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Resampling-Based Multiple Hypothesis

Testing with Applications to Genomics: New

Developments in the R/Bioconductor Package

multtest

Houston N. Gilbert, Katherine S. Pollard, Mark J. van der Laan, and Sandrine

Dudoit

Abstract

The multtest package is a standard Bioconductor package containing a suite of

functions useful for executing, summarizing, and displaying the results from a

wide variety of multiple testing procedures (MTPs). In addition to many popular

MTPs, the central methodological focus of the multtest package is the imple-

mentation of powerful joint multiple testing procedures. Joint MTPs are able to

account for the dependencies between test statistics by effectively making use of

(estimates of) the test statistics joint null distribution. To this end, two additional

bootstrap-based estimates of the test statistics joint null distribution have been

developed for use in the package. For asymptotically linear estimators involv-

ing single-parameter hypotheses (such as tests of means, regression parameters,

and correlation parameters using t-statistics), a computationally efficient joint null

distribution estimate based on influence curves is now also available. New MTPs

implemented in multtest include marginal adaptive procedures for control of the

false discovery rate (FDR) as well as empirical Bayes joint MTPs which can con-

trol any Type I error rate defined as a function of the numbers of false positives

and true positives. Examples of such error rates include, among others, the family-

wise error rate and the FDR. S4 methods are available for objects of the new class

EBMTP, and particular attention has been given to reducing the need for repeated

resampling between function calls.



1 Introduction

Multiple hypothesis testing has statistical applications in fields such as genomics, astronomy, fi-
nance, as well as many other settings in which a large number of variables are measured on each
subject. The multtest package [Pollard et al., 2005] was developed as part of the Bioconductor
project [Gentleman et al., 2004, http://www.bioconductor.org], with particular emphasis given
to the analysis of continous gene expression outcomes such as those obtained in microarray exper-
iments. Multiple testing problems in genomics settings are characterized by working with large
multivariate data generating distributions P with unknown dependencies between variables. In ad-
dition to including a collection of marginal FWER- and FDR-controlling multiple testing procedures
(MTPs) – for example the Bonferroni [Bonferroni, 1936] procedure for control of the family-wise
error rate (FWER) or the Benjamini-Hochberg [BH; Benjamini and Hochberg, 1995] procedure for
control of the false disocvery rate (FDR) – the main methodological focus in multtest has been on
the software implementation of joint multiple testing procedures. Joint MTPs incorporate informa-
tion about the dependencies between test statistics into the hypothesis decision-making process.
As a result, joint MTPs are often more powerful than their marginal MTP counterparts.

For any choice of MTP, specification of the test statistics (joint) distribution is crucial in order
to yield cut-offs, rejection regions and adjusted p-values which probabilistically control a Type I
error rate. Common choices of null distribution have focused on the permutation distribution or
the use of a (null-restricted) bootstrap based on a data generating null distribution P0 [Westfall
and Young, 1993, Churchill and Doerge, 1994, Yekutieli and Benjamini, 1999, Tusher et al., 2001,
Tibshirani et al., 2001]. Such methods can imply strong statements regarding the parameters of the
corresponding null hypotheses – e.g., (marginal) independence of an outcome as measured between
two groups versus simply a difference in mean – and may rely on restrictive assumptions such as
subset pivotality [Westfall and Young, 1993]. Dudoit and van der Laan [2008, Chapter 2] provide
a more general characterization of the test statistics null distribution based on null domination
conditions, in which one selects a test statistics null distribution Q0 (or estimator thereof Q0n) that
stochastically dominates the true distribution of the test statistics Qn = Qn(P ). This framework,
with attention focused on Qn = Qn(P ) rather than on a distribution implied by P0, has led to the
formulation of several other choices for null distributions.

The first original proposal of Pollard and van der Laan [2004], Dudoit et al. [2004], and van der
Laan et al. [2004b], defines the null distribution as the asymptotic distribution of a vector of null
shift and scale-transformed test statistics, based on user-supplied upper bounds for the means and
variances of the test statistics for the true null hypotheses [Dudoit and van der Laan, 2008, Section
2.3]. A simple alternative to the ‘centered and scaled’ null distribution is the distribution of null
shift-transformed test statistics, in which the scaling parameters from the former transformation
have been removed. A third choice of test statistics joint null distribution is that of van der Laan and
Hubbard [2006], who define the null distribution as the asymptotic distribution of a vector of null
quantile-transformed test statistics [Dudoit and van der Laan, 2008, Section 2.4]. Bootstrap-based
estimators of all three null distributions are now available in the multtest package.

For a broad class of testing problems, such as the test of M single-parameter null hypotheses
using t-statistics, an asymptotically valid null distribution is the M -variate Gaussian distribution
N(0, σ∗), with mean vector zero and covariance matrix σ∗ = Σ∗(P ) equal to the correlation matrix
of the vector influence curve for the parameter of interest [Pollard and van der Laan, 2004, Gilbert
et al., 2009, Dudoit and van der Laan, 2008, Section 2.6]. In this case, one may simulate from
suitable multivariate normal distribution rather than calculating permutation- or bootstrap-based
test statistics. Together with improvements made to earlier versions of multtest [Taylor et al., 2007],
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which include the use of the snow package [Tierney et al., 2006] for farming out the resampling
operations to nodes on a cluster, the addition of test statistics null distributions based on influence
curves can reduce computational bottlenecks associated with resampling-based procedures.

Several MTPs – e.g., FWER-controlling minP or maxT procedures, or the FDR-controlling BH

procedure [Benjamini and Hochberg, 1995] – assume all hypotheses belong to the set of true null
hypotheses H0. It has been noted that the BH procedure becomes conservative at a rate proportional
to the number of true null hypotheses h0 = |{H0}| [Benjamini and Hochberg, 2000, Efron et al.,
2001, Storey, 2002, Storey and Tibshirani, 2003, Benjamini et al., 2006]. That is, for a test at
nominal level α = 0.05, if the proportion of true null hypotheses h0/M is equal to 0.75, the
BH procedure will control the FDR at actual level 0.375. By obtaining an estimate h0n of the
number of true null hypotheses h0, adaptive linear step-up FDR-controlling procedures attempt to
overcome this conservativeness by applying a multiplicative correction factor to the original BH

procedure. The adaptive Benjamini-Hochberg [ABH; Benjamini and Hochberg, 2000] and the two-
stage Benjamini-Hochberg [TSBH; Benjamini et al., 2006] procedures were further characterized in
Dudoit et al. [2008], and they have now been included in the mt.rawp2adjp function which returns
adjusted p-values for marginal MTPs.

Empirical Bayes (joint) multiple testing procedures (EBMTPs) represent another approach to Type
I error control [van der Laan et al., 2005, Dudoit et al., 2008, Dudoit and van der Laan, 2008, Chapter
7, Procedure 7.1]. EBMTPs may be implemented for any tail probability or expected value Type
I error rate which can be expressed a function g(Vn, Sn) of the number of false positives Vn and
true positives Sn. Examples of such error rates include not only the FWER (g(Vn) = Pr(Vn > 0))
and the FDR (g(Vn, Sn) = Vn/(Vn + Sn)), but also other Type I error rates such as the generalized
family-wise error rate (gFWER) for controlling the probability of k+1 or more false positives, i.e.,
Pr(Vn > k) ≤ α, or the tail probability of the proportion of false positives (TPPFP) for controlling
a bound q on the false discovery proportion, i.e., Pr(Vn/(Vn + Sn) > q) = Pr(Vn/Rn > q) ≤ α,
where Rn denotes the total number of rejected hypotheses. EBMTPs for control of the FWER,
gFWER, TPPFP and FDR have been implemented in the new user-level function EBMTP. Methods
for manipulating, summarizing, and plotting the results of the new EBMTP class objects have also
been written for the multtest package.

We will elaborate further on the recent developments in multtest, highlighting the additions to
our software with an application to a publicly available microarray dataset taken from Chiaretti
et al. [2004, ALL experimental data package, http://www.bioconductor.org]. For reproducibility
purposes, this document will largely be generated using the Sweave function [Leisch, 2002] from
the R tools package [R Development Core Team, 2009]. Due to the dimensionality of the filtered
ALL dataset of Chiaretti et al. [2004], however, it will be necessary at times to (i) restrict portions
of the analysis to a smaller subset of genes, (ii) use fewer rounds of (re)sampling, and/or (iii) load
the output of previously executed code in order to illustrate the utility of our package. It is our
intent to make the reader clear of when any of these cases occur. All code, output files, and stored
data objects are available in the supplementary material of this paper.

2 multtest basics

The multtest package has earlier supporting documentation in the form of vignettes and help files
which are available to the user from the package directories, the Bioconductor website (http:
//www.bioconductor.org), or from within an active R session. The purpose of this section is to
reintroduce the reader to analysis options available in the main user-level functions MTP and EBMTP
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(to be discussed below). The MTP function, which contains options for conducting resampling-based
multiple hypothesis testing as well as for controlling the output from such procedures, has several
function arguments.

> library(multtest)

> args(MTP)

function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,

na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE,

standardize = TRUE, alternative = "two.sided", psi0 = 0,

typeone = "fwer", k = 0, q = 0.1, fdr.method = "conservative",

alpha = 0.05, smooth.null = FALSE, nulldist = "boot.cs",

B = 1000, ic.quant.trans = FALSE, MVN.method = "mvrnorm",

penalty = 1e-06, method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE,

get.adjp = TRUE, keep.nulldist = TRUE, keep.rawdist = FALSE,

seed = NULL, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,

marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,

keep.index = FALSE, keep.label = FALSE)

NULL

The most important considerations are the types of data objects which multtest supports. Ar-
guments for specifying these objects are the first entries in the MTP function definition, and they
are summarized in Table 1. A variety of test statistics have also been implemented in multtest,
many of which come with out-of-the-box robust alternatives (robust=TRUE), or options for using
nonstandardized difference statistics (standardize=FALSE). A summary of available test statistics
and the null distributions supported by those choices of test statistics are in Table 2.

The package multtest uses closures in the functions MTP and EBMTP to compute test statistics. These
closures are defined in terms of attributes which describe each choice of test statistic (see, e.g., the
help file corresponding to meanX). The closure, written in R, may be called at two separate stages
in the analysis. This closure is used once by the function get.Tn to compute a vector of observed
test statistics, and then possibly again by the function boot.null when computing bootstrap test
statistics. In this case, the closure is eventually given to an internal function bootloop, which
performs the bootstrap calculations in C. In either case, the closure returns the test statistics in a
form which allows for the handling of sidedness (e.g., alternative=c(‘two.sided’, ‘greater’,

‘less’)) and standardization options. Specifically, the observed test statistics are stored in a ma-
trix obs with numerator in the first row (possibly absolute value or negative, depending on the value
of alternative), denominator in the second row, and a 1 or -1 in the third row (again, depending
on the value of alternative). The vector of observed test statistics is obs[1,]*obs[3,]/obs[2,].

One exception to the closure rule was made in the case of tests of correlation parameters, which are
also new to the multtest package. Given a J × n matrix in X with J variables and n observations,
there are M =

(

J
2

)

= J(J−1)/2 hypotheses corresponding to all pairwise combinations of variables
in X. This case distinguishes itself from all other previously implemented test statistics where the
number of hypotheses corresponded to nrow(X), i.e., J = M . In this case, a ‘closure-like’ function
corr.Tn was created to calculate test statistics for hypotheses involving correlation parameters and
to return the test statistics in a form, namely a matrix obs as above, which could then be used by
the rest of multtest functionality. Because no formal closure was written for when test=‘t.cor’

or test=‘z.cor’, only null distributions derived from influence curves (nulldist=‘ic’, see be-
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low) are currently available for testing hypotheses involving correlation parameters. Implementing
resampling-based null distributions for correlation parameters is future work.

A central methodological motivation for initially writing the MTP function was the development of
powerful joint MTPs for control of the FWER. To this end, a variety of methods for controlling
the FWER were made available to the user through the methods argument in MTP. These options
include ‘ss.maxT’, ‘sd.maxT’, ‘ss.minP’, and ‘sd.minP’, which correspond to single-step and
step-down procedures based on maximum test statistics or minimum p-values taken over (subsets
of) the hypotheses over B rounds of resampling. The typeone argument has options for control of
not only the FWER (‘fwer’), but also the gFWER, TPPFP, and FDR (‘gfwer’, ‘tppfp’, and
‘fdr’). Control of these relatively more complicated error rates was obtained through augmentation
multiple testing procedures [AMTPs; van der Laan et al., 2004a, Dudoit and van der Laan, 2008,
Chapter 6]. AMTPs use the results of a FWER-controlling MTP and transform or augment those
results in a way which guarantees Type I error control of the other desired error rate. AMTPs,
while mathematically elegant, have been shown to be conservative in practice. This observation
was a motivation for the development of the EBMTPs (described below), which seek to control a
given Type I error rate more directly, rather than through the augmentation of a FWER-controlling
procedure.

The functions MTP and EBMTP return objects of class MTP and EBMTP, respectively. Each class
definition contains object slots with relevant information regarding the corresponding MTP. For the
purposes of this paper, the most important slots common to objects of both classes are in Table 3.
Further slots specific to objects of class EBMTP will be introduced in the sections that follow.

Finally, S4 methods have been written to work with objects of both the MTP and EBMTP classes.
These include the methods print, summary, plot, as.list, and ‘[’. The plot methods produces
anywhere from four to six different plots for summarizing MTP results and exploring various diag-
nostic quality checks. The as.list method will convert an MTP or EBMTP class object into a
list, while the subsetting method ‘[’ will subset all multidimensional slot objects and return the
MTP results specific to particular selected hypotheses. Because of the differences in how vanilla
MTPs and EBMTPs control the Type I error rate, separate updating methods have been written
for objects of each class (update and EBupdate). The details of these methods are given in the
MTP-methods (alias EBMTP-methods) help file and will also be presented as needed below.

3 New developments and software additions

The purpose of this section is to detail the implementation of our methods (i) for obtaining consis-
tent estimators of the test statistics joint null distribution and (ii) for conducting marginal adaptive
FDR-controlling MTPs as well as joint EBMTPs for control of generalized Type I error rates. The
statistical underpinnings of each of these methods has been previously described elsewhere, most
recently in van der Laan et al. [2005], van der Laan and Hubbard [2006], Benjamini et al. [2006],
Dudoit et al. [2008], Dudoit and van der Laan [2008], and Gilbert et al. [2009]. Code examples
demonstrating the multtest user interface employ the ALL microarray dataset of Chiaretti et al.
[2004]. A full description of the dataset and preprocessing is given in Section 4.1. For now, gene
expression measures are stored in a 2051 genes × n = 79 patients matrix X, whereas numeric class
labels indicating group membership between ALL patients with a particular phenotype and those
without are given in the vector Ynum. We are interested in testing for differential gene expression
between the two groups.

4

http://biostats.bepress.com/ucbbiostat/paper249



3.1 Test statistics joint null distributions

3.1.1 Bootstrap-based null distributions

Bootstrap estimation of the test statistics null distribution in multtest occurs by transforming
the original test statistics bootstrap distribution in such a way that particular null domination
conditions are satisified [Dudoit and van der Laan, 2008, Chapter 2]. Previously, only the bootstrap-
based estimator of the null shift and scale-transformed test statistics null distribution had been
included in multtest [Dudoit and van der Laan, 2008, Procedure 2.3, nulldist=‘boot.cs’]. Here,
the elements of the matrix of bootstrap test statistics TB

n are row-centered and scaled depending
on values dictated by the choice of test statistic. It may be the case, however that the scaling step
contributes additional variance to the estimate of the test statistics null distribution [Dudoit and
van der Laan, 2008, Taylor and Pollard, 2009]. In this situation, one may wish to only row-center
the matrix of bootstrap test statistics. A procedure for obtaining an estimator of the null shift-
transformed test statistics null distribution (nulldist=‘boot.ctr’) therefore proceeds as before
but with the scaling steps removed.

Alternatively, one may also use the bootstrap to estimate the test statistics null distribution as the
asymptotic distribution of an M -vector of null quantile-transformed test statistics [van der Laan
and Hubbard, 2006, Dudoit and van der Laan, 2008, Procedure 2.4, nulldist=‘boot.qt’]. Specif-
ically, this procedure proposes the use of the bootstrap to estimate the test statistics correlation
structure, while also subsequently imposing an user-specified test statistics marginal distribution on
the final estimate. The central intuitive advantage to working with this particular null distribution
is that one preserves the correlation structure among test statistics while also using the marginal
distribution one would have typically used in the univariate testing scenario. Marginal null dis-
tributions may be test statistic-specific (e.g., z-statistics, t-statistics, F -statistics, etc.), or they
may be based on a data generating null distribution P0. A more advanced application of the null
quantile-transformed null distribution, for example, may include using marginal null distributions
obtained from permutations, i.e., leveraging the bootstrap to estimate the dependencies between
test statistics corresponding to hypotheses of marginal independence. Because the use of bootstrap
null distributions is based on asymptotic results, parametric or permutation-based marginal dis-
tributions often perform better with small numbers of samples [Pollard and van der Laan, 2004,
van der Laan and Hubbard, 2006].

Bootstrap resampling is performed in multtest via an internal call to the function boot.null. This
function has many (formatted) values passed to it based on the arguments specified in the original
MTP or EBMTP function call. At the heart of the code in boot.null is the function boot.resample,
which uses compiled C code (bootloop) to more efficiently apply the R-language test statistic
function closures while calculating bootstrap test statistics.

The code in boot.null has been amended to include the new choices of bootstrap-based null
transformed test statistics described above. Originally, boot.null either returned the matrix of
untransformed bootstrap test statistics or the matrix of centered and scaled null test statistics
based on a logical value of the argument csnull (now deprecated, default was TRUE, indicating
that centering and scaling should occur). The null shift and scale transformation was then done
via the function center.scale, when nulldist=‘boot’. To accommodate the new diversity of
bootstrap-based test statistics null distributions, two more null transformation functions have been
written for the boot.null function. These functions are evaluated depending on the value of
the character string passed to the nulldist argument in MTP or EBMTP. The three transforming
functions are made available to the user upon loading the multtest library.
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> args(center.scale)

function (muboot, theta0, tau0, alternative)

NULL

> args(center.only)

function (muboot, theta0, alternative)

NULL

> args(quant.trans)

function (muboot, marg.null, marg.par, ncp, alternative, perm.mat)

NULL

The function center.scale is evaluated if nulldist=‘boot.cs’ or ‘boot’ (corresponding to the
old default value of the null distribution argument in the MTP function definition). The preferred new
default value of nulldist is ‘boot.cs’, although code written for earlier releases of multtest will
still compile using the now deprecated default ‘boot’. Similarly, center.only and quant.trans

are evaluated if nulldist=‘boot.ctr’ or ‘boot.qt’, respectively. Note that center.only is
simply the center.scale function with the scaling argument tau0 removed. Regardless of the
choice of bootstrap null distribution, all null transformation functions are passed the character
value of alternative, which ensures that sidedness is handled similarly as in the closures used for
calculating observed test statistics.

Several function arguments in MTP and EBMTP have been changed or added to accommodate the new
choices of bootstrap-based null distributions (Table 4). The most important new arguments for the
null quantile-transformed null distribution are marg.null and marg.par. By default, these values
are set to NULL, in which case the marginal null distribution used for the quantile transformation
is selected based on choice of test statistic and possibly other parameters such as sample size
n (ncol(X)) or the number of unique class labels (length(unique(Y)), Table 5). In the case of
Welch’s t-statistics, i.e., two-sample t-statistics with unequal variance, the marginal null distribution
is simply N(0, 1), as determining a value for the effective degrees of freedom to apply over all
hypotheses may be very context-specific. For tests of regression coefficients, N(0, 1) was also selected
as marginal null distribution. This decision was made to in order to reduce the number of arguments
(object slots) which would have to be stored or passed to the update or EBupdate methods for
obtaining results from several subsequent MTPs. (See details on the updating methods as well as
the section on influence curve null distributions for more details.)

The choice of marginal null distribution when selecting ‘boot.qt’ is somewhat more flexible than
the null values used in the null shifted (and scaled) null distributions. The default values of
marg.null and marg.par can be changed by the user should another null distribution be deemed
more appropriate for the quantile-quantile transformation. One can specify the name of another
parametric marginal null distribution by setting marg.null to one of ‘normal’, ‘t’, or ‘F’. Ad-
ditionally, one can specify the parameters of the null distribution in marg.par in one of two ways,
either by setting the values of the argument to a common numeric value, in which case the same
value is applied to all hypotheses, or by passing marg.par a matrix with M rows and columns equal
to the number of parameters R would require to correctly define that distribution, e.g., c(mean,sd)
for the normal distribution, or c(df1,df2) for an F -distribution. The following code gives example
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of exactly how to do this for Welchs’s two-sample t-statistics allowing for unequal variance using
the Chiaretti et al. [2004] dataset. Here, we use only the first 10 hypotheses, and restrict the
number of bootstrap draws to B=100. Many more bootstrap samples are recommended in practice,
particularly for larger numbers of hypotheses.

> qt.default <- MTP(X = X[1:10, ], Y = Ynum, nulldist = "boot.qt",

+ B = 100)

running bootstrap...

iteration = 100

> qt.tmarg <- MTP(X = X[1:10, ], Y = Ynum, nulldist = "boot.qt",

+ B = 100, marg.null = "t", marg.par = 30)

running bootstrap...

iteration = 100

> marg.pars <- matrix(c(rep(25, 5), rep(30, 5)), nr = 10, nc = 1)

> qt.tdifferent <- MTP(X = X[1:10, ], Y = Ynum, nulldist = "boot.qt",

+ B = 100, marg.null = "t", marg.par = marg.pars)

running bootstrap...

iteration = 100

> c(qt.default@marg.null, qt.tmarg@marg.null, qt.tdifferent@marg.null)

[1] "normal" "t" "t"

> null.pars <- cbind(qt.default@marg.par, qt.tmarg@marg.par, qt.tdifferent@marg.par)

> colnames(null.pars) <- c("normal mean", "normal sd", "t df equal",

+ "t df vary")

> null.pars

normal mean normal sd t df equal t df vary

[1,] 0 1 30 25

[2,] 0 1 30 25

[3,] 0 1 30 25

[4,] 0 1 30 25

[5,] 0 1 30 25

[6,] 0 1 30 30

[7,] 0 1 30 30

[8,] 0 1 30 30

[9,] 0 1 30 30

[10,] 0 1 30 30

The above code chunk shows the results of three different calls to MTP with different settings of
marg.null and marg.par. When nulldist=‘boot.qt’, objects of class MTP and EBMTP will
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return the values used by marg.null and marg.par in obtaining the estimate of the test statistics
joint null distribution (Table 3). The values of the various marg.null and marg.par slots are
shown in the code output above. The first call to MTP used the default marginal null distribution
settings (Table 5), which, for two-sample Welch’s t-statistics, correspond to the standard normal
distribution. The first two columns of the null.pars matrix are the mean and sd parameters R

uses to define the normal distribution. The last two calls to MTP demonstrate how the values of
marg.null and marg.par can be manually set by the user.

Purely for illustrative purposes, the second call to MTP set the marginal null distribution to a t-
distribution with df = 30. There may be applications, however, in which one may wish to vary
the marginal null distribution over the family of hypotheses. In this way, one may account for
missing observations or other factors relating to data quality when using a minP or common-quantile
procedure. In this case, one may pass the marg.par argument a matrix with the desired values of
the null distribution parameters for each hypothesis. In the previous example, the marginal null
t-distribution was allowed to have df = 25 for the first five null hypotheses and then df = 30 for the
last five null hypotheses. Both the MTP and EBMTP functions have built-in mechanisms ensuring that
user-supplied values pertaining to the marginal null distribution make sense in terms of the value
of test, and, in the case of marg.par, that the values also agree with choice of null distribution set
in marg.null.

In terms of the specific implementation of the null quantile transformation method of van der
Laan and Hubbard [2006], the function quant.trans obtains a sample of size B from the specified
parametric distribution. That sample is rearranged according to the row ranks of the untransformed
bootstrap test statistics. One thing to consider, however, is that use of the quantile-transformed
bootstrap null distribution will set the R random number generator ahead by M ×B states.

Finally, as noted earlier, another choice of marginal null distribution may be derived from a data
generating null distribution such as the permutation distribution. In cases where the marginal
permutation distribution is known to be the exact marginal null distribution – e.g., for hypotheses
of independence – the permutation distribution is a logical distribution to use for marginal quantile
transformation. Unfortunately, for various reasons, the permutation null distribution implemented
in multtest is not available for this use. One may, however, specify their own matrix of test statistics
to use for quantile transformation by setting marg.null=‘perm’ and passing a value to perm.mat.
These values may be empirically derived elsewhere or, in certain circumstances, may be calculated
based on theoretical information related to the testing problem at hand. For this purpose, the
argument perm.mat can accept a matrix with rows equal to the number of hypotheses, each con-
taining values from the test statistics distribution(s) to use for the qunatile transformation. When
marg.null=‘perm’, the function quant.trans uses approxfun to approximate the marginal distri-
bution functions. For this reason, the number of elements comprising the marginal null distribution
does not have to equal the value set in B.

> set.seed(99)

> perms <- matrix(rnorm(5000), nr = 10, nc = 500)

> seed <- 926

> MTP.perm <- MTP(X[1:10, ], Y = Ynum, nulldist = "boot.qt", marg.null = "perm",

+ perm.mat = perms, B = 100, seed = seed)

running bootstrap...

iteration = 100

> MTP.perm@marg.null
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[1] "perm"

In the toy example above, the bootstrap distribution was calculated for the first 10 hypotheses in
the Chiaretti et al. [2004] data set using B=100 bootstrap samples. A purely hypothetical matrix
of test statistics, in this case a 10 × 500 matrix of independent normal test statistics, was used
for the marginal quantile transformation. The value of the resulting marg.null slot is also shown.
Conceptually, the matrix in perm.mat was originally intended to have a specific meaning – i.e.,
referring to the permutation distribution – which is why it was given a specific name. As as aside,
passing values to perm.mat when marg.null=‘perm’, may also give the user more control of the
R random number generator state in that specific (reproducible) realizations from a test statistics
marginal null distribution may be used for quantile transformation rather than internally advancing
the random number stateM×B values (as is done when using the default settings for the marg.null
and marg.par arguments in the MTP and EBMTP functions).

3.1.2 Influence curve null distributions

As already stated in the introduction, for a broad class of testing problems, such as the test
of single-parameter null hypotheses using t-statistics, an appropriate, asymptotically valid null
distribution is the M -variate Gaussian distribution N(0, σ∗), with mean vector zero and covariance
matrix σ∗ = Σ∗(P ) equal to the correlation matrix of the M -vector influence curve (IC) for an
asymptotically linear estimator ψn of the parameter of interest ψ [Dudoit and van der Laan, 2008,
Section 2.6]. Specifically, σ∗ may be estimated using the correlation matrix σ∗n corresponding to
the M ×M influence curve empirical covariance matrix,

σn = Σ̂(Pn) =
1

n

n
∑

i=1

ICn(Xi)IC
⊤
n (Xi), (1)

where ICn(X) = (ICn(X)(m) : m = 1, . . . ,M) is an estimator of the M -vector influence curve
IC(X|P ).

> args(corr.null)

function (X, W = NULL, Y = NULL, Z = NULL, test = "t.twosamp.unequalvar",

alternative = "two-sided", use = "pairwise", B = 1000, MVN.method = "mvrnorm",

penalty = 1e-06, ic.quant.trans = FALSE, marg.null = NULL,

marg.par = NULL, perm.mat = NULL)

NULL

Null distributions based on influence curves have been derived for tests of means, linear model
regression coefficients, and correlation coefficients [Gilbert et al., 2009, Dudoit and van der Laan,
2008, Section 2.6]. While bootstrap resampling is performed by the function boot.null, simulating
from the multivariate normal distribution is carried out by the function corr.null. Both the MTP

and EBMTP functions pass corr.null values specifying how the vectors of correlated mean-zero
normal test statistics are to be generated. By default, null test statistics are obtained using the
mvrnorm function in the MASS library [Venables and Ripley, 2002]. One may also use a Cholesky
decomposition by setting the argument MVN.method to ‘Cholesky’. In this case, a small number
(penalty) is added to the diagonal of the estimated test statistics correlation matrix in order to
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ensure the matrix is positive definite, preventing internal calls to chol from returning an error
(Table 6).

Additionally, one may also apply the null quantile transformation of van der Laan and Hubbard
[2006] to the multivariate normal test statistics joint null distribution obtained via influence curves.
Because influence curve null distributions have only been implemented for t-statistics, the quantile
transformation is only available for values of marg.null equal to ‘t’ or ‘perm’. The quantile trans-
formation is performed by a streamlined version of the quant.trans function called tQuantTrans.
Default values for marg.null and marg.par apply as above, but, as before, may also be set man-
ually by the user. In this specific setting, one important change has been made to the default
marginal null distributions for regression coefficients in linear models, i.e., when test=‘lm.XvsZ’

or ‘lm.YvsXZ’ (Table 5). Because no matrix of raw bootstrap test statistics is generated when
nulldist=‘ic’, it is not possible to subsequently update (EBupdate) the choice of null distribution
for such objects of class MTP (EBMTP). This restriction placed on subsequent updating means
that it is easier to set and retain values of marg.null and marg.par which may depend on other fea-
tures of the data. Therefore, instead of using the standard normal distribution, the default marginal
null distribution for linear regression parameters when nulldist=‘ic’ and ic.quant.trans=TRUE

becomes a t-distribution with n− p degrees of freedom.

The next code chunk shows examples of the multtest interface when selecting nulldist=‘ic’.
Again, we perform multiple testing in the toy example using the first ten genes from the Chiaretti
et al. [2004] dataset. Due to the faster speed with which one can obtain an estimate of the test
statistics null distibution using influence curves, we use the default setting B=1000.

> seed <- set.seed(926)

> MTP.ic.mvrnorm <- MTP(X[1:10, ], Y = Ynum, nulldist = "ic", seed = seed)

calculating vector influence curve...

sampling null test statistics...

> MTP.ic.chol <- MTP(X[1:10, ], Y = Ynum, nulldist = "ic", MVN.method = "Cholesky",

+ seed = seed)

calculating vector influence curve...

sampling null test statistics...

> MTP.ic.qt <- MTP(X[1:10, ], Y = Ynum, nulldist = "ic", ic.quant.trans = TRUE,

+ seed = seed)

calculating vector influence curve...

sampling null test statistics...

applying quantile transform...

The different options presented above correspond to the use of (i) mvrnorm or (ii) a Cholesky
decomposition for obtaining vectors of correlated normal null test statistics. Option (iii) combines
the use of mvrnorm with the t-distribution marginal quantile transformation of van der Laan and
Hubbard [2006]. Adjusted p-values for this combination may be slightly higher, most likely owing
to the use of a marginal t-distribution rather than relying on an asymptotic normal approximation.

10

http://biostats.bepress.com/ucbbiostat/paper249



Similar to the printed resampling output from the MTP and EBMTP functions, which display the
number of completed permutation or bootstrap samples, when nulldist=‘ic’, both functions
will let the user know at what step each is at in the process of estimating the test statistics null
distribution. If ic.quant.trans=TRUE, the function output will also let the user know if and when
the marginal null quantile transformation is being carried out. Despite the computational efficiency
often observed with the use of t-statistic-specific null distributions, it may still take several minutes
to generate a large matrix of correlated null test statistics. In the example below, it appears there is
little difference in the adjusted p-values when using the different options available with the influence
curve-based null distribution.

> cbind(MTP.ic.mvrnorm@adjp, MTP.ic.chol@adjp, MTP.ic.qt@adjp)

[,1] [,2] [,3]

100 0.742 0.756 0.750

10006 1.000 1.000 1.000

100132247 0.286 0.304 0.287

100132406 1.000 1.000 1.000

100133941 0.958 0.976 0.976

10014 1.000 1.000 1.000

10016 0.949 0.961 0.967

10019 1.000 1.000 1.000

10020 0.953 0.968 0.971

10036 0.847 0.872 0.880

As a last comment on the implementation of the influence curve null distributions for t-statistics, it
should be noted that this choice of null distribution does support the use of weights, e.g., as specified
in the argument W. In this case, regardless of choice of test statistic, the influence curve is calculated
for each observation, rather than relying on calls to cor as is done for tests of means when W=NULL.
The calculation of the corresponding null test statistics correlation matrix is achieved through the
function IC.CorXW.NA, or, alternatively, IC.Cor.NA. These functions operate in a manner similar
in spirit to the cov.wt function in R for computing weighted covariance matrices. One exception,
however, is that both IC.CorXW.NA and IC.Cor.NA allow for the handling of NA elements in the
vector influence curve in a way which eliminates their propagation throughout the matrices given
by ICn(Xi)IC

⊤
n (Xi). This is most similar to what would be done when specifying use=‘pairwise.

complete.obs’ in the cov or cor functions in R. This feature is crucial to the use of influence
curve-based null distributions, as one cannot sample from a multivariate normal distribution using
a covariance (correlation) matrix containing missing values.

3.2 Multiple testing procedures

3.2.1 Marginal adaptive FDR-controlling procedures

In the proof of its derivation, the original BH procedure required an independence assumption in
order to guarantee Type I error control of the FDR [Benjamini and Hochberg, 1995]. In later work,
Benjamini and Yekutieli [2001] proved the original procedure guarantees Type I error control under
more relaxed conditions of positive regression dependence. When one is unsure these assumptions
can be met, Benjamini and Yekutieli [2001] proposed a more conservative (essentially log-penalized)
adaptation of the BH MTP. In silico experiments, however, have shown the BH procedure to perform
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well in a variety of conditions of practical interest in the genomics setting, e.g., when simulating
multivariate normal data using empirical covariance matrices derived from microarray data. [Dudoit
et al., 2008, Yoav Benjamini and Daniel Yekutieli, personal communication].

Adaptive linear step-up MTPs for controlling the FDR are ‘adaptive’ in the sense that they use
the data to estimate the number (proportion) of true null hypotheses in an attempt to correct for
the conservativeness of the original BH method. One gets more leverage out of adaptive MTPs,
therefore, as the number true alternatives h1 = |{H1}| approaches the number of hypotheses M .
The first of these adaptive Benjamini-Hochberg procedures [ABH; Benjamini and Hochberg, 2000]
is based on graphical arguments regarding the behavior of raw p-values [Schweder and Spjøtvoll,
1982]. Another of these methods, a two-stage Benjamini-Hochberg procedure [TSBH; Benjamini
et al., 2006], relies on a first-pass application of the original BH procedure. As a result, the
corresponding adjusted p-values for this procedure become a function of the nominal significance
threshold α used in the first stage [Dudoit et al., 2008]. In both cases the estimate is incorporated
into the original BH procedure as a multiplicative correction factor. In the case of the TSBH

procedure, note that if one uses a first-pass significance level of α = 0.10, one will most likely want
to control the FDR at the end of the second stage using a level of at least 0.10. In other words, when
estimating the number of true null hypotheses h0, it makes little sense in terms of guaranteeing
Type I error control to assume a more liberal significance level at the first stage than the overall
significance level at the end of the second stage.

> args(mt.rawp2adjp)

function (rawp, proc = c("Bonferroni", "Holm", "Hochberg", "SidakSS",

"SidakSD", "BH", "BY", "ABH", "TSBH"), alpha = 0.05)

NULL

All marginal testing procedures in multtest are implemented in the function mt.rawp2adjp. The
function accepts as first argument rawp, corresponding to a vector of raw (unadjusted) p-values for
each hypothesis under consideration. These could be nominal p-values, for example, from t-tables
or permutations. The next argument, proc, is a vector of character strings containing the names
of the MTPs for which adjusted p-values are to be computed. This vector may include any of
the following: Bonferroni, Holm, Hochberg, SidakSS, SidakSD, BH, BY, ABH, TSBH, corresponding
to marginal MTPs for control of the FWER or FDR. The final argument alpha is a (vector of)
nominal Type I error levels, used for estimating the number of true null hypotheses in the first
stage of the two-stage Benjamini-Hochberg procedure (TSBH). The default value for alpha is 0.05.

The function mt.rawp2adjp returns a list of values. In addition to a matrix of ordered, adjusted p-
values $adjp and an index vector $index sorted according to the order of the original raw p-values,
two additional list items are returned depending on whether or not either of the ABH or TSBH

procedures were selected. If yes, the estimate h0n of the number of true null hypotheses is returned
as a list element named $h0.ABH or $h0.TSBH. For the TSBH option, mt.rawp2adjp will check the
length of the vector of the alpha argument and (i) insert the appropriate number of columns of
adjusted p-values into the $adjp matrix and (ii) return a vector of the same length of alpha in
$h0.TSBH. The vector of adjusted p-values is named with the nominal Type I error level pasted
onto the element name (e.g., h0.TSBH_0.05).

In the toy example below, we switch from testing just 10 hypotheses as before, and we now focus
on the first 100 filtered, gene-level expression measures in the Chiaretti et al. [2004] dataset. For
use with the mt.rawp2adjp function, we retain the M = 100 raw p-values from the output of a call
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to MTP. As choice of null distribution, we used B=5000 vectors of null test statistics sampled from
a mean-zero multivariate normal distribution with correlation matrix derived from the influence
curves for differences of means. Using these empirical, raw p-values, we wish to control the both
the FWER and FDR using the Bonferroni, BH, ABH, and TSBH MTPs. For the TSBH procedure,
we will use first-pass nominal significance levels of both 0.05 and 0.10.

> seed <- set.seed(926)

> MTP.res <- MTP(X[1:100, ], Y = Ynum, nulldist = "ic", B = 5000,

+ seed = seed)

calculating vector influence curve...

sampling null test statistics...

> procs <- c("Bonferroni", "BH", "TSBH", "ABH")

> first.pass.alphas <- c(0.05, 0.1)

> adjp.out <- mt.rawp2adjp(MTP.res@rawp, proc = procs, alpha = first.pass.alphas)

> round(adjp.out$adjp[1:5, ], digits = 4)

rawp Bonferroni BH TSBH_0.05 TSBH_0.1 ABH

[1,] 0.0002 0.02 0.0100 0.0096 0.0091 0.0092

[2,] 0.0002 0.02 0.0100 0.0096 0.0091 0.0092

[3,] 0.0004 0.04 0.0133 0.0128 0.0121 0.0123

[4,] 0.0012 0.12 0.0300 0.0288 0.0273 0.0276

[5,] 0.0034 0.34 0.0571 0.0549 0.0520 0.0526

> adjp.out$index[1:5]

[1] 22 65 57 27 37

> adjp.out$h0.ABH

[1] 92

> adjp.out$h0.TSBH

h0.TSBH_0.05 h0.TSBH_0.1

96 91

For space reasons, the above output displays only the adjusted p-value results and indices of the first
five hypotheses (rather than the results of the full set of 100 hypotheses which were actually tested).
One sees that the adjusted p-values for each of the adaptive Benjamini-Hochberg procedures are
simply the results of the vanilla BH procedure multiplied the values of h0.ABH or h0.TSBH and then
divided by the total number of hypotheses. For example, for the most significant result in the first
row of the $adjp matrix, the Benjamini-Hochberg adjusted p-value of 0.0100 has been multiplied
by the value of adjp.out$h0.ABH (92) and divided by the number of hypotheses (100), to give the
adjusted p-value in the last column (0.0092) for the ABH procedure.
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3.2.2 Empirical Bayes joint multiple testing procedures

The empirical Bayes multiple testing procedures (EBMTPs) have been formulated and characterized
elsewhere [van der Laan et al., 2005, Dudoit et al., 2008, Dudoit and van der Laan, 2008, Chapter 7].
EBMTPs are intended to control generalized tail probability and expected value Type I error rates
which can be defined as a parameter of the distribution of a function g(Vn, Sn) of the numbers of
false positives Vn and true positives Sn [Dudoit and van der Laan, 2008]. Examples of such Type I
error rates include, among others, the FWER, gFWER, TPPFP and FDR. A central feature of the
EBMTPs is the estimation of the distribution of guessed sets of true null hypotheses QH

0n. A familiar
choice of model for generating such guessed sets is the common marginal non-parametric mixture
model [cf., among others, Efron et al., 2001, Storey, 2002, Storey and Tibshirani, 2003]. Here the
M test statistics are assumed to follow a common marginal non-parametric mixture distribution,

Tn(m) ∼ f ≡ π0f0 + (1 − π0)f1, m = 1, . . . ,M, (2)

where π0 denotes the prior probability of a true null hypothesis, f0 the marginal null density of the
test statistics, and f1 the marginal alternative density of the test statistics, i.e., π0 ≡ Pr(H0(m) = 1),
Tn(m)|{H0(m) = 1} ∼ f0, and Tn(m)|{H0(m) = 0} ∼ f1.

Applying Bayes’ rule to the elements comprising the test statistics mixture distribution in Equation
(2) results in another parameter of interest, the local q-value function, i.e., the posterior probability
function for a true null hypothesis H0(m), given the corresponding test statistic Tn(m),

π0(t) ≡ Pr(H0(m) = 1|Tn(m) = t) =
π0f0(t)

f(t)
, m = 1, . . . ,M. (3)

In practice, the local q-value function π0(t) in Equation (3) is unknown, as it depends on the
unknown true null hypothesis prior probability π0, test statistic marginal null density f0, and test
statistic marginal density f . In many testing situations, the marginal null density is assumed to
be known a priori and can be applied directly (e.g., N(0,1)). In the (re)sampling-based multiple
testing case, an estimate f0n of the test statistics null distribution f0 can be obtained by applying
kernel density estimation over the pooled elements of the matrix comprising the null distribution
estimate Q0n. An estimate fn of the full density f may also be obtained by applying density
estimation over the vector of observed test statistics Tn or, for a smoother estimate, the matrix
of raw, untransformed bootstrap test statistics TB

n (when available). Finally, as in Dudoit et al.
[2008], a trivial estimator π0n of the prior probability π0 of a true null hypothesis is the conservative
value of one, i.e., π0n = 1. Alternatively, under the assumption that the null hypotheses H0(m)
are conditionally independent of the data Xn given the corresponding test statistics Tn(m), the
proportion of true null hypotheses h0/M ≡ π0 may be estimated less conservatively via the sum of
the estimated local q-values,

hQV
0n

M
=

1

M

M
∑

m=1

π0n(Tn(m)). (4)

Having calculated the local q-value for each element in the vector of observed test statistics Tn,
one can guess whether a given hypothesis is true by generating binary Bernoulli realizations of the
corresponding posterior probabilities. Given a vector of null test statistics T0n, a corresponding
vector H0n of guessed true null hypotheses will partition T0n (similarly, Tn) into two sets of test
statistics over which to count the numbers of guessed false positives Vn (or the numbers of guessed
true positives Sn) for a given cut-off c. In this way, a variety of Type I errors may be controlled
[van der Laan et al., 2005, Dudoit and van der Laan, 2008, Dudoit et al., 2008, Gilbert et al., 2009].
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Additionally, using the values of the observed test stastistics Tn themselves as cut-offs, one may
obtain multiple testing results in the form of adjusted p-values.

> args(EBMTP)

function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,

na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE,

standardize = TRUE, alternative = "two.sided", typeone = "fwer",

method = "common.cutoff", k = 0, q = 0.1, alpha = 0.05, smooth.null = FALSE,

nulldist = "boot.cs", B = 1000, psi0 = 0, marg.null = NULL,

marg.par = NULL, ncp = NULL, perm.mat = NULL, ic.quant.trans = FALSE,

MVN.method = "mvrnorm", penalty = 1e-06, prior = "conservative",

bw = "nrd", kernel = "gaussian", seed = NULL, cluster = 1,

type = NULL, dispatch = NULL, keep.nulldist = TRUE, keep.rawdist = FALSE,

keep.falsepos = FALSE, keep.truepos = FALSE, keep.errormat = FALSE,

keep.Hsets = FALSE, keep.margpar = TRUE, keep.index = FALSE,

keep.label = FALSE)

NULL

The end-user interface of the EBMTP function shows much similarity to the function MTP. The same
is also true when comparing slot values and names in the resulting objects of both the EBMTP and
MTP classes. Because the estimation procedures inherent to both the vanilla MTPs and EBMTPs
are so different, however, clear distinction between these classes was deemed both theoretically as
well as practically important. Arguments to the function EBMTP which have been changed or added
relative to MTP function arguments are listed and described in Table 7. Similarly, slots which have
been changed or added in the output for objects of class EBMTP relative to objects of class MTP
are listed and described in Table 8.

> args(Hsets)

function (Tn, nullmat, bw, kernel, prior, B, rawp)

NULL

Density estimation, local q-value estimation, and estimation of the distribution of guessed sets of
true null hypotheses is performed by an internal call to the function Hsets. The Hsets function cur-
rently estimates both the test statistics null density f0 and full density f by applying kernel density
estimation over the matrix of null test statistics and the vector of observed test statistics, respec-
tively. Practically, more so than using the R functions dnorm or dt, for example, this step in EBMTP

ensures that sidedness is correctly accounted for between the test statistics and their estimated
null distribution. This step also allows EBMTPs to be applied to distributions of nonparametric
test statistics (robust=TRUE) or non-standardized difference statistics (standardize=FALSE). Den-
sity estimation can be controlled using the arguments bw and kernel which are then used by the
density function in R.

The prior probability π0 of the local q-value function (Equation (3)) can be set to its most conserva-
tive value of 1 (prior=‘conservative’) or estimated by some other means, e.g., using the adaptive
Benjamini-Hochberg (prior=‘ABH’) estimator (see also mt.rawp2adjp or the source code for the
function ABH.h0) or by summing up the estimated local q-values themselves (prior=‘EBLQV’) and

15

Hosted by The Berkeley Electronic Press



then dividing by the number of total hypotheses M . Bounding these estimated probabilities by one
produces a vector of estimated local q-values with length equal to the number of hypotheses. These
estimated local q-values are returned by default in the slot lqv. Bernoulli (binary) realizations of
the posterior probabilities indicate which hypotheses are guessed as belonging to the true set of
null hypotheses given the value of their test statistics. The vectors of indicators are available in the
slot Hsets when the argument keep.Hsets is TRUE.

Once this partitioning has been achieved, one can count the numbers of guessed false positives Vn

and guessed true positives Sn which are obtained at each round of (re)sampling when using the value
of an observed test statistic as a cut-off. The M × B matrix of guessed false (true) positives can
be returned in the slot falsepos (truepos) when the argument keep.falsepos (keep.truepos)
is TRUE. For computational speed, the counting of guessed false positives and guessed true positives
is done using compiled C code stored in the source file VScount.c.

Note that the generation of Bernoulli realizations of the estimated local q-values relies on a call to
rbinom. The user should be aware that this step will therefore set the R random number generator
ahead M ×B states.

> args(G.VS)

function (V, S = NULL, tp = TRUE, bound)

NULL

EBMTPs use closures generated by the function G.VS to represent Type I error rates in terms
of their defining features. Restricting the choice of Type I error rate to those available in the
package multtest – i.e., one of typeone=‘fwer’, ‘gfwer’, ‘tppfp’, or ‘fdr’ – means that these
features include (i) whether to control the number of false positives Vn or the proportion of false
positives among the number of rejections made Vn/(Vn + Sn), (ii) whether one wishes to control
a tail probability or expected value error rate, and, (iii) in the case of tail probability error rates,
what bound should be placed on the random variable defining the Type I error rate (e.g., k for the
gFWER or q for the TPPFP).

The function closures are then applied to the matrices of guessed false positives and guessed true
positives, producing an M × B matrix with elements corresponding to guessed g-function-specific
error rates for each hypothesis (test statistic) at each round of (re)sampling. This matrix may be
returned in the errormat slot of an EBMTP object when the argument keep.errormat is TRUE.
Averaging the Type I error results over B (bootstrap or multivariate normal) samples provides an
estimator of the evidence against the null hypothesis in the form of adjusted p-values obtained with
respect to the choice of Type I error rate set in typeone. Finally, a monotonicity constraint is
placed on the adjusted p-values before they are returned as output in the adjp slot.

As detailed in Dudoit et al. [2008], relaxing the prior π0 of Equation (3) may result in a more
powerful multiple testing procedure, albeit sometimes at the cost of Type I error control. Addi-
tionally, when the proportion of true null hypotheses is close to one, Type I error control may also
become an issue, even when using the most conservative prior probability of one. The slot EB.h0M
returned by objects of class EBMTP is the sum of the local q-values obtained via kernel density
estimation divided by the total number of hypotheses M . If this value is close to one – heuristically
> than about 0.90 – the user will probably not want to relax the prior, as even the conservative
EBMTP might be approaching a performance bound with respect to Type I error control. See
website companion for Dudoit et al. [2008] for further details.
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The user is advised to begin by using the most ‘conservative’ prior, assessing the estimated
proportion of true null hypotheses returned in the EB.h0M slot, and then deciding if relaxing the
prior might be desired in that specific testing situation. New results with a different prior may be
obtained by using the EBupdate method. Gains in power over other MTPs, however, have been
observed even when using the most conservative prior of one. Situations of moderate-high to high
levels of correlation may also affect the Type I error performance of multiple testing methods which
use the same non-parametric mixture model for generating q-values [cf., Storey, 2002]. Microarray
analysis represents a scenario in which dependence structures are typically ‘weak enough’ to mitigate
this concern. On the other hand, the analysis of densely sampled SNPs, for example, may present
difficulties.

Using the dataset of Chiaretti et al. [2004], we again compute two-sample Welch’s t-statistics to
probe null hypotheses corresponding to no differential expression between the two subgroups of ALL
patients. Here we restrict ourselves to the first 100 genes in the dataset, and use the test statistics
null distribution obtained from the vector influence curves. The specific case of FDR control when
using the default conservative prior and B=2500 samples of null test statistics is shown.

> ebFdrIc <- EBMTP(X = X[1:100, ], Y = Ynum, nulldist = "ic", typeone = "fdr",

+ B = 2500)

calculating vector influence curve...

sampling null test statistics...

counting guessed false positives...

250 500 750 1000 1250 1500 1750 2000 2250 2500

counting guessed true positives...

250 500 750 1000 1250 1500 1750 2000 2250 2500

Note that the printed output of EBMTP also lets the user know where the function VScount is in
the process of counting the guessed numbers of true positives and false positives. The next chunk
shows the similarity between the output of the summary method when operating on an object of
EBMTP when compared to operating on an object of class MTP. As additional information, the
type of prior used in the EBMTP is also given in the summary output.

> summary(ebFdrIc)

EBMTP: common.cutoff

Type I error rate: fdr

prior: conservative

Level Rejections

1 0.05 9

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

adjp 0.01237 0.34770 0.56670 0.49860 0.7146 0.8063 0

rawp 0.00000 0.11830 0.32600 0.36700 0.6176 1.0000 0

statistic -3.09900 -0.70610 0.37840 0.32930 1.2500 3.8220 0

estimate -0.31170 -0.09439 0.05589 0.05809 0.1664 0.8236 0
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> par(mfrow = c(2, 2))

> plot(ebFdrIc)
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Figure 1: Default output from the plot method for objects of EBMTP in the multtest package.

Finally, four summary and diagnostic plots are available through the plot method for objects
of class EBMTP (Figure 1). These figures allow one to track the behavior of the relationship
between the Type I error rate with the number of rejected hypotheses (Figure 1, top) as well as
more closely explore properties of the estimated adjusted p-values returned by the call to EBMTP

(Figure 1, bottom). Some additional plots available for objects of class MTP are not available for
the EBMTPs, because they rely on the calculation of test statistic cut-offs or confidence regions
for each hypothesis, neither one of which are currently available from the function EBMTP.
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4 Application: Acute lymphoblastic leukemia microarray data

4.1 Data and preprocessing

We illustrate the additional features of the multtest package using the microarray dataset of
Chiaretti et al. [2004]. Taken from a gene expression study of patients with acute lymphoblas-
tic leukemia (ALL), the data are publicly available in the ALL experimental data package on the
Bioconductor website (http://www.bioconductor.org).

The main object in this package is ALL, an instance of the class ExpressionSet, which contains the
mRNA expression measures, patient phenotypes, and gene annotation information. The genes-by-
subjects matrix of expression measures is provided in the exprs slot of ALL and the phenotype data
are stored in the phenoData slot. Note that the expression measures have been obtained using the
three-step robust multichip average (RMA) pre-processing method, implemented in the package
affy [Gautier et al., 2004]. In particular, the expression measures have been subject to a base 2
logarithmic transformation.

> library(ALL)

> data(ALL)

> slotNames(ALL)

[1] "assayData" "phenoData" "featureData"

[4] "experimentData" "annotation" ".__classVersion__"

While the original goal of the analysis in Chiaretti et al. [2004] was the identification of distinct
subsets of patients with ALL, we will use the dataset to explore differential gene expression between
two groups of affected individuals. In particular, we are interested in assessing differential expression
between patients positive and negative for the BCR/Abl fusion phenotype. The BCR/Abl fusion,
also known as the Philadelphia chromosome, is a translocation of regions on human chromosomes 9
and 22. Patients positive for this phenotype therefore represent a cytogenetically distinct subset of
ALL affected individuals. There are a total of 79 patients with these particular phenotype values.

> varLabels(ALL)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t(4;11)" "t(9;22)" "cyto.normal" "citog"

[13] "mol.biol" "fusion protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date last seen"

> BT <- sapply(ALL$BT, substring, 1, 1) == "B"

> mol.biol <- (ALL$mol.biol == "BCR/ABL") | (ALL$mol.biol == "NEG")

> whichPheno <- mol.biol & BT

> n <- sum(whichPheno)

> Y <- as.vector(ALL$mol.biol[whichPheno])

> table(Y)
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Y

BCR/ABL NEG

37 42

> Ynum <- rep(1, 79)

> Ynum[Y == "NEG"] <- 0

We employ probe filtering as in von Heydebreck et al. [2004]. In particular, we wish to retain
gene expression measures with absolute intensities ≥ 100 for at least 25% of the patient samples.
Additionally, probes were selected to have an interquartile range of at least 0.5 on the log2 scale.
Finally, using the annotation database package hgu95av2.db (http://www.bioconductor.org),
probe intensities mapping to the same gene were averaged, resulting in a final dataset consisting of
2051 gene-level expression measures on 79 patients.

> library(hgu95av2.db)

> whichGeno <- apply(exprs(ALL[, whichPheno]), 1, function(z) ((mean(2^z >

+ 100) >= 0.25) & (IQR(z) > 0.5)))

> subALL <- ALL[whichGeno, whichPheno]

> AffyID <- featureNames(subALL)

> EntrezID <- unlist(mget(AffyID, env = hgu95av2ENTREZID))

> X <- aggregate(exprs(subALL), list(EntrezID = factor(EntrezID)),

+ mean)

> rownames(X) <- X[, "EntrezID"]

> X <- X[, -1]

> colnames(X) <- Y

> dim(X)

[1] 2051 79

4.2 Data analysis and computational efficiency

The goal of this section is to illustrate what types of results and performance to expect when using
the MTP and EBMTP functions in more realistic settings. Using the dataset of Chiaretti et al. [2004],
sample code snippets will be displayed. Most of the results below have been obtained from running
a separate code file which is available in the supplementary material of this paper. In addition to
presenting the results of the individual MTPs that were applied to the data, we will also present
the run times associated with each procedure. Finally, a comparison of the test statistics null
distribution estimates using the bootstrap-based approach and the method using influence curves
will also be presented.

4.2.1 Differential gene expression

As before, we will begin by testing for differential gene expression among patients with ALL,
comparing patients with the BCR/Abl translocation to patients with cytogenetically normal disease.
The code below illustrates how one might implement the single-step maxT procedure (ss maxT)
using two-sample Welch’s t-statistics allowing to allow for unequal variance between groups. Both of
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these selections are defaults in the MTP function definition. We will begin by using the null quantile-
transformed bootstrap test statistics null distribution of van der Laan and Hubbard [2006], with
default N(0, 1) marginal null distributions and B=5000 bootstrap samples.

Because we are also partially interested in comparing the results of several MTPs using different
choices of test statistics null distributions, the keep.rawdist argument has been set to TRUE. This
allows for new bootstrap-based null distributions to be estimated in future calls to the update

method using the untransformed matrix of bootstrap test statistics from the original MTP object
(e.g., in our case, via the other internal null transformation functions center.scale, center.only).
In practice, both of the matrices stored in the rawdist and nulldist slots of an (EB)MTP object
can become quite large. Therefore, the update (similarly, EBupdate) method only requires that one
of these matrices are stored in order to perform additional MTPs. If one wishes to compare different
choices of bootstrap-based null distribution, then the untransformed bootstrap test statistics must
be saved in the rawdist slot in order for the new null transformations to be calculated. In the case
of an empty nulldist slot, the null distribution will be recalculated from the matrix in the rawdist
slot during the next call to update. If one knows in advance that they will not wish to compare
different bootstrap null distribution estimates, then using the default keep.nulldist=TRUE setting
in the original function call is both necessary and sufficient for subsequent updating.

> seed <- set.seed(926)

> MTP.qt <- MTP(X, Y = Ynum, nulldist = "boot.qt", keep.rawdist = TRUE,

+ B = 5000, seed = seed)

> MTP.cs <- update(MTP.qt, nulldist = "boot.cs")

> MTP.ctr <- update(MTP.qt, nulldist = "boot.ctr")

> MTP.ic <- MTP(X, Y = Ynum, nulldist = "ic", B = 5000, seed = seed)

Because the influence curve null distribution is a stand-alone null distribution which directly cal-
culates a matrix of null test statistics, one cannot update the null distribution argument from the
MTP.qt object of class MTP in the same way as for the other bootstrap null distributions. It is
better in this case to simply use a separate call to MTP. One may, however, update other MTP
features from an object of class MTP or EBMTP which initially used the influence curve approach
for estimating the test statistics null distribution, e.g., method, alternative, typeone, etc.

The next two commands show how one might use a call to update in order to obtain augmen-
tation multiple testing procedure (AMTP) results from the original object MTP.qt for control of
the gFWER or TPPFP. Again, AMTPs use the rejection (adjusted p-value) results of the initial
FWER-controlling procedure in order to produce the results for gFWER, TPPFP or FDR con-
trol. The specific cases of gFWER(k=5) and TPPFP(q=0.10) are shown, where k is the number
of allowed false positive and q represents a bound on the proportion of false positives among the
rejection made.

> AMTP.gfwer5 <- update(MTP.qt, typeone = "gfwer", k = 5)

> AMTP.tppfp10 <- update(MTP.qt, typeone = "tppfp", q = 0.1)

The EBMTP command functions similarly to the function MTP. What follows are examples of calls
to EBMTP which perform the common cut-off EBMTPs using the default conservative prior. Both
the cases showing the bootstrap-based null quantile-transformed and influence curve-derived test
statistics joint null distributions are presented.
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> EB.fwer.qt <- EBMTP(X, Y = Ynum, nulldist = "boot.qt", B = 5000,

+ seed = seed)

> EB.fwer.ic <- EBMTP(X, Y = Ynum, nulldist = "ic", B = 5000, seed = seed)

To save on computation time, it is possible to use the resampling results from an object of class MTP
in order to more quickly execute EBMTPs. The opposite is also true. This is achieved through the
class conversion methods mtp2ebmtp and ebmtp2mtp. In the code below, once the new object of
class EBMTP has been created, EBMTP results can be obtained via calls to the EBupdate method.
With the exception of the FDR-controlling EBMTPs performed below, unless stated otherwise in
the function calls, the default prior probability of one, i.e., prior=‘conservative’ was used. The
value returned in the EB.h0M slots of the various EBMTP objects was around 0.78 (data not shown),
indicating that one may possibly want to relax the choice of prior.

> newEB <- mtp2ebmtp(MTP.qt)

> EB.fwer <- EBupdate(newEB)

> EB.gfwer5 <- EBupdate(EB.fwer, typeone = "gfwer", k = 5)

> EB.tppfp10 <- EBupdate(EB.fwer, typeone = "tppfp", q = 0.1)

> EB.fdr <- EBupdate(EB.fwer, typeone = "fdr")

> EB.fdr.abh <- EBupdate(EB.fwer, typeone = "fdr", prior = "ABH")

> EB.fdr.lqv <- EBupdate(EB.fwer, typeone = "fdr", prior = "EBLQV")

Recall that the EBMTPs generate multiple testing results for non-FWER error rates in a very
different way than the AMTPs did above. Due to the number of arguments which may affect the
results of an EBMTP, particularly when generating vectors of guessed null hypotheses in the Hsets
function, i.e., nulldist, prior, bw, kernel, etc., the counting of guessed false positives and guessed
true positives (again, done in C by the function VScount) is currently automatically repeated for
each call to EBupdate.

Additionally, when calling EBupdate for any Type I error rate other than FWER, the typeone

argument must be specified (even if the original object did not control FWER). For example,
typeone="fdr", would always have to be specified, even if the original object also controlled the
FDR. In other words, for all function arguments, it is best to always assume that you are updating
from the EBMTP default function settings, regardless of the original call to the EBMTP function.
Presently, the main advantage of the EBupdate method is that it prevents the need for repeated
estimation of the test statistics null distribution.

Using the dataset of Chiaretti et al. [2004], one sees that the run times associated with null dis-
tributions obtained from the vector influence curves are considerably faster than those of the null
distributions estimated by transformed bootstrap test statistics (Table 9). The use of the methods
update and EBupdate, by reducing the need for repeated estimation of the test statistics joint
null distribution, has also drastically reduced the amount of required computation time to produce
results for different MTPs and for different choices of Type I error rates (Table 9). The longer run
times associated with the calls to EBupdate compared to update reflect the complexity of EBMTPs
relative to AMTPs and are the byproduct of recounting the numbers of false positives and (when
applicable) true positives, Table 9).

In the case of FWER control, the use of the influence curve null distribution and the empirical
Bayes methods resulted in the most rejections (Table 9). For control of the gFWER and TPPFP,
the empirical Bayes methods rejected many more hypotheses than the AMTPs. In the case of
gFWER(5) control, one can see that the AMTP has simply rejected k = 5 additional hypotheses
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Figure 2: Graphical summary for select MTPs controlling the tail probability of the number of false
positives Vn using the dataset of Chiaretti et al. [2004]. This figure was generated using the mt.plot
function in the multtest package. EBMTPs perform competitively with other MTPs as evidenced
by the number of rejected hypotheses observed over a range of significance levels.

relative to the ss maxT procedure using the null quantile transformation (Table 9, rows 2 and
9). EBMTPs, therefore, represent a potentially useful tool for characterizing the behavior of less-
understood, more general Type I error rates such as the gFWER or the TPPFP. Finally, the
FDR-controlling EBMTPs consistently reject more hypotheses than even the marginal adaptive
Benjamini-Hochberg procedures (Table 9). Graphical summaries of the MTP results obtained
using the function mt.plot are shown in Figures 2 and 3.

4.2.2 Comparison of test statistics null distributions

We were also interested in comparing the estimates of the test statistics joint null distributions
using both the boostrap-based and influence curve-based methods. Given the significant decrease
in time associated with sampling from a multivariate normal distribution as compared to performing
bootstrap calculations, one might be interested if this improved computational efficiency is achieved
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Figure 3: Graphical summaries for select MTPs controlling the false discovery proportion, Vn/(Vn+
Sn). This figure was generated using the mt.plot function in the multtest package. EBMTPs
perform competitively with other MTPs as evidenced by the number of rejected hypotheses observed
over a range of significance levels.
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at the cost of noticeable differences between the two approaches.

To explore this question, we decided to compare unique elements of the empirical genes × genes
correlation matrix obtained from the vectors of null test statistics in two settings: (i) two-sample
tests of means, and (ii) regression coefficients in linear models. The null test statistics were obtained
using the null-shifted test statistics null distribution (center-transformed, nulldist=‘boot.ctr’)
and the influence curve null distribution (nulldist=‘ic’).

The first comparison for two-sample tests of means proceeds as before. Use of the argument
alternative=‘greater’ ensures that the null test statistics returned in nulldist slot have not
undergone an absolute value transformation (done internally by MTP and EBMTP to handle sidedness
for two-sided null hypotheses).

> seed <- set.seed(926)

> MTP.ctrg <- MTP(X, Y = Ynum, nulldist = "boot.ctr", alternative = "greater",

+ B = 5000, seed = seed)

> MTP.icg <- MTP(X, Y = Ynum, nulldist = "ic", alternative = "greater",

+ B = 5000, seed = seed)

The second comparison between the two estimates of the test statistics null distributions involves
tests of regression parameters in linear models. Here, gene expression for the mth variable is the
outcome, while the regression coefficient on a variable representing the presence of the BCR/Abl
phenotype is our parameter of interest in a linear model which adjusts for the gender and age of
the patient, i.e.,

E[X(m)|Z1, Z2, Z3] = β0 + β1Z1 + β2Z2 + β3Z3, (5)

where X(m) is the gene expression measurements for the mth hypothesis (gene), Z1 is an indicator
variable equal to one if the patient has the BCR/Abl fusion, Z2 is an indicator variable for the
gender of the patient, and Z3 represents the patient’s age. We are interested in testing the two-sided
null hypotheses H0(m) = I(β1(m) = 0) vs. H1 = I(β1(m) 6= 0).

A gene expression matrix X.lm and a design matrix covars were created in which patients with
missing covariate data have been removed prior to the analysis, leaving n = 76 patients total.
The design matrix needs not contain a column vector for an intercept term, as an intercept is
automatically assumed by the multtest linear model test statistic function closures.

> covars <- cbind(Ynum, ALL$sex[whichPheno], ALL$age[whichPheno])

> colnames(covars) <- c("bcrAbl", "sex", "age")

> rms <- apply(covars, 1, function(z) sum(is.na(z)))

> rm.these <- which(rms != 0)

> covars <- covars[-rm.these, ]

> X.lm <- X[, -rm.these]

> dim(X.lm)

Calls to MTP are then made by specifying the values of test and the variables of the design matrix
to be used in the linear model.

> seed <- set.seed(926)

> MTPlm.ctrg <- MTP(X.lm, Z = covars, Z.test = 1, Z.incl = c(2,

+ 3), test = "lm.XvsZ", nulldist = "boot.ctr", alternative = "greater",
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+ B = 5000, seed = seed)

> MTPlm.icg <- MTP(X.lm, Z = covars, Z.test = 1, Z.incl = c(2,

+ 3), test = "lm.XvsZ", nulldist = "ic", alternative = "greater",

+ B = 5000, seed = seed)

For each matrix of null test statistics returned in a given object’s nulldist slot, the genes × genes
correlation matrix was obtained using the cor command. For each choice of test statistic, cor-
responding unique elements of the correlation matrices obtained from the matrix of null-centered
bootstrap test statistics and from the matrix of correlated normal null test statistics were compared
(Figure 4). Figures were generated using the geneplotter [Gentleman and Biocore, 2009] package
with colors from RColorBrewer [Neuwirth, 2007]. By examining the densities of the differences
between like elements of the estimated null test statistics correlation matrices, one observes these
two approaches to yield relatively similar results in terms of their ability to estimate the depen-
dencies between (null) test statistics. The differences between corresponding elements of the null
test statistics correlation matrices appear to be mean-centered, and they also do not appear to be
affected by the strength of correlation (Figure 4). Since both approaches rely on asymptotics, one
would expect the results presented in Figure 4 to also be a function of the sample size (n), the
dimensionality of the testing problem (M), and the number of samples of null test statistics (B)
used in estimating the test statistics null distribution.

Again, a striking observation is the decrease in computational time associated with influence curve-
based null distrbutions. Similar to the results in Table 9, for two-sample Welch’s t-statistics, the
bootstap method required 1h 16m 31s of system time, while setting nulldist=‘ic’ returned a result
in 3m 41s. This difference was even more noteworthy when testing regression parameters (which
take longer to calculate in multtest than simpler two-sample test statistics). Here the bootstrap
method required 1h 54m 30s of system time as compared to just 3m 46s when using influence
curves derived for regression parameters. All code was executed on a 64-bit Linux machine with
4GB RAM running R-2.8.0.

> sessionInfo()

R version 2.8.0 (2008-10-20)

x86_64-redhat-linux-gnu

locale:

LC_CTYPE=en_US.iso885915;LC_NUMERIC=C;LC_TIME=en_US.iso885915;

LC_COLLATE=en_US.iso885915;LC_MONETARY=C;LC_MESSAGES=en_US.iso885915;

LC_PAPER=en_US.iso885915;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;

LC_MEASUREMENT=en_US.iso885915;LC_IDENTIFICATION=C

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] hgu95av2.db_2.2.5 RSQLite_0.6-7 DBI_0.2-4

[4] AnnotationDbi_1.4.3 ALL_1.4.4 multtest_1.23.6

[7] Biobase_2.2.2

26

http://biostats.bepress.com/ucbbiostat/paper249



−0.2 −0.1 0.0 0.1 0.2

0
5

1
0

1
5

Welch's t−statistic

boot.ctr − ic

D
e
n
s
it
y

−1.0 −0.5 0.0 0.5 1.0

−
0
.1

5
−

0
.0

5
0
.0

5
0
.1

5

Welch's t−statistic

Mean(boot.ctr − ic)

b
o
o
t.
c
tr

 −
 i
c

−0.2 −0.1 0.0 0.1 0.2

0
5

1
0

1
5

Linear Model, lm.XvsZ

boot.ctr − ic

D
e
n
s
it
y

−1.0 −0.5 0.0 0.5 1.0

−
0
.1

5
−

0
.0

5
0
.0

5
0
.1

5

Linear Model, lm.XvsZ

Mean(boot.ctr − ic)

b
o
o
t.
c
tr

 −
 i
c

Figure 4: Comparison of 2500 unique elements of the test statistics null distribution
empirical correlation matrices as estimated by the null shifted test statistics null distri-
bution (nulldist=‘boot.ctr’) and the null distribution obtained through influence curves
(nulldist=‘ic’). Comparisons are shown for two-sample t-statistics with unequal variance
(test=‘t.twosamp.unequalvar’), i.e., Welch’s t-statistics, comparing gene expression among ALL
patients with and without the BCR/Abl fusion (top), and (ii) for the coefficient on the BCR/Abl
fusion term in a linear model with gene expression as outcome, adjusting for age and gender of
the patients using test=‘lm.XvsZ’ (bottom). For each estimated test statistics null distribution
returned in the genes ×B nulldist slot of the respective MTP objects, 2500 unique elements of
the genes × genes correlation matrix were obtained. Plots of the density of the difference between
corresponding elements of each estimated correlation matrix (left) as well as smooth scatter plots
showing the differences as a function of mean correlation between the elements (right) are displayed.
Superimposed points on the density cloud images represent the top 5% outliers. The differences
appear to be closely centered around zero and do not seem to vary considerably with the strength
of the correlation being estimated.
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loaded via a namespace (and not attached):

[1] MASS_7.2-40 splines_2.8.0 survival_2.34-1

5 Conclusion

The added functionality of the multtest package should aid the practitioner in being able to study
as well as perform a wide variety of joint MTPs. With an expanded repertoire of test statistics
null distributions and the inclusion of EBMTPs, powerful alternatives to traditional approaches
to multiple testing are now available for use. The inclusion of the test statistics null distribution
estimate based on samples of mean-zero correlated null test statistics is also very appealing, as it
alleviates potential work flow bottlenecks associated with resampling-based joint MTPs. Future
work may focus on reducing redundant computation time associated with the method EBupdate as
well as implementing formula-based options for handling input data objects (e.g., as in the function
lm).

28

http://biostats.bepress.com/ucbbiostat/paper249



Object Description

X A matrix, data frame or ExpressionSet containing the raw data. In the case
of an ExpressionSet, exprs(X) is the data of interest while pData(X) may
contain outcomes and covariates of interest. Variables are arranged in rows;
observations are arranged in columns.

W A vector or matrix containing non-negative weights to be used in computing
the test statistics. Weights can vary by samples, variables, or both. Weights
received as vectors are duplicated appropriately to produce a matrix W with
the same dimension as X with one weight for each value in X.

Y A vector, factor, or Surv object containing the outcome of interest. Depend-
ing on choice of test, Y may be a vector of class labels, a dependent variable
in a linear model or survival data.

Z A vector, factor, or matrix containing covariate data to be used in the
regression models. Each variable should be in one column, such that
nrow(Z)=ncol(X)

Z.incl The indices or names of columns of Z designating which variables to include
in a regression model.

Z.test The index or name of the column of Z to use to test for association with
each row of X in a linear model. Only used for test=‘lm.XvsZ’, where it is
necessary to specify which covariate’s regression parameter is of interest.

na.rm Logical indicating whether to remove NA observations. Default is ‘TRUE’.

Table 1: Data objects supported by the multtest package functions MTP and EBMTP.
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Test Statistic Description Null Distribution

t.onesamp One-sample t-statistic for tests of means. boot,ic

t.twosamp.-
equalvar

Two-sample t-statistic with equal variance for
difference in means.

perm,boot,ic

t.twosamp.-
unequalvar

Two-sample t-statistic with unequal vari-
ance for difference in means, i.e., two-sample
Welch’s t-statistic.

perm,boot,ic

t.pair Two-sample paired t-statistic for tests of dif-
ferences in means.

perm,boot,ic

f Multi-sample F -statistic for tests of equality
of population means.

perm,boot†

f.block Multi-sample F -statistic for tests of equality
of population means in a block design.

perm,boot†

f.twoway Multi-sample F -statistic for tests of equality
of population means in a block design. Differs
from f.block in requiring multiple observa-
tions per group-block combination. See help
files for details.

boot†

lm.XvsZ Regression coefficient t-statistic for variable
Z.test in linear models, possibly adjusted by
covariates Z.incl from the matrix Z. In the
case of no covariates, one recovers the one-
sample t-statistic, t.onesamp.

boot,ic

lm.YvsXZ Regression coefficient t-statistic in linear mod-
els, with outcome Y and each row of X as co-
variate of interest, with possibly other covari-
ates Z.incl from the matrix Z.

boot,ic

coxph.YvsXZ Regression coefficient t-statistic in Cox pro-
portional hazards survival models, with out-
come Y and each row of X as covariate of in-
terest, with possibly other covariates Z.incl

from the matrix Z.

boot

t.cor Pairwise correlation t-statistic for all variables
in X.

ic†

z.cor Pairwise correlation Fisher’s z-statistic for all
variables in X.

ic†

Table 2: Available choices of test statistics implemented in the MTP and EBMTP functions in multtest.
Supported corresponding test statistics null distributions are also given. For two-sample t-statistics
and F -statistics, the class label is stored in the Y argument. The dagger symbol (†) denotes choices
of test statistic (null distributions) which do not support weighted versions (i.e., W argument is
ignored). Note that for t.cor and z.cor, the number of hypotheses can become large very fast.
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Slot Value Description

statistic Numeric vector of observed test statistics for each hypothesis.

rawp Numeric vector of unadjusted, marginal p-values for each hypothesis.

adjp Numeric vector of adjusted p-values for each hypothesis.

reject Matrix of rejection indicators for each value of the nominal Type I
error rate alpha. TRUE for a rejected null hypothesis.

rawdist The numeric matrix for the estimated nonparametric bootstrap test
statistics distribution. Returned only if keep.rawdist=TRUE. This
slot must not be empty if one wishes to subsequently call update to
update choice of bootstrap-based null distribution.

nulldist The numeric matrix for the estimated test statistics null distribution,
returned by default. Not available for the permutation distribution.
If rawdist is empty, this slot must be returned if one wishes to
subsequently call update. See software for details.

nulldist.type Character value describing which choice of null distribution was used
to generate the MTP results, i.e., the value of the nulldist argument
in the function call. One of ‘boot.cs’, ‘boot.ctr’, ‘boot.qt’,
‘ic’, or ‘perm’.

marg.null If nulldist=‘boot.qt’, the character value of the marginal null
distribution used by the MTP. Can be used to check default values
or to ensure manual settings were correctly applied. See text for
details.

marg.par If nulldist=‘boot.qt’, a numeric matrix of parameters of the
marginal null distribution(s) used by the MTP. Can be used to check
default values or to ensure manual settings were correctly applied.
See text for details.

Table 3: Important common slots returned by objects of the classes MTP and EBMTP. Others
slots are available, but they have been omitted in the context of the current discussion. See software
for details.
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Argument Description

nulldist Character string indicating which method to use for esti-
mating the joint test statistics null distribution. One of
‘boot.cs’, ‘boot.ctr’, ‘boot.qt’, ‘perm’, or ‘ic’.

csnull DEPRECATED

marg.null If nulldist=‘boot.qt’, the marginal null distribution to use
for quantile transformation. One of ‘normal’, ‘t’, ‘F’, or
‘perm’. Default is NULL, in which case the marginal null
distribution is selected based on choice of test statistic. User
can override defaults.

marg.par If nulldist=‘boot.qt’, the parameters defining the
marginal null distribution in marg.null. Default is NULL,
in which case the values are selected based on choice of test
statistic and/or other features (e.g., sample size, number of
unique class labels, etc.). User can override defaults.

ncp If nulldist=‘boot.qt’, a value for a possible noncentrality
parameter to be used during marginal quantile transforma-
tion. Default is NULL.

perm.mat If nulldist=‘boot.qt’ and marg.null=‘perm’, a matrix of
user-supplied test statistics from a distribution to be used
during marginal quantile transformation. The statistics may
be theoretically or empirically derived marginal permutation
values.

keep.margpar If nulldist=‘boot.qt’, a logical indicating whether the (in-
ternally created) matrix of marginal null distribution param-
eters should be returned. Default is TRUE.

keep.nulldist Logical indicating whether to return the computed bootstrap
or influence curve null distribution, by default TRUE. Not
available for nulldist=‘perm’.

keep.rawdist Replaces csnull. Logical indicating whether to return the
computed raw, untransformed bootstrap distribution, by de-
fault FALSE. Not available for nulldist=‘perm’ or ‘ic’.

Table 4: Amended or added arguments to the MTP and EBMTP function in multtest for controlling
input and output of elements pertaining to the bootstrap-based null distributions in pkgmulttest.
Note the matrix object returned in the slots rawdist and nulldist slots can become quite large.
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Test Statistic Default Marginal Null Distribution

t.onesamp t-distribution with df = n− 1

t.twosamp.equalvar t-distribution with df = n− 2

t.twosamp.unequalvar N(0, 1)

t.pair t-distribution with df = n − 1, where n is the number of
unique samples, i.e., the number of observed differences be-
tween paired samples

f F -distribution with df1 = k − 1, df2 = n− k, for k groups

f.twoway F -distribution with df1 = k − 1, df2 = n − kl, for k groups
and l blocks

lm.XvsZ N(0, 1)

lm.YvsXZ N(0, 1)

coxph.YvsXZ N(0, 1)

Table 5: Default marginal null distributions for the quantile-transformed test statistics null distri-
bution. User can override defaults by setting marg.null and marg.par manually.

Argument Description

MVN.method Character string of either of ‘mvrnorm’ (default) or ‘Cholesky’ des-
ignating how correlated normal test statistics are to be generated.
Selecting ‘mvrnorm’ uses the function of the same name found in
the MASS library [Venables and Ripley, 2002], whereas ‘Cholesky’

relies on a Cholesky decomposition.

penalty If MVN.method=‘Cholesky’, the value in penalty to be added to all
diagonal elements of the estimated test statistics correlation matrix
to ensure the matrix is positive definite. Guarantees internal calls to
chol do not return an error. Default is 1e-6.

ic.quant.trans A logical indicating whether or not a marginal quantile tranformation
using a t-distribution or user-supplied marginal distribution (stored
in perm.mat) should be applied to the multivariate normal null distri-
bution derived from the vector influence curve. Default is ‘FALSE’.
Defaults for marg.null and marg.par exist, but values may also be
specified by the user. See text and software for details.

Table 6: Arguments to the MTP and EBMTP functions which control the implementation of the
influence curve-based test statistics null distributions in the multtest software.
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Argument Description

typeone Character string indicating which Type I error rate to con-
trol, one of ‘fwer’ (default), ‘gfwer’, ‘tppfp’ or ‘fdr’. In
particular, for control of gFWER, TPPFP or FDR, results
are not obtained through augmentation as in MTP, but rather
using guessed sets of true and false null hypotheses.

method Character string indicating the EBMTP method. Currently
only ‘common.cutoff’, which is most similar to ‘ss.maxT’.

get.cr,

get.cutoff,

get.adjp

DEPRECATED in EBMTP. Only adjusted p-values are available
for EBMTPs.

prior Character string indicating which choice of prior proba-
bility to use for estimating local q-values. Default is
‘conservative’, i.e., equal to one, meaning that all hypothe-
ses are assumed to belong to the set of true null hypotheses.
Relaxing the prior using ‘ABH’ or ‘EBLQV’, for the adaptive
Benjamini-Hochberg or empirical Bayes prior estimates, re-
spectively, may result in more rejections, albeit at a cost of
Type I error control under certain conditions. See text and
references.

bw, kernel Character string arguments to density indicating the
smoothing bandwidth and kernel to be used during kernel
density estimation. Defaults are ‘nrd’ and ‘gaussian’,
respectively.

keep.falsepos,

keep.truepos

Logicals indicating whether to store the matrix of guessed
false (true) positives obtained over all rounds of (re)sampling.

keep.errormat A logical indicating whether to store the matrix of guessed
Type I error rate values over all rounds of (re)sampling.
In the case of FDR-control, for example, this matrix is
falsepos/(falsepos + truepos). The row means of this
matrix are used for ordering and assigning adjusted p-values
to test statistics for each hypothesis.

keep.Hsets A logical indicating whether to return the matrix of binary
indicators partitioning the hypotheses into guessed sets of
true and false null hypotheses obtained over all rounds of
(re)sampling.

Table 7: Arguments to the EBMTP function which distinguish it from the original MTP function in
multtest.

34

http://biostats.bepress.com/ucbbiostat/paper249



Slot Value Description

falsepos A matrix of the numbers of guessed false positives when using the
values of the observed test statistics as cut-offs. Not returned unless
keep.falsepos=TRUE.

truepos A matrix of the numbers of guessed true positives when using the
values of the observed test statistics as cut-offs. Not returned unless
keep.truepos=TRUE.

errormat The matrix obtained after applying the Type I error rate closure to
the matrices in falsepos, and, if applicable, truepos. Not returned
unless keep.errormat=TRUE.

EB.h0M The sum of the local q-values obtained after density estimation. This
number serves as an estimate of the proportion of true null hypothe-
ses when prior=‘EBLQV’. Values close to one indicate situations in
which Type I error control may not be guaranteed by the EBMTP.

prior The numeric value of the prior probability π0 used when evaluating
the local q-value function of Equation (3).

prior.type Character string returning the value of prior in the original call to
EBMTP. One of ‘conservative’, ‘ABH’, or ‘EBLQV’.

lqv A numeric vector of length equal to the number of hypotheses with
elements containing the estimated local q-values used for generating
guessed sets of true null hypotheses.

Hsets A numeric matrix containing the Bernoulli realizations of the esti-
mated local q-values stored in lqv which were used to partition the
hypotheses into guessed sets of true and false null hypotheses at each
round of (re)sampling. Not returned unless keep.Hsets=TRUE.

Table 8: Additional slots returned by objects of class EBMTP relative to objects of class MTP in
the package multtest.
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Procedure Error Rate Null Distribution Rejections Time

Bonferroni FWER N(0,1) 23 –
ss maxT FWER QT, N(0,1)∗ 24 1h 12m 54s
ss maxT FWER NSS† 14 7s
ss maxT FWER NS† 9 6s
ss maxT FWER IC† 31 4m 24s
EB, conservative FWER QT, N(0,1) 31 1h 20m 18s
EB, conservative FWER QT, N(0,1)† 30 7m 25s
EB, conservative FWER IC 33 11m 42s

AMTP gFWER, k = 5 QT, N(0,1)† 29 4s
EB, conservative gFWER, k = 5 QT, N(0,1)† 74 7m 25s

AMTP TPPFP, q = 0.10 QT, N(0,1)† 26 4s
EB, conservative TPPFP, q = 0.10 QT, N(0,1)† 92 13m 52

BH FDR N(0,1) 130 –
ABH FDR N(0,1) 133 –
TSBH, α = 0.05 FDR N(0,1) 133 –
EB, conservative FDR QT, N(0,1)† 148 13m 52s
EB, prior=ABH FDR QT, N(0,1)† 159 13m 57s
EB, prior=EBLQV FDR QT, N(0,1)† 161 14m 05s

Table 9: Multiple testing results for tests of differential gene expression using the dataset of Chiaretti
et al. [2004]. The number of rejections obtained by each MTP when controlling at nominal level
α = 0.05 are shown. Run times for joint MTPs are also given (applied to the filtered set of 2051
genes, using B=5000 samples of null test statistics). Joint multiple testing results obtained using
calls to update or EBupdate are denoted by the daggers symbol (†). The original null distribution
used by the updated MTPs was the bootstrap-based null quantile-transformed test statistics joint
null distribution with N(0,1) marginal distributions (row 2, denoted by ∗). EBMTP results were
available after using the class conversion method mtp2ebmtp. Other choices of null distribution
included NSS (null shifted and scaled, ‘boot.cs’), NS (null shifted, ‘boot.ctr’), and IC (influence
curve, ‘ic’). In the case of EB FWER, the updated results are similar to those obtained from direct
calls to EBMTP. For all choices of Type I error rate, EBMTPs rejected more hypotheses than their
vanilla (marginal or joint) MTP counterparts.
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