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Abstract

Voronoi estimators are non-parametric and adaptive estimators of the intensity of a point process. The intensity estimate

at a given location is equal to the reciprocal of the size of the Voronoi/Dirichlet cell containing that location. Their major

drawback is that they tend to paradoxically under-smooth the data in regions where the point density of the observed point

pattern is high, and over-smooth where the point density is low. To remedy this behaviour, we propose to apply an additional

smoothing operation to the Voronoi estimator, based on resampling the point pattern by independent random thinning. Through

a simulation study we show that our resample-smoothing technique improves the estimation substantially. In addition, we

study statistical properties such as unbiasedness and variance, and propose a rule-of-thumb and a data-driven cross-validation

approach to choose the amount of smoothing to apply. Finally we apply our proposed intensity estimation scheme to two

datasets: locations of pine saplings (planar point pattern) and motor vehicle traffic accidents (linear network point pattern).

Keywords Adaptive intensity estimation · Independent thinning · Machine learning · Point process · Resampling ·

Voronoi intensity estimator

1 Introduction

In the analysis of spatial point patterns (van Lieshout 2000;

Chiu et al. 2013; Diggle 2014; Baddeley et al. 2015),

exploratory investigation often starts with non-parametric

analysis of the spatial intensity of points. The intensity func-

tion, which is a first order moment characterisation of the
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point process assumed to have generated the data, reflects

the abundance of points in different regions and may be seen

as a “heat map” for the events. For most datasets, it is not

realistic to assume that the underlying point process is homo-

geneous, i.e. that its intensity function is constant; rather it

is natural to start by assuming inhomogeneity.

The most prominent approach to non-parametric intensity

estimation is undoubtedly kernel estimation (Diggle 1985;

Silverman 1986; Diggle 2014; Baddeley et al. 2015). The

degree of smoothing is controlled by a smoothing parame-

ter, called the bandwidth, and the resulting estimates heavily

depend on the choice of bandwidth. A small bandwidth may

result in under-smoothing whereas a large bandwidth might

result in over-smoothing the intensity. Data-based procedures

for bandwidth selection have been studied extensively (Dig-

gle 1985; Silverman 1986; Berman and Diggle 1989; Scott

1992; Wand and Jones 1995; Loader 1999) including some

recent advances (Cronie and van Lieshout 2018). A further

problem with kernel estimation is that, if there are wide

variations in intensity across the spatial domain, it may be

impossible to find a single fixed bandwidth value which is

satisfactory for smoothing every part of the spatial domain.

Consequently the bandwidth must be spatially-varying, giv-

ing rise to a spatially “adaptive” kernel estimator (Davies and
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Hazelton 2010; Diggle 2014; Davies et al. 2016; Davies and

Baddeley 2018) at the cost of increased complexity.

Recently there has been increasing interest in point pat-

terns on linear networks (Okabe and Sugihara 2012; Ang

et al. 2012; Baddeley et al. 2015; Rakshit et al. 2018);

examples include street crimes or traffic accidents on a road

network (of a city). Here the matter of kernel estimation is

even more delicate due to the geometry of the underlying net-

work. Borruso (2003, 2005, 2008) proposed several methods

for kernel smoothing of network data without discussing sta-

tistical properties. Xie and Yan (2008) defined a kernel-based

intensity estimator for network point patterns without taking

the topography of the network into consideration and as a

result the estimation errors tended to be large, thus mak-

ing the estimator heavily biased. Okabe et al. (2009) further

introduced a class of so-called equal-split network kernel

density estimators which support both continuous and dis-

continuous schemes. By exploiting properties of diffusion

on networks, McSwiggan et al. (2017) developed a kernel

estimation method based on the heat kernel, which is the

appropriate linear network analogue of the Gaussian kernel.

In addition, Moradi et al. (2018) extended the classical spa-

tial edge corrected kernel intensity estimator to point patterns

on linear networks.

As a consequence of underlying causes such as demog-

raphy and human mobility, it is quite common to encounter

sharp boundaries between high and low concentrations of

events. For example, street crimes and traffic accidents tend to

happen particularly in busy streets, which may be surrounded

by quiet neighbourhoods. The classical kernel estimation

approach is often unsuitable for such types of data.

Echoing Barr and Schoenberg (2010), we argue that

kernel-based approaches may be unsatisfactory when there

are sharp boundaries between parts with high and low

intensities. Fixed bandwidth kernel smoothing results in

over-smoothing in high-intensity areas, under-smoothing in

low-intensity areas, and a blurring of sharp boundaries (Bad-

deley et al. 2015). By using a spatially adaptive kernel

estimator we may reduce such problems when estimating the

intensity function, but optimal bandwidth selection becomes

even more challenging and important (Davies and Hazelton

2010).

As an alternative, one could consider an approach with-

out any choice of tuning parameters, e.g. a tessellation-based

approach (van Lieshout 2012; Schaap 2007). One such

approach is provided by Voronoi intensity estimation (Ord

1978; Barr and Schoenberg 2010; Okabe and Sugihara 2012),

defined such that within a given Voronoi cell of the point

pattern the intensity estimate is set to the reciprocal of the

size of that cell (Okabe et al. 2000). When employing the

Voronoi intensity estimator, one thing that quickly becomes

evident is that it often accentuates local features too much, in

particular in regions with high event density. This reflects a

previously observed phenomenon: adaptive estimators, such

as the Voronoi intensity estimator, may smooth too little

whereas kernel estimators may smooth too much in dense

regions (Baddeley et al. 2015, Section 6.5.2). Hence, one

should be able to find some middle ground and we here aim

at providing a contribution to that.

Our idea is simple. In dense parts surrounded by empty

neighbourhoods, Voronoi intensity estimators tend to smooth

too little, thus generating excessive peaks in the intensity

estimate in those parts. By removing points in such a dense

part we reduce the peaks, which results in a smoother inten-

sity estimate, with a shape more similar to the true intensity

function. However, the problem of doing this “manually” is

twofold: (1) it is not clear which specific points we should

remove, and (2) we need to compensate for the reduced

total mass. To solve these issues, we propose to generate

m ≥ 1 independent random point patterns, each obtained by

randomly thinning the original point pattern with the same

retention probability p. From each of the thinned patterns

we compute a Voronoi intensity estimate. In order to com-

pensate for the reduced mass, we then scale each of the m

estimates by the reciprocal of the retention probability, and

use the corresponding average as final estimate of the inten-

sity function. We propose this technique for point patterns in

rather general spaces.

The paper is structured as follows. In Sect. 2 we give a

short background on point processes and intensity estimation.

In Sect. 3 we introduce our resample-smoothing technique,

study its statistical properties and discuss ways to choose the

amount of smoothing, i.e. thinning, to apply. In Sect. 4 we

assess the performance of our approach numerically for a few

different planar point processes and in Sect. 5 we apply our

methodology to two datasets: a planar point pattern and a lin-

ear network point pattern. Section 6 contains a discussion and

some directions for future work and in the Electronic Sup-

plementary Material we provide the proofs of the theoretical

results in the paper as well as bias and variance plots together

with box plots for estimation errors for the simulation study

in Sect. 4.

2 Preliminaries

The spatial domain is a general space S, assumed to be a

complete separable metric space with distance metric d(·, ·).

Assume there is a reference measure A �→ |A| for A ⊆

S, which is sigma-finite and locally finite. Integration with

respect to this measure is denoted by
∫

du. All subsets A ⊆ S

under consideration are assumed to be Borel sets.

Let X be a simple point process (Daley and Vere-Jones

2008) in S. A realisation of X is a locally-finite set of points in

S. The cardinality of the set X ∩ A, A ⊆ S, will be denoted by

N (X∩A) ∈ {0, 1, . . .} and we note that by definition we have
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N (X ∩ A) < ∞ a.s. for bounded A ⊆ S and N (X ∩ {u}) ∈

{0, 1} for any u ∈ S.

A point pattern is a finite set x = {x1, . . . , xn} ⊂ S,

n ≥ 0, of distinct points in S. Inside any bounded study

region W ⊆ S, the partial realisation X ∩ W of the point

process is a point pattern.

Relevant examples of the space S include:

– Euclidean space S = R
d of dimension d ≥ 1 (van

Lieshout 2000; Diggle 2014; Baddeley et al. 2015) with

the Euclidean distance d(u, v) = ‖u − v‖, u, v ∈ R
d ,

where ‖ · ‖ = ‖ · ‖d denotes the Euclidean norm, and

Lebesgue measure | · |.

– The sphere S = αS
d−1 = {x ∈ R

d : ‖x‖d = α},

of radius α > 0 in dimension d ≥ 1, where d(·, ·) is

the great circle distance and | · | is the spherical surface

measure (Lawrence et al. 2016; Møller and Rubak 2016).

– A linear network, i.e. a union

S = L =

k⋃

i=1

li

of k ∈ {1, 2, . . .} line segments li = [ui , vi ] = {tui +

(1 − t)vi : 0 ≤ t ≤ 1} ⊆ R
d , d ≥ 1. A common choice

for d(u, v) is the shortest-path distance, which gives the

shortest length of any path in L joining u, v ∈ L (Okabe

and Sugihara 2012; Ang et al. 2012; Rakshit et al. 2017).

Treated as a graph with vertices given by the intersec-

tions and endpoints of the line segments, L is assumed

to be connected. The measure | · | here corresponds to

integration with respect to arc length.

We emphasise that in each of the above cases there exist

other metrics and measures which may be more suited for a

particular context (Rakshit et al. 2017).

At times, we will assume that X is stationary, or invariant.

More specifically, there is a family of transformations/shifts

{θs : s ∈ S}, θs : S → S, along S, which induces a so-called

flow, under which the distribution of θs X = {θs(x) : x ∈ X}

coincides with that of X for any s ∈ S. The underlying

assumption will be that S is a so-called (unimodular) homo-

geneous space with a fixed origin o ∈ S, with d(·, ·) chosen

such that it metrizes S and | · | chosen to be the associated

(left) Haar measure (Last 2010; Schneider and Weil 2008);

each such space is a locally compact second-countable Haus-

dorff space and thereby S becomes a complete separable

metric space. To exemplify, in Euclidean spaces with | · |

chosen to be Lebesgue measure, we let θs(u) = u + s ∈ R
d ,

u, s ∈ R
d , which yields the classical notion of stationarity,

and on a sphere with the corresponding spherical measure we

consider the orthogonal group of rotations. Note that a more

general setting is also possible (Kallenberg 2017, Chapter 7).

2.1 Intensity functions

To characterise the first moment of X , i.e. the marginal dis-

tributional properties of its points, we consider its intensity

function ρ : S → [0,∞). It may be defined through the

Campbell formula (Daley and Vere-Jones 2008) which states

that for any measurable function f ≥ 0 on S,

E

[∑

x∈X

f (x)

]
=

∫

S

f (u)ρ(u)du.

In particular,

E[N (X ∩ A)] =

∫

A

ρ(u)du

for any A ⊆ S. If X is stationary, then ρ(u) ≡ ρ ∈ (0,∞)

for any u ∈ S. Heuristically, ρ(u)du may be interpreted as

the probability of finding a point of X in an infinitesimal

neighbourhood du of u ∈ S with measure du.

2.2 Independent thinning

A key ingredient in our smoothing technique is the notion

of independent thinning (Chiu et al. 2013, Section 5.1):

given some measurable retention probability function p(u) ∈

(0, 1], u ∈ S, we run through the points of X and delete a

point x ∈ X with probability 1 − p(x), independently of the

deletions carried out for the other points of X . The resulting

thinned process has intensity

ρth(u) = p(u)ρ(u), u ∈ S,

where ρ(·) is the intensity of the original process X (Chiu

et al. 2013, Section 5.1). For further details on the thinning

of point processes, see e.g. Møller and Schoenberg (2010)

and Daley and Vere-Jones (2008, Section 11.3).

It is worth mentioning that a Poisson process stays Poisso-

nian after independent thinning (Daley and Vere-Jones 2008,

Exercise 11.3.1) and, in addition, the independent thinning

of an arbitrary point process X with low retention probability

results in a point process which, from a distributional point

of view, is approximately a Poisson process (Baddeley et al.

2015, Section 9.2.2).

2.3 Voronoi tessellations

The next key ingredient in our estimation scheme is the

Voronoi/Dirichlet tessellation of a point pattern x =

{x1, . . . , xn} contained in some subset W ⊆ S (Chiu et al.

2013; Okabe et al. 2000). Generally speaking, a tessellation

of W is a tiling such that i) the union of all tiles constitutes

all of W , and ii) the interiors of any two tiles have empty

intersections.
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The Voronoi/Dirichlet cell Vx associated with x ∈ x con-

sists of all u ∈ S which are closer to x than any y ∈ x\{x}, i.e.

Vx = Vx (x, W )

= {u ∈ W : d(x, u) ≤ d(y, u) for all y ∈ x\{x}}. (1)

The tiling {Vx }x∈x is termed the Voronoi/Dirichlet tessella-

tion generated by x. Clearly, the shape of each Vx depends

on the distance d(·, ·) chosen for S and its size, |Vx |, depends

on the chosen reference measure | · |.

2.4 Intensity estimation

Given a point pattern x = {x1, . . . , xn} in some study region

W ⊆ S, |W | > 0, we next set out to estimate ρ(u), u ∈ W ,

under the assumption that x is a realisation of X ∩ W .

Before going into details about specific estimators, we

briefly mention how different estimators’ performances may

be evaluated and compared. To evaluate the performance of

an estimator ρ̂(·) = ρ̂(·; X , W ) of ρ(u), u ∈ W , it is com-

mon practice to employ the Mean Integrated Square Error

(MISE):

MISE = E

[∫

W

(ρ̂(u) − ρ(u))2 du

]

=

∫

W

Var(ρ̂(u))du +

∫

W

bias(ρ̂(u))2du

= IV + ISB, (2)

where bias(ρ̂(u)) = E[ρ̂(u)] − ρ(u). Given k ≥ 1 realisa-

tions of X ∩ W , to obtain an estimate of MISE we average

over the integrated square errors generated by each of the k

realisations.

Alternatively, we may find estimates of the functions

Var(ρ̂(u)) and bias(ρ̂(u)), u ∈ W , based on the k patterns

and integrate these over W . This is the setup chosen for the

numerical evaluations presented in Sect. 4.

2.4.1 Voronoi intensity estimation

In practice, it is often the case that events occur frequently

in specific parts of the study region, e.g. that accidents often

happen in more crowded streets or on specific parts of a

highway, or that trees tend to grow mainly in specific parts of

a forest. In other words, there are sharp boundaries between

parts with high and low intensities. We argue, similarly to

Barr and Schoenberg (2010) and Ogata (2011), that in order

not to blur such boundaries, it is preferable to employ an

adaptive intensity estimation scheme, which adapts locally

to changes in the spatial distribution of the events.

Here we focus on a particular kind of adaptive intensity

estimator, the Voronoi estimator, defined as follows.

Definition 1 For a point process X with intensity function

ρ(·), the Voronoi intensity estimator of ρ(u), u ∈ W ⊆ S,

|W | > 0, is given by

ρ̂V (u) = ρ̂V (u; X , W ) =
∑

x∈X∩W

1{u ∈ Vx }

|Vx |

=
∑

x∈X∩W

1{u ∈ Vx (X , W )}

|Vx (X , W )|
, u ∈ W , (3)

where Vx is the Voronoi cell defined in (1). If X ∩ W = ∅

then ρ̂V (u) = 0.

The Voronoi intensity estimator, which was introduced by

Brown (1965) and Ord (1978) in the context of Euclidean

spaces, has been considered by Baddeley (2007); Ogata

(2011); Barr and Schoenberg (2010); van Lieshout (2012).

Ebeling and Wiedenmann (1993) have used it to study local

spatial concentration of photons, Duyckaerts et al. (1994)

and Duyckaerts and Godefroy (2000) have employed it to

estimate neuronal density, and it has been applied in the

setting of statistical seismology by Ogata (2011) and Bad-

deley et al. (2015). In the context of linear networks, Okabe

and Sugihara (2012) discussed a Voronoi based density esti-

mator, the network Voronoi cell histogram, for the purpose

of non-parametric density estimation on linear networks.

They further discussed geometric properties of Voronoi tes-

sellations on linear networks. Barr and Schoenberg (2010)

focused on the planar case and particular statistical proper-

ties.

3 Resample-smoothing of intensity
estimators

Barr and Schoenberg (2010) pointed out that when there are

abrupt changes in the intensity, kernel-based estimators may

yield substantial bias and high variance, and they showed that

the Voronoi estimator can alleviate these problems. Unfor-

tunately, Voronoi estimators tend to under-smooth in very

dense areas surrounded by nearly empty neighbourhoods.

This may be said about adaptive estimators in general; there

is a tendency of adapting too much to the particular features

of the observed point pattern x, rather than reflecting the fea-

tures of the intensity function of the underlying point process

X . To see how the under-smoothing, i.e. the over accentuat-

ing of local features of the Voronoi intensity estimator occurs,

note that for a pattern x, if x ∈ x is located in a very dense

part then its Voronoi cell becomes small and, consequently,

ρ̂V (u) = 1/|Vx | becomes very large for u ∈ Vx . A further

issue with the Voronoi intensity estimator is that its variance

tends to be quite large, thus resulting in quite unreliable esti-

mates.
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One may further ask whether there are other data-

dependent tessellations {Ci },
⋃

i Ci = W , giving rise to

estimators ρ̂(u) =
∑

i βi 1{u ∈ Ci }, βi > 0, which per-

form better than the Voronoi intensity estimator. In addition,

an advantage of the kernel estimation approach is arguably

in that it generates a smoothly varying intensity estimate, at

least when using certain kernels, as opposed to the possibly

unnatural “jumps” generated by the Voronoi estimator.

As a remedy for these issues, one suggestion is to follow

Barr and Schoenberg (2010) by considering the so-called

centroidal Voronoi intensity estimator. A further idea is to

introduce a smoothing procedure for ρ̂V (·), which would

reduce the unnaturally extreme peaks while smoothing out

the “jumps”. We next propose such a smoothing procedure,

which we refer to as resample-smoothing.

3.1 Definition of resample-smoothing

Recall the independent thinning operation in Sect. 2.2. We

will here focus on the simple case where p(u) ≡ p ∈ (0, 1],

u ∈ W , which is referred to as p-thinning (Chiu et al. 2013,

Section 5.1); we identify the case p = 1 with the unthinned

process X . From Sect. 2.2 we have that

ρ(u) =
ρth(u)

p
, u ∈ S,

where we recall the intensity ρth(·) of the thinned process

X p. Hence, dividing by p is exactly what is needed to com-

pensate for the reduced intensity caused by removing points.

We exploit this relationship in the following way. Given a

point pattern x and an estimator ρ̂(·) of ρ(u), u ∈ W , fix some

p ∈ (0, 1] and generate m ≥ 1 independent random patterns,

each obtained by randomly thinning the original data pattern

x with retention probability p. This yields thinned patterns

x1
p, . . . , xm

p , for each of which the intensity is estimated. We

now let the average of these m estimated intensity functions,

divided by p, be reported as the final estimate; note the sim-

ilarities with the approaches considered by Heikkinen and

Arjas (1998); Ferreira et al. (2002); Baddeley (2007). The

resample-smoothed Voronoi intensity estimator is formally

defined as follows.

Definition 2 Consider a point process X in S with inten-

sity function ρ(·). Given some p ∈ (0, 1] and m ≥ 1,

the resample-smoothed Voronoi intensity estimator of ρ(u),

u ∈ W ⊆ S, |W | > 0, is given by

ρ̂V
p,m(u) = ρ̂V

p,m(u; X , W ) =
1

m

m∑

i=1

ρ̂V
i (u)

p
, (4)

where

ρ̂V
i (u) = ρ̂V (u; X i

p, W ) =
∑

x∈X i
p

1{u ∈ Vx (X i
p, W )}

|Vx (X i
p, W )|

is the Voronoi intensity estimator based on the i th thinning

X i
p of X ∩ W . Note that when p = 1, ρ̂V

p,m(·) reduces to

ρ̂V (·) for any m ≥ 1.

Reflecting on the effect of the thinning procedure, for

each thinned version we obtain new Voronoi cells and conse-

quently different locations of the jumps in the corresponding

intensity estimate ρ̂V
i (·). This is what results in the “smooth-

ing” and it is also the remedy for choosing the specific tiling in

a possibly wrong/rigid way. Note also that we in fact simply

are considering the average of m different estimates of ρ(·).

3.2 Theoretical properties

We next look closer at some statistical properties of resample-

smoothed Voronoi intensity estimators. The proofs of all the

results presented can be found in the Electronic Supplemen-

tary Material (Online Resource 1).

We stress that in the case of the restriction X ∩ W of a

point process X to a (bounded) region W �= S, the Voronoi

cells Vx (X , W ) are different than when W = S. Hereby, dis-

tributional properties of ρ̂V
p,m(·) may be different depending

on how W is chosen.

We start by considering the asymptotic scenario where the

number of thinned patterns, m ≥ 1, in the estimator (4) tends

to infinity. Note that by the result below, we have that the limit

limm→∞ ρ̂V
p,m(u; X , W ) a.s. exists for a point process X .

Lemma 1 Given fixed p ∈ (0, 1], for any point pattern x ⊂

W ⊆ S we have that limm→∞ ρ̂V
p,m(u; x, W ) a.s. exists.

3.2.1 Bias

Turning to the first order properties of ρ̂V
p,m(·), we note that

∫

W

ρ̂V
p,m(u)du =

1

mp

m∑

i=1

∑

x∈X i
p

∫
W

1{u ∈ Vx (X i
p, W )}du

|Vx (X i
p, W )|

=
1

mp

m∑

i=1

N (X i
p ∩ W ). (5)

Hence, when p = 1 we have preservation of mass, i.e.∫
W

ρ̂V
p,m(u)du = N (X ∩ W ). Taking expectations on both

sides in (5), we obtain

E

[∫

W

ρ̂V
p,m(u)du

]
=

1

m

m∑

i=1

p
∫

W
ρ(u)du

p
=

∫

W

ρ(u)du,

(6)

i.e. for any m ≥ 1 and p ∈ (0, 1],
∫

W
ρ̂V

p,m(u)du is an unbi-

ased estimator of E[N (X ∩ W )], and by the law of large

numbers, Eq. (5) converges to (6) a.s. as m → ∞.
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Noting that E[ρ̂V
p,m(u; X , W )] = E[ρ̂V (u; X p, W )]/p

for any p ∈ (0, 1] and m ≥ 1, we see that ρ̂V
p,m(u; X , W ) is

unbiased for the estimation of the intensity of X if and only

if the original Voronoi intensity estimator is unbiased for the

estimation of the intensity of an arbitrary thinning X p. There

is unfortunately not much more to be said without explicitly

assuming something about the distributional properties of X .

When X is stationary (see Sect. 2), all Voronoi cells have

the same distribution and we may speak of the typical Voronoi

cell Vo = Vo(X), which satisfies Vo
d
= θ−xVx (X , S) for

any x ∈ X ; here θ−x denotes the transformation/shift such

that x is taken to the origin o ∈ S. In particular, we have

that ρ̂V
p,m(u) and ρ̂V

p,m(v) have the same distribution for any

u, v ∈ S and it can be shown that unbiasedness holds.

Theorem 1 For a stationary point process X in W = S with

constant intensity ρ > 0, the resample-smoothed Voronoi

intensity estimator (4) is unbiased for any choice of p ∈ (0, 1]

and m ≥ 1.

As our main interest lies in estimating non-constant inten-

sity functions, stationary models are of limited practical

interest. We next turn to inhomogeneous Poisson processes

in Euclidean spaces.

Theorem 2 Let X be a Poisson process in W = S = R
d ,

d ≥ 1, with intensity function ρ(u), u ∈ R
d , which satisfies

the Lipschitz condition that for some μu > 0, |ρ(v)−ρ(u)| ≤

μuε for v ∈ B(u, ε) and ε > 0 sufficiently small; B(u, ε)

denotes the Euclidean ball with centre u and radius ε > 0.

Denoting by Cu(X) the Voronoi cell containing u ∈ R
d ,

assume further that mκ := supu∈Rd E[|Cu(X)|−κ ] < ∞ for

some κ ≥ 1 + 1/d. Then, for any u ∈ R
d , p ∈ (0, 1] and

m ≥ 1,

∣∣∣ρ(u) − E

[
ρ̂V

p,m(u)

]∣∣∣ ≤ Cp−1(pρ(u))−1/d log(pρ(u))2/d

for some C > 0 that depends on the intensity. The right hand

side tends to 0 as the intensity tends to infinity.

Remark 1 The moment condition and the Lipschitz assump-

tion on ρ can be relaxed to weaker versions and still have the

left hand side go to 0, but the rate would be different.

It has been conjectured that the size of the typical cell

of a homogeneous Poisson process follows a (generalised)

Gamma distribution (see e.g. Chiu et al. 2013); note in partic-

ular Lemma 2 below. The moment condition in the statement

of the above result, i.e. mκ < ∞, would be satisfied if this is

indeed the case. Under such a conjectured distribution, Barr

and Schoenberg (2010) showed that in the planar case the

original Voronoi intensity estimator is ratio-unbiased for a

given class of intensity functions.

3.2.2 Variance

Regarding the variance of ρ̂V
p,m(u), the next result shows that

by thinning as much as possible we also obtain a variance of

the resample-smoothed Voronoi estimator which is close to

0. We see that for cases where the estimator is unbiased we

should, in theory, smooth as much as possible, in combination

with choosing m as large as possible.

Theorem 3 Consider a point process X restricted to W ⊆ S,

where ρ̂V (u) = ρ̂V (u; X , W ), u ∈ W , has finite variance.

Given p ∈ (0, 1] and m ≥ 1, the variance of ρ̂V
p,m(u) =

ρ̂V
p,m(u; X , W ) satisfies

Var(ρ̂V
p,1(u))/m ≤ Var(ρ̂V

p,m(u)) ≤ Var(ρ̂V
p,1(u))

and Var(ρ̂V
p,m(u)) converges as m → ∞ to the covariance

between ρ̂V (u; X1
p, W )/p and ρ̂V (u; X2

p, W )/p, where X1
p

and X2
p are two arbitrary p-thinned versions of X.

Let m ≥ 1 be fixed. For a bounded W ⊆ S it follows

that lim p→0 Var(ρ̂V
p,m(u; X , W )) = 0. Moreover, consider-

ing a sequence Wp ⊆ S, p ∈ (0, 1], which increases (in

terms of inclusion) as p decreases and satisfies E[N (X p ∩

Wp)] = p
∫

Wp
ρ(u)du → 0 as p → 0, we have that

lim p→0 Var(ρ̂V
p,m(u; X , Wp)) = 0.

Turning to the stationary case, from the proof of Theo-

rem 1 (Online Resource 1) we have that the p-thinning X p

of a stationary point process X with intensity ρ > 0 is again

stationary, but with intensity pρ. For X p, the distribution

P̄p(·) of the size of the cell that covers u is the same for

any u ∈ S and it is given by [see Last (2010, Section 8) and

Schneider and Weil (2008, Theorem 10.4.1.)]

P̄p(A) = pρ

∫

A

t P|Vo(X p)|(dt), A ⊆ [0,∞), (7)

where P|Vo(X p)|(·) is the distribution of the typical cell size.

Besides giving us the unbiasedness in Theorem 1, i.e.

E[ρ̂V
p,m(u)] = p−1 pρ

∫ ∞

0

t−1t P|Vo(X p)|(dt) = ρ,

the relationship (7) further yields

E[ρ̂V
p,1(u)2] =

1

p2

∫ ∞

0

1

t2
P̄p(dt)=

ρ

p

∫ ∞

0

1

t
P|Vo(X p)|(dt)

=
ρ

p
E[1/|Vo(X p)|],

Var(ρ̂V
p,1(u)) =

ρ

p
E[1/|Vo(X p)|] − ρ2.
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Through the proof of Theorem 3 (Online Resource 1) we

obtain that the variance of ρ̂V
p,m(u) is given by

ρ

(
E[1/|Vo(X p)|]

p
− ρ

)
×

×
1 + (m − 1)Corr(ρ̂V (u; X1

p, S), ρ̂V (u; X2
p, S))

m
, (8)

where Corr denotes correlation. Unfortunately, we cannot

get much further in the general setup; the problem lies in that

P|Vo|(·) typically is not known.

There is, however, one particular case where we can say

a bit more and that is for Poisson processes on R.

Lemma 2 For a Poisson process on R with intensity ρ > 0,

for any p ∈ (0, 1] and m ≥ 1 the typical cell size of X p

follows an Erlang/Gamma distribution with shape and rate

parameters 2 and 2pρ, respectively. Hence Var(ρ̂V
p,m(u)) ≤

Var(ρ̂V
p,1(u)) = ρ2.

Empirically, we have consistently observed that for a large

enough m, the variance of ρ̂V
p,m(u) decreases as p decreases,

for u ∈ W located a given distance from the boundary of

W ⊆ S. As this is partly supported by Theorem 3, we are led

to the following conjecture.

Conjecture 1 For an arbitrary point process X in S and a

large enough m, the variance of ρ̂V
p,m(u) is a decreasing

function of p ∈ (0, 1]. In particular, if ρ̂V
p,m(u) is unbiased,

this means that MISE is decreasing with p.

3.3 Choosing the smoothing parameters

When using the resample-smoothed Voronoi intensity esti-

mator (4) in practice, one needs to specify the smoothing

parameters m ≥ 1 and p ∈ (0, 1] prior to finding the inten-

sity estimate. We next discuss how to obtain proper choices

for m and p.

3.3.1 Choosing the number of thinnings

Lemma 1 tells us that for a fixed p ∈ (0, 1] and any point

pattern x ⊂ W ⊆ S, we have that ρ̂V
p,m(u; x, W ) exists

a.s. as m → ∞. The question that remains, however, is

for which m ≥ 1 we are sufficiently close to the limit. In

our numerical experiments in Sect. 4 we illustrate that the

estimated bias and variance of ρ̂V
p,m(u) do not change sig-

nificantly for m ≥ 200. Nevertheless, we propose to fix

m = 400 and then proceed by finding a proper choice for

p ∈ (0, 1].

3.3.2 Choosing retention probability

The selection of p ∈ (0, 1] is clearly the more delicate matter

here; essentially we are faced with problems similar to those

of choosing bandwidths in kernel estimation.

Through our numerical experiments (see Sect. 4) we have

found that the choice p ≤ 0.2 seems to generate the best

intensity estimates in the sense that the variance-bias-tradeoff

is taken into account by keeping both the bias and variance

relatively small. From Sect. 4, Theorem 3 and Conjecture 1 it

seems that the smaller the p, the better the estimate. We refer

to the choice m = 400 and p ≤ 0.2 as our rule-of-thumb.

It should be pointed out that very small values for p may

require larger values for m.

We also propose a cross-validation approach to select

p when a data-driven approach is preferred to the rule-of-

thumb. Recalling a comment in Sect. 2.2 about independent

thinnings yielding approximate Poissonian distributional

properties of the resulting processes, a natural approach to

choosing p when the number of thinned patterns, m, is fixed is

to consider Poisson process likelihood cross-validation. This

method has a long history in the literature of point processes

and has e.g. been frequently used for bandwidth selection

in kernel-based estimation (Silverman 1986; Loader 1999).

More specifically, given a point pattern x = {x1, . . . , xn} ⊂

W ⊆ S and some fixed m ≥ 1, we choose the correspond-

ing resampling/retention probability as a maximiser of the

cross-validation criterion

CV (p) = CVm(p) =

n∑

i=1

log ρ̂V
p,m(xi ; x\{xi }, W )

−

∫

W

ρ̂V
p,m(u; x, W )du, p ∈ (0, 1].

(9)

Note that ρ̂V
p,m(·; x\{xi }, W ) is the leave-one-out version of

ρ̂V
p,m(·; x, W ), i.e. the resample-smoothed Voronoi intensity

estimator based on the reduced sample x\{xi }. Computation

of CV (p), p ∈ (0, 1], can be quite costly. In practice we may

ignore the integral term in (9) since it is approximately equal

to the number of points in the pattern. Moreover, in practice

we calculate CV (p j ), j = 1, . . . , k, 0 < p j−1 < p j ≤ 1,

sequentially by first generating X i
pk

and then iteratively gen-

erating X i
p j−1

= (X i
p j

)p j−1/p j
, i = 1 . . . , m, j = 2, . . . , k.

Note that for small m the graph of CV (p) may not be smooth

and might contain local extrema.

Finally, if the value obtained for p through the cross-

validation would deviate too much from the rule-of-thumb,

we recommend following the rule-of-thumb; see the log-

Gaussian Cox process example in Sect. 4 for a situation where

this occurs.
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3.4 Large scale data and sparsity

In general, when the number of events, n, of an observed

point pattern x = {x1, . . . , xn} is very large, it is often natural

to consider an adaptive intensity estimator as the scales of

intensity likely vary a lot.

It may not be computationally feasible to compute ρ̂V
p,m(·),

p ∈ (0, 1], for an arbitrary m ≥ 1 (or any other intensity

estimator for that matter). An alternative way of exploiting

the proposed setup is to consider ρ̂V
p0,m(·) for some p0 ≤ 0.2

and m = 1. This means that we would introduce sparsity by

only having to generate Voronoi cells for less than 30% of

the original number of points. The results in Sect. 4 indicate

how good an estimate one would typically obtain. Moreover,

if the computation of ρ̂V
p0,1

(·) is reasonably quick, one could

generate a further estimate ρ̂V
p0,1(·) and average over these

to obtain ρ̂V
p0,2(·). One could then continue like this in a

stepwise fashion, given a total computation timeframe. This

approach could also be useful in machine learning settings

(cf. Holmström and Hamalainen 1993); note that ρ̂V
p,m(·)/n

is a density estimate for a sample x = {x1, . . . , xn} ⊂ W .

4 Numerical experiments

As previously pointed out, we assess our intensity estima-

tion approach numerically, which we choose to do in the

Euclidean setting.

In our simulation study, we consider four different types

of models with varying degrees of variation in intensity and

spatial interaction; clustering, spatial randomness and regu-

larity. For each model we use 500 realisations on W = [0, 1]2

to generate numerical estimates of relevant quantities such

as bias, variance, Integrated Variance (IV), Integrated Square

Bias (ISB) and Integrated Absolute Bias (IAB) for ρ̂V
p,m(u),

u ∈ W ; recall that Mean Integrated Square Error (MISE) is

obtained as the sum of IV and ISB.

The resample-smoothed Voronoi estimators in the two-

dimensional plane and on linear networks were implemented

in the R language using the package spatstat (Baddeley

et al. 2015) and will be released publicly in a future version

of spatstat. Our simulation experiments and figures were

generated using this implementation.

For each model considered, in the Electronic Supplemen-

tary Material (Online Resource 2), we provide plots of the

estimated bias and variance for m = 400 and a range of

values of p ∈ (0, 1], together with the estimated biases

and variances obtained through kernel estimation. There, we

additionally provide box plots related to point-wise estima-

tion errors.

The overall conclusion is that we clearly reduce the esti-

mation errors by resample-smoothing the Voronoi intensity

estimator. Moreover, the cross-validation approach to select-

ing p on average yields slightly poorer intensity estimates

than the rule-of-thumb, in particular if the model is clustered.

Looking at the box plots in the Electronic Supplementary

Material (Online Resource 2), we argue that when e.g. p =

0.01 our proposed approach outperforms the two competing

kernel estimation approaches, when we are considering clus-

tering or spatial randomness. Under regularity the picture is a

bit more varied—the proposed method performs better than

the kernel based approaches in terms of extreme over and

under estimation. Note that in some situations even a larger

p yields similar results.

4.1 Homogeneous Poisson process

Here we consider a homogeneous Poisson process X in W =

[0, 1]2 with intensity ρ = 60. Table 1 provides estimates of

IAB, ISB and IV for ρ̂V
p,m(u), u ∈ W , m = 200, 300, 400 and

a range of values for p; recall that we use 500 realisations of

X . Indeed, the bias seems fairly stable over the range of values

for p and the variance is clearly decreasing with p; choos-

ing p according to the rule-of-thumb keeps MISE small. For

illustrational purposes, in Fig. 1 we provide estimation error

plots for one of the realisations, for p = 0.01 and p = 1

with m = 400. One can clearly see the gain of the resample-

smoothing. In addition, in the Electronic Supplementary

Material (Online Resource 2) we provide plots of the esti-

mated bias and variance for p = 0.01, 0.1, 0.3, 0.5, 0.7, 1

and m = 400, together with estimation-error-based box

plots, and they essentially confirm what has been observed

in Table 1.

Turning to the cross-validation approach to selecting p,

with m = 400, based on 500 realisations of the model we

obtain IAB = 3.1, ISB = 13.3 and IV = 177 which are

in the range of what one obtains when p is less than 0.3. In

Table 2 we further provide the 500 selected values for p and

we see that the majority of them fall within the range of our

rule-of-thumb.

Comparing with kernel estimation under uniform edge

correction, using Poisson likelihood cross-validation (Loader

1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain

IAB = 0.24, ISB = 0.11 and IV = 126.05. By instead

employing the bandwidth selection method of Cronie and

van Lieshout (2018), we obtain IAB = 0.87, ISB = 1.12 and

IV = 688.25. Hence, when p is small enough the proposed

approach outperforms both kernel approaches in terms of

MISE.

4.2 Inhomogeneous Poisson process

More interestingly, we next consider 500 realisations of an

inhomogeneous Poisson process X in W = [0, 1]2 with

intensity ρ(x, y) = |10 + 90 sin(16x)|; the expected total

point count is 58.6. Table 3 provides estimates of IAB, ISB
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Table 1 Estimates of IAB, ISB

and IV for ρ̂V
p,m(u),

u ∈ W = [0, 1]2,

m = 200, 300, 400 and a

sequence of p, based on 500

realisations of a homogeneous

Poisson process in W = [0, 1]2

with intensity ρ = 60

IAB ISB IV

m

p 200 300 400 200 300 400 200 300 400

.01 2.21 2.20 2.21 6.86 6.85 6.91 97.83 85.04 77.99

.03 4.71 4.69 4.68 30.63 30.42 30.35 92.59 87.18 85.34

.05 5.63 5.64 5.64 43.09 43.1 43.17 108.05 105.11 100.95

.1 5.7 5.7 5.7 43.5 43.2 43.0 158.4 154.8 152.5

.2 4.6 4.6 4.6 28.4 28.5 28.4 264.1 260.3 257.9

.3 3.9 3.9 3.9 22.5 22.2 22.2 375.3 370.6 368.8

.4 3.5 35 3.5 19.7 19.6 19.6 490.6 488.8 487.8

.5 3.2 3.2 3.2 18.1 18.1 18.1 672.0 623.9 622.9

.6 3.0 3.0 3.0 17.1 17.1 17.0 781.9 779.4 779.0

.7 2.9 2.9 2.9 16.5 16.5 16.5 960.0 958.7 958.8

.8 2.9 2.9 2.9 16.0 16.0 16.0 1172.2 1171.8 1171.1

.9 2.9 2.9 2.9 15.8 15.8 15.8 1422.2 1419.6 1418.9

1 2.9 2.9 2.9 15.8 15.8 15.8 1733.2 1733.2 1733.2

Fig. 1 Estimation error plots for

a realisation of a homogeneous

Poisson process X in

W = [0, 1]2 with intensity

ρ = 60. Left: p = 0.01 and

m = 400. Right: p = 1. The

underlying point pattern has

been superimposed in all plots

Table 2 Cross-validation selections of p for m = 400 in a geometric

sequence, based on 500 realisations of a homogeneous Poisson process

in W = [0, 1]2 with intensity ρ = 60

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 214 113 60 30 23 30 24 6

and IV for ρ̂V
p,m(u), u ∈ W , m = 200, 300, 400 and a range

of values for p. Moreover, in Fig. 2 we provide estimation

error plots for one of the realisations, for p = 0.01 and

p = 1 with m = 400, and in the Electronic Supplementary

Material (Online Resource 2), we provide plots of the esti-

mated bias and variance for p = 0.01, 0.1, 0.3, 0.5, 0.7, 1

and m = 400, together with estimation-error-based box

plots, and they likewise indicate the advantage of resample-

smoothing.

Turning to the cross-validation approach to selecting p,

based on m = 400 and 500 realisations of the model, we

obtain IAB = 25.3, ISB = 867.4 and IV = 174.8, with

the majority of the selected p’s coinciding with the rule-of-

thumb (see Table 4).

Hence, the conclusions here are essentially the same as

for the homogeneous Poisson process in Sect. 4.1, with the

main difference arguably being that inhomogeneity enforces

slightly harder thinning in the cross-validation.

Comparing with kernel estimation under uniform edge

correction, using Poisson likelihood cross-validation (Loader

1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain

IAB = 25.16, ISB = 853.24 and IV = 158.00. By instead

employing the bandwidth selection method of Cronie and

van Lieshout (2018), we obtain IAB = 24.43, ISB = 797.02

and IV = 636.63. Thus, for p < 0.1, the proposed approach

outperforms both kernel methods in terms of MISE. In par-

ticular, for both the homogeneous and the inhomogeneous

Poisson process examples, when p ≤ 0.4 our proposed

method shows a better performance in terms of MISE than

the kernel approach with the bandwidth selection method of

Cronie and van Lieshout (2018).
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Table 3 Estimates of IAB, ISB

and IV for ρ̂V
p,m(u),

u ∈ W = [0, 1]2,

m = 200, 300, 400 and a

sequence of p, based on 500

realisations of an

inhomogeneous Poisson process

on W = [0, 1]2 with intensity

ρ(x, y) = |10 + 90 sin(16x)|

IAB ISB IV

m

p 200 300 400 200 300 400 200 300 400

.01 25.3 25.3 25.3 867.0 866.8 867.1 96.7 84.7 79.8

.03 25.4 25.5 25.4 881.7 881.8 882.2 93.6 85.1 80.9

.05 25.5 25.5 25.5 891.7 891.8 891.9 104.8 99.4 97.6

.1 25.6 25.6 25.6 892.3 891.8 891.7 154.2 150.1 147.6

.2 25.5 25.5 25.5 882.8 883.2 883.3 249.1 247.3 245.6

.3 25.6 25.5 25.5 881.5 881.5 881.5 360.1 356.3 356.2

.4 25.5 25.5 25.5 878.8 879.0 879.0 479.9 477.2 475.0

.5 25.5 25.5 25.5 872.6 872.5 872.6 609.8 609.6 609.8

.6 25.4 25.4 25.4 862.7 862.7 862.7 762.6 764.3 764.1

.7 25.2 25.2 25.2 849.9 850.0 850.0 952.0 948.3 949.0

.8 25.0 25.0 25.0 835.1 834.8 834.8 1171.9 1172.3 1172.1

.9 24.7 24.7 24.7 817.7 817.6 817.6 1440.1 1440.9 1440.0

1 24.4 24.4 24.4 799.3 799.3 799.3 1783.8 1783.8 1783.8

Fig. 2 True intensity and estimation error plots for a realisation of an inhomogeneous Poisson process on W = [0, 1]2 with intensity ρ(x, y) =

|10 + 90 sin(16x)|. Left: p = 0.01 and m = 400. Middle: p = 1. Right: true intensity. The underlying point pattern has been superimposed in all

plots

Table 4 Cross-validation selections of p in a geometric sequence for

m = 400, based on 500 realisations of an inhomogeneous Poisson

process in W = [0, 1]2 with intensity ρ(x, y) = |10 + 90 sin(16x)|

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 221 116 66 34 12 25 17 9

4.3 Log-Gaussian Cox process

Turning to the scenario where the underlying point pro-

cess exhibits clustering, we next consider 500 realisations

of a log-Gaussian Cox process X in W = [0, 1]2 where

the driving Gaussian random field has the mean func-

tion (x, y) �→ log(40| sin(20x)|) and covariance function

((x1, y1), (x2, y2)) �→ 2 exp{−‖(x1, y1) − (x2, y2)‖/0.1}.

Hereby, the intensity is given by ρ(x, y) = 40| sin(20x)| e1.

Table 5 provides estimates of IAB, ISB and IV for ρ̂V
p,m(u),

u ∈ W , m = 200, 300, 400 and a range of values of p.

We see that the rule-of-thumb, i.e. p ≤ 0.2, seems to be

the preferable choice. In Fig. 3 we provide estimation error

plots for one of the realisations, for p = 0.01 and p = 1

with m = 400, and in the Electronic Supplementary Mate-

rial (Online Resource 2), we provide plots of the estimated

bias and variance for p = 0.01, 0.1, 0.3, 0.5, 0.7, 1 and

m = 400 together with estimation-error-based box plots.

Here it becomes visually clear that the resample-smoothing

is improving the estimation quite significantly.

The cross-validation approach to selecting p, based on

m = 400 and 500 realisations of the model, yields IAB =

26.3, ISB = 948.2 and IV = 23,580.7, which may be

comparable to the choice p ≈ 0.7. In Table 6 we further

provide the 500 selected values for p. The phenomenon that

too little smoothing tends to be applied (p is mainly chosen

large) is not extremely surprising; as our cross-validation
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Table 5 Estimates of IAB, ISB

and IV for ρ̂V
p,m(u),

u ∈ W = [0, 1]2,

m = 200, 300, 400 and a

sequence of p, based on 500

realisations of a log-Gaussian

Cox process in W = [0, 1]2

with mean function

(x, y) �→ log(40| sin(20x)|) and

covariance function

((x1, y1), (x2, y2)) �→

2 exp{−‖(x1, y1) −

(x2, y2)‖/0.1} for the driving

random field

IAB ISB IV (×102)

m

p 200 300 400 200 300 400 200 300 400

.01 29.2 29.2 29.2 1144.2 1144.6 1144.4 10.0 10.2 10.1

.03 29.6 29.7 29.7 1186.7 1186.6 1187.1 18.0 17.5 17.3

.05 29.8 29.7 29.7 1199.2 1199.5 1199.1 26.5 26.5 26.7

.1 29.5 29.5 29.5 1181.5 1181.9 1180.9 48.8 48.8 48.7

.2 28.8 28.8 28.8 1127.3 1127.4 1127.3 87.8 87.2 88.0

.3 28.2 28.2 28.2 1081.4 1081.7 1081.6 123.8 122.6 123.1

.4 27.6 27.6 27.6 1038.8 1039.2 1039.4 153.2 153.0 152.6

.5 27.1 27.1 27.1 1000.1 999.6 999.7 181.3 182.2 182.0

.6 26.5 26.5 26.5 963.9 963.7 963.5 212.4 212.5 212.1

.7 26.0 26.0 26.0 930.5 930.4 930.6 243.1 243.0 243.2

.8 25.6 25.6 25.6 901.1 900.6 900.7 278.8 279.2 279.3

.9 25.2 25.2 25.2 874.4 874.3 874.2 321.4 321.5 320.9

1 24.7 24.7 24.7 852.3 852.3 852.3 371.4 371.4 371.4

Fig. 3 True intensity and estimation error plots for a realisation of a

log-Gaussian Cox process in W = [0, 1]2 with mean function (x, y) �→

log(40| sin(20x)|) and covariance function ((x1, y1), (x2, y2)) �→

2 exp{−‖(x1, y1) − (x2, y2)‖/0.1} for the driving random field. Left:

p = 0.01 and m = 400. Middle: p = 1. Right: true intensity. The

underlying point pattern has been superimposed in all plots

Table 6 Cross-validation selections of p in a geometric sequence for

m = 400, based on 500 realisations of a log-Gaussian Cox process

in W = [0, 1]2 with mean function (x, y) �→ log(40| sin(20x)|)

and covariance function ((x1, y1), (x2, y2)) �→ 2 exp{−‖(x1, y1) −

(x2, y2)‖/0.1} for the driving random field

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 7 4 6 1 10 22 207 243

approach is based on a Poisson process likelihood function,

it treats a realisation x of X as a realisation of a Poisson

process which has the corresponding realisation of the driv-

ing (random) intensity field as intensity function. In other

words, it tries to perform state estimation, i.e. it tries to recon-

struct each realisation of the driving intensity field through

x. This phenomenon, and that the Poisson process likelihood

cross-validation approach is not performing well for clus-

tered inhomogeneous point processes, has previously been

observed in the context of kernel intensity estimation (Cronie

and van Lieshout 2018). Hence, if one suspects that there

is clustering in addition to inhomogeneity, or if the cross-

validation generates large values for p, then it is wiser to stick

with the proposed rule-of-thumb, p ≤ 0.2. In fact, cross-

validation-generated deviations from the rule-of-thumb may

be seen as a possible indication of clustering or inhibition.

Comparing with kernel estimation under uniform edge

correction, using Poisson likelihood cross-validation (Loader

1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain

IAB = 27.75, ISB = 1031.03 and IV = 9952.85. By instead

employing the bandwidth selection method of Cronie and van

Lieshout (2018), we obtain IAB = 28.97, ISB = 1117.94

and IV = 3856.79. We see that our proposed method outper-

forms both of the kernel-based approaches in terms of MISE

when p is small enough. Note, in particular, that in terms of

MISE it outperforms the kernel approach with the bandwidth
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selection based on the likelihood cross-validation approach

when p ≤ 0.2.

4.4 Thinned simple sequential inhibition point
process

To study inhomogeneity in combination with inhibition,

we consider a simple sequential inhibition point process in

W = [0, 1]2 with a total point count of 450 and inhibition

distance 0.3, which we thin according the retention proba-

bility function p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤

x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W .

This results in an inhomogeneous point process with inten-

sity ρ(x, y) = 450p(x, y), which yields an expected total

point count of 53.6. Table 7 provides estimates of IAB, ISB

and IV for ρ̂V
p,m(u), u ∈ W , m = 200, 300, 400 and a range

of values for p. Just as for the previous models, we argue that

p should be chosen within the range of the rule-of-thumb.

In Fig. 4 we provide estimation error plots for one

of the realisations, for p = 0.01 and p = 1 with

m = 400. Plots of the estimated bias and variance, for

p = 0.01, 0.1, 0.3, 0.5, 0.7, 1 and m = 400 together with

estimation-error-based box plots can be found in the Elec-

tronic Supplementary Material (Online Resource 2). Also

here the improvements caused by the resample-smoothing

are visually clear.

The cross-validation approach to selecting p based on

m = 400 and 500 realisations of the model yields IAB =

26.5, ISB = 1033.6 and IV = 508.1, which is comparable to

choosing p ≈ 0.5. Moreover, Table 8 lists the selected values

for p and we see that they tend to be either very large or very

small. It thus seems that approximately half of the time the

Table 7 Estimates of IAB, ISB

and IV for ρ̂V
p,m(u),

u ∈ W = [0, 1]2,

m = 200, 300, 400 and a

sequence of p, based on 500

realisations of an independently

thinned simple sequential

inhibition process in

W = [0, 1]2 with intensity

ρ(x, y) = 450p(x, y),

p(x, y) = 1{x <

1/3}|x − 0.02| + 1{1/3 ≤ x <

2/3}|x − 0.5| + 1{x ≥

2/3}|x − 0.95|, x, y ∈ W

IAB ISB IV

m

p 200 300 400 200 300 400 200 300 400

.01 31.9 31.9 31.9 1458.2 1458.2 1458.4 81.5 69.6 62.4

.03 32.3 32.3 32.3 1493.9 1493.7 1493.4 69.2 65.4 63.0

.05 32.4 32.4 32.4 1511.2 1510.9 1510.4 78.4 75.1 72.2

.1 32.4 32.4 32.4 1502.2 1502.7 1502.2 109.4 105.9 103.4

.2 31.2 31.2 31.2 1385.7 1385.2 1384.5 176.2 173.8 172.2

.3 29.2 29.2 29.2 1223.6 1223.0 1222.8 253.4 251.2 250.3

.4 27.0 27.0 27.0 1060.4 1060.7 1060.3 348.8 345.3 345.3

.5 25.0 25.0 25.0 919.5 919.8 920.6 457.3 455.6 454.1

.6 23.1 23.1 23.1 803.3 803.3 803.0 584.4 582.7 581.9

.7 21.5 21.5 21.5 707.9 707.7 707.8 734.2 733.9 732.8

.8 20.0 20.1 20.1 628.5 628.9 629.1 916.3 914.2 913.4

.9 18.9 18.9 18.9 567.2 567.5 567.7 1120.5 1118.5 1117.5

1 24.7 24.7 24.7 852.3 852.3 852.3 1382.4 1382.4 1382.4

Fig. 4 True intensity and estimation error plots for a realisation

of an independently thinned simple sequential inhibition process in

W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x <

1/3}|x − 0.02| + 1{1/3 ≤ x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|,

x, y ∈ W . Left: p = 0.01 and m = 400. Middle: p = 1. Right: true

intensity. The underlying point pattern has been superimposed in all

plots
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Table 8 Table Cross-validation selections of p in a geometric sequence

for m = 400, based on 500 realisations of an independently thinned

simple sequential inhibition process in W = [0, 1]2 with intensity

ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤

x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 142 83 22 8 3 8 79 155

cross-validation performs as it should do and approximately

half of the time it chooses p too large.

Comparing with kernel estimation under uniform edge

correction, using Poisson likelihood cross-validation (Loader

1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain

IAB = 20.5, ISB = 663.94 and IV = 485.48. By instead

employing the bandwidth selection method of Cronie and van

Lieshout (2018), we obtain IAB = 23.97, ISB = 860.67 and

IV = 308.47. We see that the proposed approach performs

slightly poorer than kernel approaches.

5 Data analysis

We next apply our proposed intensity estimator (4) to two

real datasets, in two types of spaces. We first study a linear

network dataset of traffic accidents in an area of Houston,

USA, and then a planar dataset of spatial locations of Finnish

pines.

5.1 Houstonmotor vehicle traffic accidents

The dataset consists of motor vehicle traffic accident loca-

tions in a given area of Houston, USA, during the month of

April 1999. The linear network L describing the road net-

work in question (see Fig. 5) has a total length of 708,301.7

feet, and has 187 vertices (road intersections) with a maxi-

mum vertex degree of 4, and 253 line segments, i.e. pieces

of streets connecting the intersections.

Table 9 Houston motor vehicle traffic accidents: Cross-validation

selected values for p, based on the sequence m = 100, 150, . . . , 400

m 100 150 200 250 300 350 400

p 0.15 0.15 0.15 0.20 0.15 0.20 0.20

Figure 5 (left) shows the reference points of the 249 acci-

dents over the street network. The data have been collected

by individual police departments in the Houston metropolitan

area and compiled by the Texas Department of Public Safety.

The compiled data have been obtained by the Houston-

Galveston Area Council and then geocoded by N. Levine.

Between 1999 and 2001, in the eight-county region consid-

ered, there were 252,241 serious accidents, with an average

of 84,080 per year. From these accidents, 1882 were person

related. See Levine (2006, 2009) for details.

In Fig. 5 (right) we also provide the resample-smoothed

Voronoi intensity estimate obtained for m = 400 and p =

0.20. The specific choice p = 0.20 has been motivated by

the rule-of-thumb p ≤ 0.2 and Table 9, which shows the

selected values for p ∈ (0, 1] obtained by carrying out cross-

validation for the sequence m = 100, 150, . . . , 400. We see

that selected values for p are given by either 0.15 or 0.20.

Visually, there seems to be a good correspondence

between the observed pattern and the obtained estimate. Note

that for bigger values of p, in the right panel of Fig. 5 we

would have obtained more significant blobs in the parts cor-

responding to the dense parts in the left panel of Fig. 5.

5.2 Finnish pines

The dataset, which consists of the locations of 126 pine

saplings in a Finnish forest, within a rectangular window

W = [−5, 5]×[−8, 2] (metres), can be found in the R pack-

age spatstat (Baddeley et al. 2015). It was recorded by S.

Kellomaki, Faculty of Forestry, University of Joensuu, Fin-

Fig. 5 Left: motor vehicle

traffic accidents in an area of

Houston, US, during April,

1999. Right: resample-smoothed

Voronoi intensity estimate for

m = 400 and p = 0.20
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Fig. 6 The estimate ρ̂V
p,m(u), u ∈ W , m = 400, for p = 0.01 (left), p = 0.1 (middle) and p = 0.45 (right), together with the locations of 126 pine

saplings in a Finnish forest, within a rectangular window W = [−5, 5] × [−8, 2] (metres)

Table 10 Finish pines: cross-validation selected values for p, based on

the sequence m = 100, 150, . . . , 400

m 100 150 200 250 300 350 400

p 0.65 0.50 0.50 0.50 0.45 0.50 0.45

land, and further processed by A. Penttinen, Department of

Statistics, University of Jyväskylä, Finland.

In Fig. 6 we illustrate the estimate ρ̂V
p,m(u), u ∈ W , m =

400, for p = 0.01, p = 0.1 and p = 0.45, together with

the locations of the saplings. We further provide the cross-

validation results for the sequence m = 100, 150, . . . , 400

in Table 10; it suggests the choice p = 0.45. We argue that

p = 0.01 and p = 0.1 result in pretty similar intensity maps

and they better respect the global features of the data than

p = 0.45.

6 Discussion and future work

We have proposed a general approach for resampling, or addi-

tional smoothing, of Voronoi intensity estimators. It is based

on averaging over intensity estimators generated by a set of

thinned samples. We believe that its strength lies in that it

filters out sporadic/local features in order to accentuate the

structural information contained in the sample. In addition,

viewing the reciprocal of a point’s Voronoi cell size as a type

of kernel (cf. van Lieshout 2012), centred at the point, each

time we thin the pattern we change the support of that kernel.

Having averaged over the thinned estimators, in essence we

end up using an “average” support for each such kernel.

In order to determine how much smoothing, i.e. thinning,

should be applied, we have proposed both a rule-of-thumb

(m = 400 and p ≤ 0.2) and a data-driven cross-validation

approach. We have observed that for Poisson and log Gaus-

sian Cox processes, by using resample-smoothed Voronoi

intensity estimation together with our rule-of-thumb, we

outperform kernel estimation in terms of Mean Integrated

Square Error (MISE) and point-wise over-/under-estimation,

based on the state-of-the-art in bandwidth selection. The

over-/under-estimation has been illustrated by means of

point-wise estimation error box plots which can be found

in the Electronic Supplementary Material (Online Resource

2). For regular point process models the picture seems to

be a bit more varied—our proposed approach outperforms

the kernel approaches in terms of over-/under-estimation and

performs slightly poorer in terms of MISE. In essence one

could say that if we employ the expected supremum distance

to compare the functions then the new method outperforms

the kernel method. For the expected L2 distance, reflected by

MISE, however, this is not true for the regular setting.

The performance of the proposed estimator depends on

the tuning parameters p and m. The guidelines for choosing

p and m have been based on the present examples with a

sample size of roughly n = 60. In particular, a combination

of a smaller sample size and a very small choice of p may

call for an increase of m. This should be computationally

feasible since each thinned pattern then will consist of very

few points and the corresponding Voronoi tessellation will

be fast to compute.

It should be noted that we alternatively may employ some

retention probability function p(u), u ∈ W , other than

p(u) ≡ p ∈ (0, 1]. It is, however, not clear what the benefits

of such a change would be, other than possibly decreasing

the computational time. Also, how to make a good choice for

the function p(·) is not evident.

6.1 Future work and extensions

It would be relevant and interesting to study the proposed

setup when we replace the Voronoi tessellation by some other

tessellation, generated by the point pattern in question. One

such example is provided by Delaunay tessellations, as they

enjoy more tractable distributional properties in Euclidean
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spaces. Another idea is to consider some other adaptive

intensity estimator, e.g. nearest neighbour estimators (Silver-

man 1986; van Lieshout 2012). Another relevant idea might

be applying the resample-smoothing procedure to adaptive

kernel estimators (Davies and Hazelton 2010; Davies et al.

2018).

Further possible extensions are discussed below.

6.1.1 Sequential resample-smoothing

Since choosing the smoothing parameter p ∈ (0, 1] accord-

ing to the cross-validation approach in Sect. 3.3 can be quite

computationally demanding, and thereby also time consum-

ing, we propose an alternative and simpler version of the

estimator in (4).

Definition 3 Given some pm = (p1, . . . , pm) ∈ (0, 1]m ,

m ≥ 1, the sequentially resample-smoothed Voronoi inten-

sity estimator of the intensity ρ(u), u ∈ W ⊆ S, |W | > 0,

of the underlying point process X is defined as

ρ̃V
pm

(u) = ρ̃V
pm

(u; X , W ) =

m∑

j=1

ρ̂V (u; X p j
, W )

mp j

, u ∈ W ,

where X p1 , . . . , X pm is a sequence of independent thinnings

of X , with the respective retention probabilities p j , j =

1, . . . , m. In particular, ρ̂V
p,m(·) = ρ̃V

(p,...,p)
(·).

The challenge here is clearly how to choose the sequence

pm ; we have seen that more weight clearly should be put

on smaller retention probability values so an equally spaced

grid over (0, 1] may not be the best choice. By proposing

some stepwise sequencing of (0, 1], where we at each step

m ≥ 1 obtain some pm = (p1, . . . , pm) ∈ (0, 1]m , one

could keep going until supu∈W |ρ̃V
pm

(u) − ρ̃V
pm+1

(u)| < ǫ or

supu∈W |ρ̃V
pm

(u) − ρ̃V
pm+1

(u)|/ρ̃V
pm

(u) < ǫ for some prede-

fined ǫ > 0.

6.1.2 Edge correction in the linear network case

Although we have neglected edge effects here, it still seems

that the smoothing takes care of a significant part of the edge

effects (Chiu et al. 2013). But, as noted in the data analy-

sis, even after applying the smoothing there may be a need

for edge correction (Cronie and Särkkä 2011; Baddeley et al.

2015). In the case where X is sampled on L , and is a subset of

a process on a larger network, in which L is a sub-network,

edge effects come into play since the points closest to the

boundary have their Voronoi cells cut off through the map-

ping/sampling of L and the points. In Definition 4 we propose

an edge correction approach, which could be viewed as a ver-

sion of Ripley’s edge correction idea.

Definition 4 Given a point pattern x on a linear network L , for

each boundary point u ∈ ∂L of L ⊂ S, first find its closest

neighbour xu = arg minx∈x d(u, x) in terms of the short-

est path distance d(·, ·). If βu = minx∈x\{xu} d(xu, x)/2 −

d(u, xu) > 0, extend L by a new (set of) non-overlapping

edge(s) connected to the node u, with total length βu . Denote

the resulting extended network by L̃(x) and treat x as a lin-

ear network point pattern on/restricted to L̃(x). The edge

corrected resample-smoothed Voronoi intensity estimate is

given by ρ̃V
p,m(u; x, L) = ρ̂V

p,m(u; x, L̃(x)) for u ∈ W .

Note that p = 1 results in an edge corrected version of

ρ̂V (·).
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