on Computer Architecture, June 2007.

[24] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting Nested
Transactional Memory in LogTM. In Proc. of the 12th Intnl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 359–370, Oct. 2006.

[25] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared
Memory Dependencies Using Strata. In Proc. of the 12th Intnl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 229–240, Oct. 2006.

[26] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously Recording Program Execution for Deterministic
Replay Debugging. In Proc. of the 32nd Annual Intnl. Symp. on
Computer Architecture, pages 284–295, June 2005.

[27] R. H. B. Netzer. Optimal Tracing and Replay for Debugging
Shared-Memory Parallel Programs. In Proc. of the ACM/ONR
Workshop on Parallel and Distributed Debugging (PADD),
pages 1–11, 1993.

[28] J. Oplinger and M. S. Lam. Enhancing Software Reliability
with Speculative Threads. In Proc. of the 10th Intnl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 184–196, Oct. 2002.

[29] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, and N. Sastry. Recovery-Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case Studies.
Technical report, UC Berkeley Computer Science Technical
Report UCB//CSD-02-1175, Mar. 2002.

[30] M. Prvulovic. CORD: Cost-effective (and nearly overhead-free)
Order Recording and Data race detection. In Proc. of the 12th
IEEE Symp. on High-Performance Computer Architecture, Feb.
2006.

[31] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level
Speculation Mechanisms to Debug Data Races in Multithreaded
Codes. In Proc. of the 30th Annual Intnl. Symp. on Computer
Architecture, pages 110–121, June 2003.

[32] R. Rajwar and J. R. Goodman. Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution. In Proc.
of the 34th Annual IEEE/ACM International Symp. on
Microarchitecture, Dec. 2001.

[33] M. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient Hardware
Hashing Functions for High Performance Computers. IEEE
Transactions on Computers, 46(12):1378–1381, 1997.

[34] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative
Retirement and Larger Instruction Windows to Narrow the
Performance Gap between Memory Consistency Models. In
Proc. of the 9th ACM Symp. on Parallel Algorithms and
Architectures, pages 199–210, June 1997.

[35] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam.
Implementing Signatures for Transactional Memory. In Proc. of
the 40th Annual IEEE/ACM International Symp. on
Microarchitecture, Dec. 2007.

[36] D. L. Weaver and T. Germond, editors. SPARC Architecture
Manual (Version 9). PTR Prentice Hall, 1994.

[37] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for Store-wait-free Multiprocessors. In Proc. of the
34th Annual Intnl. Symp. on Computer Architecture, June 2007.

[38] M. Xu. Race Recording for Multithreaded Deterministic Replay
Using Multiprocessor Hardware. PhD thesis, University of
Wisconsin, 2006.

[39] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder” for
Enabling Full-system Multiprocessor Deterministic Replay. In
Proc. of the 30th Annual Intnl. Symp. on Computer
Architecture, pages 122–133, June 2003.

[40] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive
Reduction (RTR) for Longer Memory Race Recording. In Proc.
of the 12th Intnl. Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 49–60,
Oct. 2006.

[41] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. ReTrace: Collecting Execution Trace with
Virtual Machine Deterministic Replay. In Proceedings of the
3rd Annual Workshop on Modeling, Benchmarking and
Simulation, June 2007.

[42] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D.
Hill, M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling
Hardware Transactional Memory from Caches. In Proc. of the
13th IEEE Symp. on High-Performance Computer Architecture,
pages 261–272, Feb. 2007.

