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Resampling Approach for Anomaly Detection 
in Multispectral Images 

James Theiler’ and D. Michael Cai2 

’Space and Remote Sensing Sciences Group and 2Space Data Systems Group, 
Los Alamos National Laboratory, Los Alamos, NM 87545 

ABSTRACT 

We propose a novel approach for identifying the “most unusual” samples in a data set, based on a resampling 
of data attributes. The resampling produces a ‘(background class” and then binary classification is used to 

distinguish the original training set from the background. Those in the training set that are most like the 

background ( ie . ,  most unlike the rest of the training set) are considered anomalous. Although by their nature, 

anomalies do not permit a positive definition (if I knew what they were, I wouldn’t call them anomalies), one can 
make “negative definitions” (I can say what does not qualify as an interesting anomaly). By choosing different 

resampling schemes, one can identify dif€erent kinds of anomalies. For multispectral images, anomalous pixels 

correspond to locations on the ground with unusual spectral signatures or, depending on how feature sets are 
constructed, unusual spatial textures. 

Keywords: anomaly detection, machine learning, multispectral imagery 

1. INTRODUCTION 

The job of the professional image analyst is to find things in imagery. Often the analyst knows ahead of time 
what kinds of things to look for: landing strips, industrial facilities, soybean crops, etc. But sometimes, the 

analyst is confronted with the more open-ended task of finding “unusual” things in the images, without knowing 
ahead of time what those unusual things will be. 

When the target of interest is known, and for high-value targets in particular, it may be worth the effort 
to develop specialized automated target recognition (ATR) systems to aid - or, in some optimistic scenarios, 

to replace - the analyst. A less expensive approach is to employ supervised learning. The analyst “marks up” 
pixels in a set of training imagery which contain the item of interest and also marks up as negative controls 

a sample of pixels which do not contain the item. A machine learning system uses these examples to  “train” 
a classifier to identify the target in new imagery. (For one example of this approach, see Ref. [l].) Th’ is may 

work better for some targets than for others, but it does have the benefit of flexibility. The same system can 

be employed for a wide variety of target types - all that changes is the analyst’s markpp. Although it can be 

a somewhat laborious process to mark up on a pixel-by-pixel basis of just where the target is and where it is 
not for an adequate quantity of imagery, obtaining this markup is easier than developing a full-up ATR system 

from first principles. And the domain knowledge of the expert is directly exploited, by the the production of 

the markup, instead of indirectly elicited as a set of “fuzzy rules” in which the analyst tries to explain to the 

computer programmer how the targets can be identified. 

But a different problem arises when examples of the target of interest are unavailable, or when the target of 

interest is just plain unknown. The analyst would like to mark up whole images as “normal” and use that for 

training. This is the anomaly detection problem: it is a kind of unsupervised classification in which the “learning 
by example” proceeds without any examples of the target itself. 

One problem with this Open-ended statement of the problem is that it is easy to provide a ‘‘solution” which 

optimizes some mathematical formulation but which the analyst nonetheless finds unsatisfactory. The pixels in 

an image that are brightest are, in some sense, anomalous (they are “unlike most of the other pixels”), but they 

may not be especially interesting. Because of what anomalies are, the analyst cannot point positively to certain 
kinds of features as anomalous, but it would still be useful for the analyst to at least rule out some kinds of 
anomalies that are known a priori to be uninteresting. 

- - 
Email: {jt,dmc}Qlanl.gov 
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Figure 1. (a) N = 1000 spots, randomly selected from a distribution P(z) ,  which is a sum of two gaussians. (b) 
Contours around the spots at the levels of a = 0.001, a = 0.05, a = 0.1, and a = 0.5. These contours we based on the 
known underlying distribution P(z ) ,  and represent the smallest mea sets which enclose a fraction 1 - a of the normal 
data. (c )  A uniform background (indicated with + symbols) transforms the anomaly detection problem into a binary 
classification problem. 

All happy families are alike, but unhappy families are all unhappy in their own way. 

- Leo Tolstoy, Anna Karenina 

2. DEFINE “ANOMALY” 

The dictionary2 provides two related definitions for the word “anomaly”. The first is “deviation or departure 
from the normal or common order, form, or rule.’’ 

An anomaly detection algorithm, then, would be some kind of mathematical formula or model which describes 
the data. Data which fit this description are normal; data which do not fit are considered anomalies. Note that 

this is a negative definition: the anomalies are the data samples that do not conform to the rule. 

By the second definition, an anomaly “is peculiar, irregular, abnormal, or difficult to classify.” This definition 
highlights an important property of the kinds of anomalies that are usually sought. Anomalies are outliers, and 
are as different from each other as they are from normal cases. Like Tolstoy’s unhappy families, anomalies tend 
to  be anomalous in their own way. 

We briefly remark that this point of view of anomalies as anomalous even to each other applies only for 
data sets in which the samples are truly independent. With images, for instance, pixels are very often highly 

correlated with neighboring pixels, and an anomalous object in a scene might correspond to  several pixels which 

are unlike the rest of the image but are nonetheless close to each other. 

3. MATHEMATICAL FORMULATIONS 

As is generally the case with unsupervised learning problems, the mathematical formulation of the problem itself 

is nontrivial. First we will describe what the problem is: 

We are given a dataset with N samples, {XI,. . . , z~), with each xi E Rd. Our goal is to find the 

“most anomalous” subset of these points. For instance, given a small scalar a << 1, identify the aN 
samples that are most unlike the rest of the data. 

This description of the problem is not yet a formulation; not only does it not tell us how to go about solving 
it, it does not even provide a criterion for knowing whether or not we have succeeded. If we chose aN samples 

at random and called them the anomalies, who could contradict us? Fig. l(a) illustrates this situation: we have 

~ 
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N data points and nothing else - no labels, no parametric models, no underlying probability densities. To help 

clarify our thoughts, we will contrast this statement of the problem with an extremely idealized version: 

We are given a probability distribution3 P(z )  from which normal data samples are drawn, and a 

distribution Q(z) which describes the anomalies. We want to specify a set S, c Rd which has the 

property if a is drawn from P ( x ) )  then with probability at least 1 - a, it will be in the set Sa. But 

if z is drawn from Q(a) then it is unlikely to be in Sa. Here z # S, indicates the z will be labelled 

as an anomaly. 

Thus, our goal is to optimize 

m a  /z(z $ S,)Q(z) da: (1) 

such that 1 Z(z @ S,)P(z) dz 5 M (2) 

where Z is the indicator function; it is one if its argument is true, and is zero otherwise. Here, the first integral 

corresponds to the “detection rate” for anomalies, and the second integral corresponds to the “false alarm rate.” 

And if P(z)  and Q(z) are both known, then the solution is given by sets S, whose boundaries are contours of 
constant ratio &( z) /P ( z ) ,  

3.1. Hypothesis testing 

In the language of hypothesis testing, we would say that z being generated by P(z )  is the null hypothesis. We 

are looking for a discriminating statistic s(z) with a threshold t ,  that depends on a such that 

/qS(%) 5 t,)P(z) ax = 1 - a (3) 

Thus, if we observe a sample value z, then if s(z) > t ,  we can reject the null hypothesis with a p-value of a. 

Here, the function .(z) is a measure of how anomalous a data sample is, and the recipe for finding anomalies 

is to apply this function to the data and choose a threshold for which the fraction Q of the data with the largest 

“anomaly rating” are identified as anomalous. 

If you actually lcnow what kind of anomaly you are looking for, then you devise s(z) to incorporate this 
knowledge. In particular, if Q(z) is known, then s(2) = Q(z ) /P( z )  is an optimal4 measure of “anomalousness.” 

3.2. Smallest volume approach 

Since Q ( x )  cannot be estimated from data, it must be directly specified. We can formalize our ignorance of what 
anomalies we expect to see by choosing Q ( x )  to be as uninformative as possible. The usual choice is for Q(z) to 

be a flat function over an area that is much larger than the support of the data. (In fact, we can take the limit 

as this area goes to infinity; then &(x) is no longer a probability, but it is still a measure - in this case, it is the 

Lesbegue measure - and that is adequate for our purposes.) 

So our choice for S, is the smallest volume set for which Eq. (2) holds. With this choice of Sa, the boundary 

of S, will be a contour of the density P(z) .  

This leads us to our final formulation of the anomaly detection problem. Since neither P(z) nor Q ( x )  are 

known, we seek to estimate P(z )  from the data and to assert that Q(z) is known, even though the usual choice 
of Q(z) is deliberately uninformative. Thus, anomaly detection is cast as a data-versus-density problem: 

We are given N samples, (XI,. . . , z ~ } ,  with each za E Rd and each sample assumed to be drawn 

randomly from an unknown clistribution P(z).  We are furthermore given a known distribution 91~). 
Our goal is to find sets Sa for which Eqs. (1,2) are optimized. Points xi $! S, will be labelled 

anomalous. 
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The definition of anomalies in terms of the “smallest volume set” is mathematically well-defined, and although 

it does not impose explicit conditions on the nature of anomalies, it does requires that you define a metric on your 

space (that is, Q ( x ) )  so that volume can be measured, and this implicitity imposes prejudices. It can depend, 

for instance, on choice of coordinate system. In Fig. l(b), density contours have be plotted over the data points. 

The goal of the anomaly detection problem is to infer these contours just from the data. 

4. ALGORITHMS 

4.1, One-class classifiers 

4.1.1. Direct estimation of P ( x )  

In the real problem, P(x)  is not known, but one can try to estimate it from the data. We remark that direct 

density estimation is, by itself, an ill-posed problem; the maximum-likelihood solution, for instance, is the sum 

of N delta functions centered on the data points. For any finite N ,  this is not a useful estimate for identifying 

anomalies. In this section we will describe two standard approaches for directly estimating density, and show 
how they can be used for anomaly detection. 

The first, and most straightforward, begins with the assumption that P ( x )  is a multivariate gaussian: 

If this gaussian has centroid at xo and covariance given by the matrix K ,  then the contours are ellipses given by 
constant values of 

This is the Mahalanobis distance from the centroid, and is sometimes called the the Hotelling T2  tati is tic.^ In 

practice x, is taken to be the sample mean of the data, and K is a regularized sample estimate of the covariance, 
that is: 

P ( x )  = (x - zo)TK-1(X - E,) .  ( 5 )  

i= 1 

The choice of regularization can in some cases be a delicate issue. Its purpose is both numerical (to ensure that 

the matrix K is invertible) and statistical (to reduce the effect of finite N sample error). If K is invertible in the 
limit of large N ,  then it is possible (for N large and d small) to get away with X = 0. If P ( x )  is indeed gaussian, 
then this method is asymptotically optimal; but for nongaussian P ( x ) ,  the method is not even consistent - that 

is, the N + 00 limit does not approach the true distribution. In Fig. 2(a), we illustrate the fit of this gaussian 
to artificial data that was generated from a mixture of two gaussians.6 

A second approach is to use Parzen windows. Chapter 6 of Fhkunaga’s text7 describes this method in some 

detail. The idea is to  estimate the density with a regularized version of the sum of delta functions; the most 

popular choice is as a sum of gaussians centered on each data point. That is, 

N 

i= 1 

Here y is a kind of smoothing parameter, and its choice is something of an art; as y 3 00, the estimate approaches 

a sum of delta functions. If 7 N N1/2, then the estimator is consistent in the N -+ 00 limit. See Fig. 2(b,c). 

4.1.2. One-class support vector machines 

Although direct estimation of the underlying distribution P ( x )  from a finite sample of data is problematic, Ben- 

David and Lindenbaums introduced a machine learning approach in which contours of P(x)  can be estimated 

with functions of bounded complexity. Theoretical bounds on the error were obtained for finite N (not just the 

N + 00 limit) and are independent of the underlying distribution P ( x ) .  

This is the same mathematical framework that is the basis of support vector machinesg (SVM), and SVM- 
based approaches to anomaly detection have been developed by Tax et U Z . ’ ~ - ’ ~  and Scholkopf et aZ.13-15 
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Figure 2. (a) A multivariate gaussian model produces an elliptical boundary, shown here corresponding to LY = 0.05. (b) 
Parzen window density estimation with boundary corresponding to cx = 0.05, shown here with y = 1. Compared to the 
gaussian fit, the extra flexibility in the Parzen model produces a smaller volume set that still encloses the same amount 
of data. ( c )  Parzen estimators with ‘y =: 10 (solid) produces a boundary that hugs the data even closer, but the jagged 
curve appears to be overfitting the data; on the other hand using y z 0.1 produces a boundary that is much smoother, 
but also much larger area is needed tu enclose the same amount of the data. 

We describe here the algorithm of Tax and Duin.lo The idea is to find the center zo and radius R of the 
smallest sphere that encloses “most” of the data. This is specified in terms of an optimization problem. 

where H is a hinge function 

0 i f z < O  
z otherwise. 

H ( x )  = (9) 

Thus, for points z inside the sphere, llzi - zO1l2 < R2, the penalty term vanishes. For points outside the sphere, 

the penalty is proportional to how far outside the sphere they are. By appropriate choice of C, the sphere Sa 
can be found to satisfy Eq. (2). 

The use of a sphere is on its face a rather restrictive assumption, but this can be addressed by mapping into 
a “kernel space.” For details on kernel methods in general, the reader is invited to read Scholkopf and Smola’s 

illuminating and quite thorough text15; we provide here a very brief overview. A function $ : Rd -+ F maps data 
points x into a high-dimensional feature space, and dot products in that high-dimensional space are expressed 

in terms of kernels: 

When the optimal sphere in the kernel space is mapped back to the data space, the solution can be expressed in 
terms of kernel functions. 

K ( z ,  Y) = +) * +(VI. (10) 

N 

f(x) =; a, 3- U i K ( Z i ,  z) (11) 
i=l 

and this defines the set Sa = {x E Rd : f(z) > 0). Two important properties of the optimization function in 

Eq. (8) are that it is convex (meaning that there are no local minima, just a single global minimum) and that 

it typically leads to sparse solutions in which ai = 0 for most i; in fact, ai = 0 for all data points xi inside the 

sphere. Probably the most popular kernel function is the gaussian radial basis function: 

It is interesting to compare the kernelized one-class SVM estimator in Eq. (11) to the Parzen windows density 

estimator in Eq. (7). The form of the solution is the same, but where the Parzen estimator puts equal weight 
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(a) . .  

Figure 3. (a) The one-class SVM, at v = 0.05 (which corresponds roughly to CY = 0.05) employs a gaussian kernel with 
parameter 7 that, in analogy with the Parzen window estimator, must be estimated. Shown here are 7 = 1.0 (solid) and 
7 = 0.01 (dashed). (b) One-class SVM with Y = 0.05 and 7 = 0.1. ( c )  By adding the uniform background as a second 

class, an ordinary two-class SVM can be used to model the data. 

on all data points and attempts to estimate the whole distribution P(e) at once, the one-class SVM estimator 

has nonzero weight only on the data points that are on or outside the estimated boundary of Sa. Furthermore, 

the f(s) in Eq. (11) is not attempting to estimate the entire probability distribution, just the boundary of Sa. 

Fig. 3(a,b) illustrates the use of the one-class SVM on the example data introduced in Fig. l(a). The user 

must specify both the choice of kernel, and (as in the case of the gaussian kernel) this often involves choices 
of kernel parameters as well. The one-class SVM algorithm is a clever and important contribution, but it is 

important to realize that it is optimizing a volume in a kernel space, which is different from optimizing the 

volume in data space. In a recent paper, Tax and Duinll address this issue by using a Monte-Carlo estimate of 

volume in the data space to choose the kernel parameter y. 

4.2. Recasting anomaly detection as a two-class problem 

Since we already know how to solve two-class problems, it is useful to recast the anomaly detection problem in 
the two-class framework. In this case, the “normal” class is exemplified by the data. The “anomalous” class 
cannot be specified in terms of data, because we do not have examples of “typical anomalous” data. (Typical 
anomalous data is an oxymoron, after all.) 

Instead, the anomalous class is defined by an underlying measure Q(s), and the more direct two-class variant 

of anomaly detection can be achieved by producing artifical anomalies by randomly sampling from the Q(e) 
distribution. This is illustrated in Fig. l(c), and follows an approach suggested by Hastie et aZ.I6 (in particular, 

see Fig. 14.3 of that reference) in a different context. There are some obvious obstacles to this approach: a large 

number of artificial anomalies will lead to extra computational effort, and any finite number of anomalies will 
only approximate the actual underlying &(e). 

But unlike the kernelized one-class support vector machines, random sampling directly implements the small- 

est volume condition. And having cast the problem as two-class classification, a wider variety of machine learning 

algorithms become available. Fig. 3(c) shows the application of an ordinary two-class SVM to the anomaly de- 
tection problem by embedding the data in a uniform “background” of artificial anomalies. By the way, the fact 

that Q(z) might have infinite support is not really a problem. As long as the resampled data extends beyond 

the boundaries of Sa, then there is no need for it to extend far beyond those boundaries. 

With this approach, there is often considerable overlap between the artificial anomalies and the norrnal data; 

this can be somewhat unintuitive at first (anomalies are supposed to be different from normal data!) but it is 

equivalent to the minimum volume formulation. This overlap can also be a burden for some classifier algorithms 

(SVMs, for instance, lose some of their sparseness properties); for this reason, we are investigating the use of 
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Figure 4. Two class “simple classifier’’ (linear classifier with gaussian radial basis kernel) applied to two different kinds 
of random backgrounds. (a) Using a uniform background ai a second class, the simple classifier produced a result similar 
to that seen in Fig. 3(c). But the simple classifier is less sensitive than the SVM to the large amount of overlap between 
the two classes. (b) Using a background class obtained from a resampling of the original data in each of its coordinates, 
a different anomaly detector is obtained. Here there i s  even more overlap, and the detector takes note of the fact that 
the density in the upper-right quadrant of the data is much lower in the data than would be expected if the coordinates 
were independent; thus points in that area are also considered anomalous in that they are providing evidence against the 
null hypothesis that the coordinates are independent. 

the “simple classifier” methodology introduced by Cannon et aZ.,17-19 for this problem. This investigation is 

preliminary, but Fig. 4(a) illustrates the simple classifier applied to this problem. 

Finally, the random sampling approach permits the analyst to explore other options for Q(s) in a way that 
discounts some anomalies in favor of others. In particular, we will explore distributions of Q(z) that are derived 
from the data set itself. 

4.3. Resampling schemes 

We have described the artificial background of anomalies in terms of a uniform sampling of the state space, but 
once the idea of using a random background is suggested, a number of possibilities arise in terms of how that 

background might be resampled. These possibilities can be interpreted in terms of alternative Q(s), but instead 

of specifying &(z) directly, it is specified in terms of the input data. 

Fig. 4(b) illustrates a different choice for random background. Here, a random point z is produced so that 

each of its coordinates is chosen randomly from the coordinate values that are in the data. For instance, the 

first coordinate is given by the first coordinate of the data point zi for some randomly chosen i E (1,. . . , N } ,  
the second coordinake is given by the second coordinate of the data point zj for some other randomly chosen 

j E (1,. . . , N } ,  and so on. The effective &(s) is then the outer product of the marginal distributions of P(z)  for 
each of the coordinate directions. Compared to the uniform background, this choice is somewhat more robust 

to changes of coordinate system. A nonlinear change of coordinates along any of the axes will be reflected in the 

background as well as in the data. Further, it addresses the issue of different scaling along each axis. Particularly 
for learning problems where different axes correspond to qualitatively different aspects of the data, the choice of 

scaling along these axes can have an important influence on the final results. 

For images, we have also considered various spatial resampling schemes, but these are beyond the scope of 

this investigation. 

6.  EXAMPLE IMAGE 

We will illustrate the application of this approach to the multispectral image shown in Fig. 5. This is a 200x200 

chip from a four-channel Ikonos scene of Los Alamos, New Mexico. We will use three methods for identifying 
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Figure 5. (a) Intensity image: sum of the first three (blue, green, and red)channels of a four-channel Ikonos image. 
(b) Scatterplot: Blue channel vs. Green channel. These channels are highly correlated, but there are a few pixels which 
are some distance from the main diagonal. (c)  Scatterplot: Red channel vs. Near Infrared channel. 

Figure 6. Scatterplots based uniform background; shown are both the uniform background, and superimposed on the 
background, the original data: (a) Blue vs. Green, and (b) Red vs. Near IR. 

anomalies in this image: a one-class SVM model, a two-class SVM applied to  data over a uniform random 
background, and two-class SVM applied to a background that is coordinate-wise resampled from the image data. 

All of the SVM models (one-class and two-class) were provided by the libsvm package.20 

Fig. 6 and Fig. 7 show the two different backgrounds that were considered: uniform and coordinate-wise 

resampling. Using two-class classification to  distinguish image data from background data produced formulas 

that could be applied to the image data to identify the anomalies. Fig. 8 shows the results of both the one-class 

SVM (which does not explicitly use a background) and the two two-class SVM classifiers. The differences between 
the one-class SVM and the two-class SVM with a uniform backgroun are visible, but both give qualitatively similar 

results, identifying anomalous pixels primarily on the basis of their intensity. However, Fig. 8(c) shows that for 

the two-class SVM with the data-resampled background, it was not unusual intensities but unusual colors that 
were identified as anomalous. 
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Figure 7. Scatterplots based on the data resampling scheme; unlike the previous figure (with the uniform background), 
these plots to not include a superposition of the original data. (a) Blue vs. Green, and (b) Red vs. Near IR. 

Figure 8. Result of anomaly detection using various anomaly detection schemes; in these images, the darker pixels are 
the more anomalous. (a) Using the onsclass SVM, pixels which in the original image are unusually bright (e.g., some of 
the rooftops) or unusually dark (e.g., shadows of the trees) show up as anomalous. (b) Using an ordinary two-class SVM 
with a uniform background (as seen in Fig. 6) produces a similar result, though the darker pixels are considered more 
anomalous than the bright pixels. ( c )  Anomalies found in this image used the resampled background seen in Fig. 7. Here, 
it is anomalous “colors” that are identified; unusually dark or unusually bright pixels are not identified as anomalous. 
The main anomaly (seen here in the center of the image) shows up in the color image as a yellow-green glow just behind 
a truck on the roadway. 
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