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Resampling-based Multiple Testing:

Asymptotic Control of Type I Error and

Applications to Gene Expression Data

Katherine S. Pollard and Mark J. van der Laan

Abstract

We define a general statistical framework for multiple hypothesis testing and show

that the correct null distribution for the test statistics is obtained by projecting the

true distribution of the test statistics onto the space of mean zero distributions. For

common choices of test statistics (based on an asymptotically linear parameter es-

timator), this distribution is asymptotically multivariate normal with mean zero

and the covariance of the vector influence curve for the parameter estimator. This

test statistic null distribution can be estimated by applying the non-parametric or

parametric bootstrap to correctly centered test statistics. We prove that this boot-

strap estimated null distribution provides asymptotic control of most type I error

rates. We show that obtaining a test statistic null distribution from a data null

distribution, e.g. projecting the data generating distribution onto the space of all

distributions satisfying the complete null), only provides the correct test statistic

null distribution if the covariance of the vector influence curve is the same under

the data null distribution as under the true data distribution. This condition is a

weak version of the subset pivotality condition. We show that our multiple testing

methodology controlling type I error is equivalent to constructing an error-specific

confidence region for the true parameter and checking if it contains the hypothe-

sized value. We also study the two sample problem and show that the permutation

distribution produces an asymptotically correct null distribution if (i) the sample

sizes are equal or (ii) the populations have the same covariance structure. We in-

clude a discussion of the application of multiple testing to gene expression data,

where the dimension typically far exceeds the sample size. An analysis of a cancer

gene expression data set illustrates the methodology.



1 Introduction

Multiple testing methods are hypothesis testing procedures designed to si-
multaneously test p > 1 hypotheses while controlling an error rate. Tradi-
tional approaches to multiple testing are reviewed by Hochberg and Tamhane
[1987]. More recent developments in the field include resampling methods
(Westfall and Young [1993]), step-wise procedures, and the false discovery
rate (Benjamini and Hochberg [1995]). In the past few years, there has been
increased interest in the field of multiple testing due to new technologies,
such as gene expression arrays, that produce data for which (i) the dimen-
sion is much larger than the sample size, (ii) the variables (e.g.: genes) are
often correlated, and (iii) some proportion of the null hypotheses is expected
to be true. Gene expression studies have motivated us to better understand
error control in multiple hypothesis testing, though the results in this paper
apply to multiple testing in general. We discuss some implications specific
to gene expression studies (where the dimension far exceeds the sample size)
in Section 5.

Current multiple hypothesis testing methods aim to control a type I error
rate under a data null distribution, defined by either (i) all null hypotheses
being true (weak control) or (ii) any configuration of the null hypotheses be-
ing true (strong control). We propose a class of multiple testing procedures
which are intermediate in strength and provide control of the chosen error
rate under the true data generating distribution. We provide a multivariate
normal null distribution for test statistics based on asymptotically linear es-
timators and show that control of the error rate under this null distribution
guarantees asymptotic control.

We begin by formally defining the statistical framework for multiple test-
ing in Section 2. We discuss specific choices of null distribution and methods
of estimation. We reach the important practical conclusion that the stan-
dard bootstrap method provides the asymptotically correct null distribution
for multiple testing. This approach does not require the subset pivotality
condition given in Westfall and Young [1993], which is a condition needed to
ensure that control under a data generating distribution satisfying the com-
plete null gives the desired control under the true data generating distribu-
tion. We also generalize the equivalence of hypothesis testing and confidence
regions to the multiple testing framework, illustrating that bootstrap-based
estimated error rate specific confidence regions can be used for multiple test-
ing without requiring the analyst to explicitly identify the null distribution
of the test statistics. Specifically, our multiple testing method is equivalent
with constructing a 1 − α error specific confidence region and checking if
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the hypothesized value is contained in it. In Section 4, we consider the two
sample problem and compare different choices of test statistics and esti-
mated null distributions algebraically and in simulations. We observe that
the permutation distribution has the incorrect covariance unless (i) the two
populations have the same covariance structure or (ii) the sample sizes are
equal (i.e.: a balanced design). Section 5 discusses the case where the di-
mension far exceeds the sample size (p ≫ n), including applications to gene
expression studies. We then demonstrate the proposed methodology on a
publicly available gene expression data set in Section 5.1. In Section 6, we
offer some conclusions and topics for future research.

2 Multiple Testing Procedures

2.1 Data and Null Hypotheses

Let X1, . . . , Xn be i.i.d. X ∼ P ∈ P, where P is a model, X is a p-
dimensional vector, possibly including covariates and outcomes. Consider
real valued parameters µj(P ) ∈ ℜ, j = 1, . . . , p. These parameters could be,
for example, location parameters (e.g.: means/medians or differences be-
tween two population means/medians) or regression parameters (e.g.: asso-
ciation between expression and outcome in a linear/logistic model). Suppose
we are interested in simultaneously testing the null hypotheses:

H0,j : µj(P ) = µ0
j , j = 1, . . . , p, (1)

where the µ0
j are hypothesized null values, frequently zero.

We can then define a multiple testing procedure MT (c) in terms of:

1. a vector Tn of test statistics Tjn, j = 1, . . . , p,

2. a procedure MT (c) given a vector c ∈ IRp defined by:

Reject H0j , if | Tjn |> cj , j = 1, . . . , p. (2)

3. an error rate of MT (c) that we wish to control at level α,

4. a vector function cut-off rule c(Q,α) ∈ IRp such that if Tn ∼ Q then
MT (c(Q,α)) has an error rate exactly equal to α,

5. a null distribution Q0 for the vector of test statistics such that MT (c(Q0, α))
has asymptotic control, and
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6. an estimator Q0n of Q0 and corresponding estimated cut-offs cn =
c(Q0n, α).

We discuss each of these components in more detail in the following Sections.

2.2 Test Statistics

Let µjn be an estimator of µj(P ) based on X1, . . . , Xn, j = 1, . . . , p. If µjn

is asymptotically linear with influence curve ICj(X); that is,

√
n(µj,n − µj) =

1

n

n
∑

i=1

ICj(Xi|P ) + op(1), (3)

then by the central limit theorem,

√
n(µn − µ(P ))

D−−−→
n→∞

N(0,Σ(P )), (4)

where Σ = Σ(P ) = E(IC(X)IC(X)⊤) is the covariance of the vector influ-
ence curve IC(X) = {ICj(X) : j = 1, . . . , p}. Let

Q0(P ) = N(0,Σ(P )) (5)

denote this limit distribution.
It follows that sensible choices of test statistics include:

Tjn ≡ µjn − µ0
j , (6)

Tjn ≡
√

n(µjn − µ0
j ), (7)

Tjn ≡ (µjn − µ0
j )/sd(µjn). (8)

where sd(µjn) is an estimate of σj =
√

V AR(ICj(X))/n. Let Qn = Qn(P )
denote the true distribution of the vector of test statistics Tn under X ∼ P .
Let Mn = {Qn(P ) : P ∈ P} denote the model for Tn implied by the data
generating model P.

In Section 2.8, we show that (5) is the asymptotically correct null dis-
tribution for the vector of test statistics (7) whenever µn is asymptotically
linear. There is only one such distribution Q0. We note that most choices
of µn used in practice (e.g.: sample means, regression parameters) are in
fact asymptotically linear. If one were to use the standardized test statistics
(8), then the asymptotically correct null distribution would be N(0, ρ(P )),
where ρ(P ) is the correlation (rather than covariance) matrix of IC(X).

3
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Standardizing test statistics so that the asymptotic marginal distribu-
tions of all Tjn are N(0, 1) (e.g.: dividing by sd(µjn)) is a useful tool when
one wishes to use tabled null distributions. Figure 1 shows that in the gene
expression context, however, finite sample estimates of marginal null distri-
butions can be far from N(0, 1), even for standardized test statistics and
reasonably large sample sizes. In particular, estimation of sd(µjn) is known
to be difficult in the gene expression context (Tusher et al. [2001], Rocke and
Durbin [2001]). Furthermore, for most error rates multiple testing proce-
dures with asymptotic control require estimating a multivariate distribution
which is not identified by the p marginal distributions. Using a resampling-
based multivariate distribution also eliminates the need to use standardized
test statistics, except that standardized test statistics might approach their
limit distribution faster (Hall [1992]). We revisit this issue in the simulations
of Section 4.4, where we compare choices of test statistics.

2.3 Error Control

Multiple testing procedures can be assessed based on estimates of how many
erroneous testing decisions they make.

2.3.1 Type I Error Rates

We assume the reader is familiar with the distinction between type I (false
positive) and type II (false negative) errors in the standard univariate set-
ting, where the typical approach is to control the type I error rate at a
pre-specified level α and compare different procedures with type I error rate
α based on their type II error rates (or power). Dudoit et al. [2002] com-
pare different generalizations of type I error control to the multiple testing
setting.

Let S0 = {j : µj(P ) = µ0
j} be the set of true negatives. Given a vector

of cut-off values c, define the following random variables:

V (c|Q) =
∑

j∈S0

I(| Tjn |> cj), (9)

R(c|Q) =

p
∑

j=1

I(| Tjn |> cj), where Tn ∼ Q. (10)

We use the absolute value of the test statistic | Tjn | since we focus on two-
sided tests here, but one-sided testing is also handled by our framework. The
notation V (c | Q) acknowledges that the distribution of

∑

j∈S0
I(| Tjn |> cj)

4
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Figure 1: Histograms of null distributions of standardized t-statistics for
four genes from the DLBCL data set of Alizadeh et al. [2000] computed by
the non-parametric bootstrap. The value of the 0.975 quantile of each dis-
tribution is given in the title. The Student’s T distribution with appropriate
degrees of freedom (df = 38) is superimposed on each histogram, showing
that the distributions can be heavy/light in the tails or quite skewed. The
0.975 quantile of the T distribution is 2.0.

is defined by the distribution of Tn. We will also some times use the notation
R(c | Z), where Z is the random variable of interest. If Z ∼ Q, then
R(c | Z) = R(c | Q).

Let Vn = V (c|Qn(P )) be the number of false positives of the testing
procedure MT (c), and let Rn = R(c|Qn(P )) be the total number of rejected
hypotheses. For a discrete distribution F on {0, . . . , p}, define a real valued
parameter θ(F ) ∈ (0, 1) representing a particular type I error rate, where F
represents a candidate for the distribution of Vn. We will use the notation
FX to denote the cumulative distribution of a random variable X. We
wish to arrange that θ(FVn

) ≤ α, at least asymptotically. This is the error
rate for MT (c). Given the distance measure d(F1, F2) = maxj∈{0,...,p} |
F1({j}) − F2({j}) | for two such cumulative distribution functions F1, F2

5
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on {0, . . . , p}, we assume that this parameter θ(F ) satisfies the following
properties:

Monotonicity: if F1 ≥ F2, then θ(F1) ≤ θ(F2) (11)

Uniform Continuity: if d(Fn, Gn) → 0, then θ(Fn) − θ(Gn) → 0.(12)

Let Zn ≡ √
n(µn − µ). We note that Vn =

∑p
j=1 I(| Zjn |> cj , j ∈ S0). Let

k be a user supplied constant. Then, some error rates which are functions
of the distribution FVn

of Vn include:

• θ(FVn
) =

∫

xdFVn
(x)/p = E(Vn)/p : per-comparison error rate (PCER),

• θ(FVn
) =

∫

xdFVn
(x) = E(Vn) : per-family error rate (PFER),

• θ(FVn
) = median(FVn

) : median-based per-family error rate (mPFER),

• θ(FVn
) = 1− FVn

(k − 1) = Pr(Vn ≥ k) : generalized family-wise error
rate (gFWER).

Note that when k = 1, the gFWER is the usual family-wise error rate
(FWER).

In general, the per-family error rate is most conservative and the per-
comparison error rate (ignoring the multiplicity problem) is the least con-
servative (Dudoit et al. [2002]). In the gene expression context, a less con-
servative error rate is often preferred since researchers view gene expression
experiments as exploratory methods and are usually interested in obtaining
a fairly large list of candidate genes, even if some proportion of these are
likely to be false positives. For this reason, the false discovery rate (FDR) is
becoming a popular choice of error rate (Benjamini and Hochberg [1995]).
The FDR is a function of the distribution of Vn/Rn, and not simply FVn

:

θ =

{

E(Vn/Rn) Rn ≥ 0 : false discovery rate (FDR)
0 Rn = 0

The FDR method of Benjamini and Hochberg [1995] only provides asymp-
totic control under independence or a particular type of dependence, and
is therefore of a non-parametrically non-identifiable type-I error, and thus
falls in a very different class of error rates than the ones we have studied.
In particular, their FDR method does not have level α when the complete
null hypothesis HC

0 =
⋂p

j=1 H0,j is true, but it does control E(Vn(c)/Rn(c))
under the true data generating distribution given certain independent as-
sumptions about this distribution. The methods we have proposed here

6
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can not provide control of the FDR under the true distribution. We note,
however, that weak control of the FDR under any test statistic distribution
Qn(P0) where P0 satisfies the complete null is equivalent to weak control of
the FWER.

2.3.2 Types of Error Rate Control

Error rates are defined under the true data generating distribution P , so that
they depend on which hypotheses are in fact true. In practice, we do not
know which hypotheses are true since we do not know either P or Qn(P ), so
we have to choose a way to compute the expectations and/or probabilities
in the error rate. The goal of multiple hypothesis testing is to control the
chosen error rate θ under the true data generating distribution P . We refer
to this as “control under the true distribution” or simply “control”. There
are several approaches to this problem. Current methods control the error
rate under a particular distribution for the test statistics Qn(P0) implied
by a choice P0 of data null distribution. Weak control means that P0 is
a data generating distribution that satisfies the complete null hypothesis
HC

0 =
⋂p

j=1 H0,j . One popular choice is Qn(P0) (estimated by Qn(P0n))
as defined in Section 2.7.3. There are many data generating distributions
satisfying HC

0 , but most of these do not imply the correct null distribution for
the test statistics. Equation (16) gives the condition under which Qn(P0)
is correct. Strong Control means that θ ≤ α under any choice of data
generating distribution P0 represented by one of the different configurations
of the null hypotheses (referred to as control “under all configurations”,
Hochberg and Tamhane [1987]). Asymptotic control means that the error
rate αn for a sample of size n has the property lim supn→∞αn ≤ α under
P . Asymptotic strong and weak control are defined similarly. We discuss
asymptotic control further in Section 2.8.

We have two critiques of current practice. First, in general (i.e. when
some H0,j are true and some false), control under the true distribution is
stronger than weak control but weaker than strong control, so that neither
approach is ideal. Second, a test statistic null distribution derived via a
data null distribution is only the correct distribution for multiple testing
under certain conditions (e.g.: the subset pivotality condition of Westfall
and Young [1993] or the weaker Equation (16) provided below). Hence,
we propose the following multiple testing method, which is intermediate in
strength and does not rely on a data null distribution.

7
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2.4 Null Distribution

In order to decide if any of the observed test statistics are sufficiently unusual
to reject the corresponding null hypotheses, we compare them to a joint null
distribution for Tn. We prove in Section 2.8 that for Tn =

√
n(µn − µ0) the

asymptotically correct null distribution is Q0 = N(0,Σ(P )). It is interesting
to note that Q0 can be viewed as the Kullback-Leibler projection of the
asymptotic distribution of Tn onto the space of multivariate distributions
with mean zero (i.e.: the limit of the projection Tn − E(Tn) of Tn). Hence,
rejection decisions based on Q0 can be directly attributed to the parameter
of interest (e.g.: µj 6= µ0

j for some j) and not to other (nuisance) parameters.
In practice, we do not know the true distribution P and hence must use an
estimated test statistic null distribution. In Section 2.7, we present two
resampling-based estimators for which asymptotic control is achieved under
weak regularity conditions (see Section 2.8).

2.5 Cut-off Rule

Consider test statistics Tn, an error rate θ with target level α, and a two-
sided multiple testing procedure MT (c) defined by the decision rule:

Reject H0,j , if | Tjn |> cj , j = 1, . . . , p,

and the following method for choosing c. Given a null distribution Q, we let
c = c(Q,α) ∈ IRp be a vector function cut-off rule such that if Tn ∼ Q and F
is the distribution of R(c | Q), then MT (c) has the property that θ(F ) = α.
For a one-sided test, only one tail of Q is used. Notice that MT (c) depends
critically on the choice of joint null distribution through c. One particular
method for computing c is to select a common quantile of each marginal
distribution from the null distribution Q. Consider, for instance, a vector
of thresholds {cj : j = 1, . . . , p} satisfying

Pr





p
∑

j=1

I {|Tjn| > cj} > k



 ≤ α, Tn ∼ Q (13)

where k is a pre-specified number of false positives. When k = 1 this is
the usual FWER, and when k > 1 this controls Pr(Vn > k) ≤ α under
the distribution Q. In practice, we need to take B resamples from Q and
compute the cut-offs under the corresponding empirical distribution. With a
sufficiently smooth resampled null distribution Q in hand (B large enough),
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these common quantiles can be fine-tuned to control the chosen error rate
exactly under Q.

The multiple testing procedure is now completely defined by a choice
of null distribution for the test statistics. We prove in Section 2.8 that for
Tn =

√
n(µn − µ0) if we use MT (c0) with c0 ≡ c(Q0, α), then we have

asymptotic control. This shows that Q0 = N(0,Σ(P )) is the asymptotically
correct null distribution. It is interesting to note that Q0 can be viewed as
the limit of the Kullback-Leibler projection of the distribution Qn(P ) of Tn

onto the space of mean zero distributions. In practice, we do not know the
true distribution P , so Q0 is unknown. Therefore, we use estimated cut-offs
c0n = c(Q0n, α), which depend on an estimated null distribution Q0n. If Q0n

is a consistent estimator of Q0, we can asymptotically control the error rate
at level α up to the discreteness of the resampled test statistic distribution.

In traditional testing settings, a common threshold is used to make the
testing decision for every variable, i.e.: Reject H0,j if |Tj | > c(α) for a
specified level α. The common quantile method is a generalization of this
approach, which corresponds with a common threshold only if the marginal
distributions have identical tail probabilities, which is not the case in many
applications.

2.6 Comparison with P-value Adjusting Methods

An alternative approach to multiple testing is to compute marginal p-values
(i.e.: the probability of observing a statistic as or more extreme than Tjn)
and adjust these for multiple tests. Westfall and Young [1993],Yekutieli
and Benjamini [1999] and Dudoit et al. [2002] review different methods for
computing adjusted p-values. Some of the computational and practical ad-
vantages to using adjusted p-values (compared to thresholds) include:

1. no sorting is required for computation of adjusted p-values,

2. the target error rate α does not have to be chosen in advance,

3. p-values offer a measure of strength of evidence (versus an accept/reject
decision),

4. p-values can be used to order the genes, even when they do not have
the same marginal distributions.

On the other hand, by reducing the resampled null distribution Q0n to
marginal p-values, one looses the opportunity to control the error rate ex-
actly at level α under Q0n, contrary to the quantile-based method described
above.

9
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Stepwise p-value adjusting methods for controlling FWER allow one to
achieve a level closer to α than single-step methods (i.e.: they are less conser-
vative and more powerful) (Westfall and Young [1993],Dudoit et al. [2002]),
but they are still not exact under Q0n. In other words, step-down meth-
ods allow one to recover only some of the loss incurred by reducing Q0n to
marginal p-values. These procedures for adjusted p-values can also be stated
as equivalent methods for choosing thresholds. Table 1 contains formulas
for thresholds based on some popular multiple testing p-value adjustments.
As with the corresponding p-value methods, these quantiles are relatively
quick to compute, but do not allow one to control the error rate exactly un-
der Q0n. We also note that the step-down methods depend on the observed
data, so they do not produce thresholds of the form c = c(Q,α), which only
depend on the null distribution and level α. Hence, the theoretical results
of Section 2.8 do not apply to such threshold rules.

Bonferroni/Holm S̆idák Westfall & Young

single-step α/p 1 − (1 − α)1/p q(α) of maxl≤p |Tl|
step-down α/(p − rj + 1) 1 − (1 − α)1/(p−rj+1) qj(α) of maxl≤rj

|Tl|

Table 1: Formulas for computing thresholds based on several methods for
p-value adjustment. In each case, the threshold cj is the 1 − δj quantile of
the null distribution of resampled test statistics |T b

jn|, where is δj is deter-
mined by the given formula. For step-down methods, the {rj} are the order
statistics of {|Tjn|} and (p− rj + 1) = rank(|Tjn|). If the 1− δj quantile for
each gene j = 1, . . . , p is chosen from the estimated resampling-based joint
null distribution {|T b

jn| : b = 1, . . . , B, j = 1, . . . , p}, then these methods are
equivalent to computing unadjusted marginal p-values from the estimated
joint null distribution and then applying the corresponding procedure to
obtain adjusted p-values. The single-step methods only use the marginal
distribution of each gene to compute the threshold so that they are quick to
compute, but do not give a very tight bound on the error whenever the genes
are not independent. The formula for single-step maxT shows that this p-
value adjustment is equivalent to a common threshold (as is the single-step
minP method).

In addition, it is the case that in many applications (e.g.: gene expression
studies), the goal of testing is usually to select a subset of interesting vari-
ables (e.g.: genes) for further analysis, such as clustering or classification.
Hence, it makes sense to examine a few different subsets (choices of α) up

10
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front, but to then make a testing decision and stick to it for the remainder
of the analysis. In this case, threshold-based methods make practical sense
in addition to having the advantage of being able to control the error rate
exactly under Q0n.

2.7 Estimation of the Test Statistic Null Distribution

We present two resampling-based estimators of the asymptotically correct
test statistic null distribution Q0 = N(0,Σ(P )). For both estimators,
asymptotic control is achieved under weak regularity conditions (see Sec-
tion 2.8). We first give the specific estimators for Tn =

√
n(µn − µ0) and

then discuss adaptations for standardized test statistics. We then compare
these methods to the common approach based on first estimating a null
distribution for the data.

2.7.1 Estimating Σ(P )

The first proposed estimator is Q̃0n = N(0,Σn), where Σn is an estimate
of the covariance matrix Σ(P ) based on an estimate of the influence curve
IC(X). The null distribution of the test statistics is estimated by generating
a large number B of resampled data sets from Q̃0n. If Σn is an asymptot-
ically consistent estimator of Σ(P ), then it follows that Q̃0n converges in
distribution to Q0, conditional on the data. If one were to use the standard-
ized test statistics Tn = (µn − µ0)/sd(µn), then the asymptotically correct
null distribution is N(0, ρ(P )), and one can use N(0, ρn) as an estimated
null distribution, where ρn is a consistent estimator of the correlation ρ(P )
of IC(X).

2.7.2 Bootstrap Method

The second proposed estimator involves a simple bootstrap method. Let
P̃n be an estimator of the true data generating distribution P according to
the model P or the empirical distribution (i.e.: model based bootstrap or

nonparametric bootstrap). Let µ̃n = µ(P̃n) and let µ#
n be the estimator µn

but now applied to n i.i.d. copies X#
1 , . . . , X#

n of X# ∼ P̃n. Let Z#
n =√

n(µ#
n − µ̃n). We now estimate the distribution Q0 with the distribution

Q#
0n of Z#

n . Under regularity conditions, it is known that the bootstrap is

consistent in the sense that Z#
n

D⇒ Z ∼ Q0 conditional on P̃n, and hence Q#
0n

converges to Q0 conditional on the data (e.g. van der Vaart and Wellner
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[1996]). Define

R#
0n(c) ≡ R(c|Q#

0n) =

p
∑

j=1

I(| Z#
jn |> cj). (14)

A bootstrap based multiple testing procedure controlling θ at level α is then

defined by MT (cn), with c(Q#
0n, α) being a solution of θ

(

F
R#

0n(c)

)

= α. If

Tn = (µn − µ0)/sd(µn), then the bootstrap test statistics should also be

standardized, for example Z#
jn = (µ#

jn − µ̃jn)/sd(µ#
jn), where sd(µ#

jn) is an

estimate of σ#
j =

√

V AR(ICj(X#))/n. Similarly, if Tn = (µn − µ0), then

the bootstrap test statistics are not multiplied by
√

n: Z#
n = (µ#

n − µ̃n).
Note that this method can be easily generalized to two-sided tests. In this

case, one uses the absolute value of the test statistic (e.g.: Tn =
√

n|µn−µ0|)
and computes an estimated null distribution Q#

0n based on resampled test

statistics Z#
n =

√
n|µ#

n − µ̃n|.

2.7.3 Problems with Using a Data Null Distribution

Our method of resampling-based multiple testing is new. The current resampling-
based multiple testing methodology identifies a null data distribution P0

and controls the error rate under an estimator P0n of P0. For example, the
prepivoting methods discussed in Beran [1988] utilize an estimated null hy-
pothesis data model. Heteroscedastic bootstrapping (both parametric and
non-parametric) is discussed in Westfall and Young [1993] (p.89-91, 123-
125), where residuals are resampled (e.g.: the data is first centered around
an estimate). This approach, often called “null restricted” bootstrap, re-
quires the subset pivotality condition (Westfall and Young [1993] (p.42-43))
or specifically the weaker condition Σ(P0) = Σ(P ) (Equation ( 16)), which
is violated in many applications. On the contrary, our method samples from
an estimate of the true distribution, but standardizes the test statistics cor-
rectly. Therefore, we always consistently estimate the covariance matrix of
the test statistics (even when Equation ( 16) does not hold).

Formally, the method based on a data null distribution works as follows.
An estimator of Q0 is derived in two stages. First, one derives a data null
distribution P0(P ) by projecting P onto the space P0 = {P ∈ P : µ = µ0}.
We illustrate below that a projection parameter P0(P ) is necessary (but
not sufficient) for this method to achieve control under P . A particular
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candidate for such a P0(P ) is the Kullback-Leibler projection:

P0(P ) = arg maxP ′

0∈M0,P ′

0≪µ

∫

log

(

∂P ′
0(x)

∂µ(x)

)

dP (x), (15)

where µ is a user supplied dominant measure. For example, in a shift ex-
periment where the parameter of interest is a location parameter and the
data model is non-parametric, one would use P0(P ) = P (· − µ0). The max-
imum likelihood estimator of P0(P ) is P0n = P0(Pn), where Pn denotes the
empirical distribution of the data.

The second stage is to form an estimated test statistic null distribution
Qn(P0n). Since Qn(P0n) ⇒ N(0,Σ(P0)), this method provides asymptotic
control if and only if

Σ(P0) = Σ(P ). (16)

This condition is weaker than the subset pivotality condition (Westfall and
Young [1993]), which requires that Σ(P ) = Σ(P ∗) for any P ∗ correspond-
ing with a configuration of the hypothesized parameters. In other words,
Equation (16) requires that replacing µ by µ0 does not affect the covari-
ance matrix of the vector influence curve, while subset pivotality requires
no change in the covariance matrix for all configurations of µ. In many
examples, subset pivotality holds whenever Equation (16) is true, but in
practice we do not need the stronger subset pivotality condition in order
to have asymptotic control. Whenever Equation (16) holds, it is correct to
use the null restricted bootstrap (Qn(P0n)) as well as our proposed ordinary

bootstrap (Q#
0n), which is always correct. The following example helps to il-

lustrate when Qn(P0n) is not asymptotically equivalent to Q#
0n so that using

Qn(P0n) is not correct, but Q#
0n still provides asymptotic control.

Example: Testing for zero correlation

Let X1, . . . , Xn be i.i.d. X ∼ P , where P is a p-variate normal distribu-
tion. Suppose we are interested in testing whether the correlations between
all variables are zero: Hjk : ρjk = 0, for j = 1, . . . , p and k = j + 1, . . . , p.
Commonly used test statistics are

√
n times the sample correlations. West-

fall and Young [1993] study this problem (p.43), and note that the joint
distribution of a pair of test statistics depends on the correlation between
the corresponding variables, so that subset pivotality fails. Equivalently,
changing the hypothesized parameters changes the asymptotic covariance of
the vector influence curve for the sample correlations, which is not the same
under P as under a multivariate normal distribution P0 for which Hjk is
true for all (j, k). We wish to asses the performance of the null restricted
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bootstrap (Qn(P0n)) and our proposed ordinary bootstrap (Q#
0n). Clearly,

neither procedure provides asymptotic strong control. The ordinary boot-
strap does provide asymptotic control, however, since Q#

0n is the distribution

of
√

n(ρ#
n − ρ̃n), where ρ#

n is the vector of sample correlations in the boot-
strap sample and ρ̃n is the sample correlation in the original sample, which
converges to Q0. The null restricted bootstrap, in contrast, does not provide
asymptotic control. This example illustrates that requiring strong control is
too much and not necessary, since our proposed method controls the error
rate under the true data generating distribution, which is all that one cares
about.

2.8 Asymptotic Control Theorem

We prove that the proposed class of multiple testing procedures have asymp-
totic control of the wished multiple testing type I error rate.

Theorem 1. Given data and null hypotheses defined in Section 5.1, consider
a parameter µj = µj(P ) ∈ IR with an asymptotically linear estimator µjn,
j = 1, . . . , p. Let Tjn ≡ √

n(µjn − µj0), j = 1, . . . , p and Tn ∼ Qn =
Qn(P ). Suppose that we use a multiple testing procedure MT (c) as defined
in Section 2.5. Then, consider a type I error rate θ(F ) ∈ (0, 1) satisfying
Assumptions (11) and (12) of Section 2.3.1. Let Zn ≡ √

n(µn − µ) and let
Z ∼ Q0 ≡ N(0,Σ(P )) be the limit (in distribution) of Zn. We define the
following random variables in terms of the distribution of Z: V0(c) = V (c |
Q0) and R0(c) = R(c | Q0). Let c = c(Q,α) ∈ IRp be a vector function of a
p-variate distribution Q and α satisfying θ(FR(c|Q)) = α. Let c0 = c(Q0, α)
and define Vn(c0) = V (c0 | Qn). Then the multiple testing procedure MT (c0)
has asymptotic control:

lim sup
n→∞

θ
(

FVn(c0)

)

≤ α. (17)

Since the distribution Q0 of Z is unknown, the distribution of FR0(c) of
R0(c) is unknown. Consequently, we will need to estimate Q0. Let Q0n be
an estimate of the distribution Q0 and define c0n ≡ c(Q0n, α). Let V0n(c) =
V (c | Q0n). Suppose that c0n → c0 in probability for n → ∞. Then

lim sup
n→∞

θ
(

FV0n(c0n)

)

≤ α. (18)
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Suppose that the mapping Q → c(Q,α) is continuous in the sense that
point-wise convergence of the multivariate cumulative distribution of Q0n

to the multivariate cumulative distribution of Q0, at each point, implies

c(Q0n, α)
P→ c(Q0, α) as n → ∞. Under this condition, we have that conver-

gence in distribution of the estimator Q0n to Q0, conditional on the empir-

ical distribution Pn, implies c(Q0n, α)
P→ c(Q0, α), and thereby the wished

asymptotic control (18).
Proof. We will first prove (17). Recall that Z ∼ Q0 ≡ N(0,Σ(P )) is the

limit (in distribution) of Zn ≡ √
n(µn − µ). By (11) we have:

θ
(

FVn(c0)

)

≤ θ
(

FR(c0|Zn)

)

,

where R(c | Zn) =
∑p

j=1 I(| Zjn |> cj). By assumption, we have that for
n → ∞, the multivariate c.d.f. of Zn converges to the multivariate c.d.f.
Z ∼ Q0 at each point. This implies that d(FR(c0|Zn), FR(c0|Z)) → 0. By the
continuity assumption (12) this implies

θ(FR(c0|Zn)) → θ(FR(c0|Z)) = α.

This proves (17).
It remains to prove (18). It is easy to show that Pr(Vn(c0n) 6= Vn(c0)) =

O(δn), where δn = maxj=1,...,p | c0n,j − c0,j |. Since by assumption δn → 0 in
probability, this proves that Pr(Vn(c0n) = Vn(c0)) → 1 for n → ∞, and thus
that d(FVn(c0n), FVn(c0)) → 0. By the uniform continuity (12), this implies
that

θ(FVn(c0n)) − θ(FVn(c0)) → 0 for n → ∞.

Thus,

lim sup
n→∞

θ
(

FVn(c0n)

)

= lim sup
n→∞

θ
(

FVn(c0n)

)

− θ
(

FVn(c0)

)

+ lim sup
n→∞

θ
(

FVn(c0)

)

≤ 0 + lim sup
n→∞

θ
(

FVn(c0)

)

≤ α, by (17). �

3 Equivalence of Multiple Testing and Confidence

Regions

We present a generalization of the equivalence of hypothesis testing and
confidence regions, which is multivariate and allows for any choice of error
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rate. Let FR(c|Zn) denote the distribution of R(c | Zn) =
∑p

j=1 I(| Zjn |>
cj), where Zn =

√
n(µn − µ(P )). Let cn be chosen such that the error rate

θ(FR(cn|Zn)) = α. Then, the random region {µ :
√

n|µn − µ| < cn} or

{

µ : µjn − cjn√
n

< µj < µjn +
cjn√

n
, j = 1, . . . , p

}

(19)

is a θ-specific (1 − α)% confidence region for µ(P ). This is a generalization
of the definition of a simultaneous confidence region to any choice of error
rate. If θ(·) is the FWER, then the region defined by (19) is a (1 − α)%
simultaneous confidence region for µ(P ).

In practice, we do not know the distribution FR(c|Zn). We can estimate

it with the distribution F
R(c|Z#

n )
of R(c | Z#

n ), where Z#
n ∼ Q#

0n is the

bootstrap random variable
√

n(µ#
n − µn). Let c̃n = c(Q#

0n, α). Then,
{

µ : µjn − c̃jn√
n

< µj < µjn +
c̃jn√

n
, j = 1, . . . , p

}

(20)

is an asymptotically correct θ-specific (1 − α)% confidence region for µ(P ).
Our multiple testing procedure MT (c̃n) defined in Section 2 is equivalent
with:

Reject H0,j if |
√

n(µjn − µ0
j ) |> c̃jn, for j = 1, . . . , p.

In other words, one can perform multiple testing controlling an error rate
θ(·) by using the bootstrap distribution Q#

0n to define a θ-specific confidence
region and then checking for every j = 1, . . . , p if Tjn =

√
n|µjn −µ0

j | > c̃jn.
Equivalently, the multiple testing procedure MT (c̃n) equals:

Reject H0j if µ0
j is outside the interval

[

µjn − c̃jn√
n

, µjn +
c̃jn√

n

]

, for j = 1, . . . , p.

REMARK: Westfall and Young [1993] (p.82-83) note the equivalence be-
tween multiple testing with the null restricted bootstrap controlling FWER
and constructing a simultaneous confidence interval based on a null restricted
bootstrap. This particular equivalence requires the subset pivotality condi-
tion (Westfall and Young [1993]).

4 Two Sample Problem

As a specific example, consider the two sample multiple testing problem.
Suppose that we observe n1 observations from population 1 and n2 from
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population 2. We can think of the data as (Xi, Li), where Xi is the multi-
variate vector Xij , j = 1, . . . , p for subject i and Li ∈ {1, 2} is a label indi-
cating subject i’s group membership. Let µ1,j and µ2,j denote the means of
variable j in populations 1 and 2, respectively. Suppose we are interested in
testing

H0,j : µj ≡ µ1,j − µ2,j = 0, j = 1, . . . , p. (21)

We can define a procedure MT (c) as described in Section 2. We will use the
notation Dn for the non-standardized test statistics so that we can compare
them with the standardized t-statistics:

Tjn = (µjn − 0)/sd(µjn),

Djn = µjn − 0.

First, we examine different choices of data models, and then we investigate
the implications that each choice of model has in terms of the performance
of the implied testing procedure.

4.1 Models

Consider the following data models for this two sample problem:

1. P1: X|L = 1 ∼ P1 and X|L = 2 ∼ P2, where P1, P2 can be arbitrary
distributions,

2. P2: X|L = 1 ∼ P0(· − µ1) and X|L = 2 ∼ P0(· − µ2), for a common
non-parametric distribution P0 with mean zero.

Model P2 makes a much stronger assumption, specifically that under the
null hypotheses, the data are identically distributed in the two populations.
If we were testing the hypothesis H0 : P1 = P2, then this would clearly be a
good choice of model, but it may be a poor choice for testing Equation (21).
Other choices of models, which might be more parametric, could also be
considered.

4.2 Bootstrap Null Distributions

Each of the models implies a different null distribution for the test statis-
tics. Suppose we use the bootstrap estimator Q#

0n as described in Sec-
tion 2.7.2. For both of the models, we estimate µ1, µ2 with the sample
means µ1n1

, µ2n2
. If we assume model P1, then P̃n is the empirical dis-

tribution of (Xi, Li), and we resample n1 observations from population 1
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and n2 observations from population 2 separately to form the bootstrap
samples X#

1 , L#
1 , . . . , X#

n , L#
n . Then, Q#

0n is the empirical distribution of

Z#
n =

√
n(µ#

1n1
− µ#

2n2
− (µ1n1

− µ2n2
)). If we assume model P2, then we

first estimate P0 by making centered observations Xi − µ1n1
if Li = 1 and

Xi − µ2n2
if Li = 2 and forming the empirical distribution P0n of the com-

bined sample of centered observations. Then, we resample n1 observations
from P0n and add µ1n1

and n2 observations from P0n and add µ2n2
to form

the bootstrap samples X#
1 , L#

1 , . . . , X#
n , L#

n . Again, Q#
0n is the empirical

distribution of Z#
n .

We note that this procedure for P2 is equivalent to forming a combined
empirical distribution of the Xi (i = 1, . . . , n) and using the distribution of√

n times the difference in the sample means when we draw n1 samples and
set Li = 1 and n2 samples and set Li = 2. This is the resampling (with
replacement) analogue of the commonly used permutation test. Remarkably,
permutation tests are known to be exact (even for p >> n) under the model
P2 (Lehmann [1986] and Puri and Sen [1971]). As noted above, P2 implies
a stronger null model restriction, which is needed for an exact test. In
contrast, the bootstrap method implied by model P1 is only approximate.
Note also that the exactness of the permutation test is conditional on the
observed data, so that the unconditional significance of an “exact” level
α permutation test is less than or equal to α (i.e.: it is unconditionally
conservative). In other words, even for a finite sample size an “exact” test
controls the error rate conservatively (not exactly) in the sense that the error
rate θ ≤ α.

4.3 Implications for the Permutation Test

4.3.1 Covariance

For simplicity, we suppose that p = 2, but note that conclusions about
the covariance of two variables can be applied to any pairwise covariance
when p is much larger. For variable j, denote the variance of Xi by σ2

1,j in

population 1 and by σ2
2,j in population 2. Let φ1 be the covariance between

the two variables in population 1 and φ2 be the covariance between the two
variables in population 2. We have derived formulas for the variance of Dj

(j = 1, 2) and the covariance of the two test statistics D1, D2 under both
models (Table 2, derivations in Appendix).

These expressions show us that under most values of the underlying pa-
rameters, the bootstrap and permutation distributions of Dj are not equiv-
alent. But, when (i) n1 = n2 or (ii) σ2

1,j = σ2
2,j ≡ σ2

j (j = 1, 2) and
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P1 V ar(Dj)
σ2
1,j

n1
+

σ2
2,j

n2

P2
σ2
1,j

n2
+

σ2
2,j

n1

P1 Cov(D1, D2)
φ1

n1
+ φ2

n2

P2
φ1

n2
+ φ2

n1

Table 2: Formulas for the variance and covariance of the difference in means
statistic under two different models. It is interesting to note that the roles
of n1 and n2 are reversed under permutations.

φ1 = φ2 ≡ φ, then they are the same. Thus, unless one of these condi-
tions holds we recommend using a bootstrap distribution since it preserves
the correlation structure of the original data. When a study is “balanced”
(n1 = n2), however, these results suggest that one should use the equiva-
lent permutation distribution, because the variances and covariances are the
same for both populations and estimates of these “pooled“ values (which
make use of all n subjects) are more efficient. Notice that if we were to use
the usual standardized t-statistics Tjn = (µjn−µ0

j )/sd(µjn), despite the fact
that the variances are equal under both models, the covariances are still not
equivalent unless n1 = n2 or the correlation structures are the same in the
two populations.

4.3.2 Bias

We have also found that resampling-based estimated null distributions of
standardized t-statistics do not have mean zero whenever n1 6= n2, unless
the observed difference in means is zero. For the permutation method, this
bias depends on the observed difference in means (Figure 2), while for the
bootstrap methods the bias is independent of the observed difference. This
finite sample bias arises from using a variance estimate in the denominator of
the t-statistics, and disappears in simulations when the estimate is replaced
by the true variance. In small, heavily unbalanced samples, one should be
aware that this bias could be relatively quite large. We found that there
is also a bias in the estimation of the variance of both the difference in
means and the t-statistic in unbalanced designs whenever the two groups
have unequal observed means.

As an illustration, consider the following very simple example. Let n1 =
2, n2 = 50 and suppose that the observations for variable j in population
1 are (1, 3) while the observations in population 2 are a vector of zeros. It
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Figure 2: Mean of the permutation null distribution of the standardized
two sample t-statistic for simulated data. Population 1 consists of n1 = 2
subjects with observed values 1 and 3. Population 2 consists of n2 = 50
subjects with observed values normally distributed with standard deviation
0.1 and different choices of mean. The mean of the null distribution is plotted
versus the mean in Population 2 (i.e.: as a function of the difference in means
since the mean in Population 1 is constant). The vertical line marks where
the difference in means is truly zero. The mean of the null distribution is
close to zero here, but increases in magnitude with the difference in means.
The mean of the null distribution should be zero for all data sets. All 1326
possible permutations were performed exactly.

is easy to enumerate all of the possible permutations for this data set and
compute the expected value of any test statistic under this null distribution
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exactly. The results for the difference in means and the t-statistic are:

E(µ1 − µ2) =

(

2
2

)

∗ 2 +
(

50
1

)

∗ 0.44 +
(

50
1

)

∗ 1.48 −
(

50
2

)

∗ 0.08
(

52
2

) = 0

E(
µ1 − µ2

√

σ2
1/n1 + σ2

2/n2

) =

(

2
2

)

∗ 2 +
(

50
1

)

∗ 0.87 +
(

50
1

)

∗ 0.99 −
(

50
2

)

∗ 1.27
(

52
2

) = −1.104

4.4 Simulations

We have conducted simulations to understand the performance of different
multiple testing procedures for the two sample problem. In our evaluation of
the different methods, we focus on estimation of the null distribution (e.g.:
mean and variance of the test statistic under different choices of Q0n), since
accurately estimating Q0 is essential if resulting inferences are to be correct.
We also report estimates of the error control rates in Section 4.4.4, though
we note that at most I = 200 data sets are used in each simulation so that
the margin of error is almost as large as the level α that we are trying to
estimate.

4.4.1 Data and Null Distributions

The following approach was used to generate simulated data sets. First,
we simulate n1 observations from a p-variate normal distribution with equal
means µ1 = 0, equal variances σ2

1 = 0.1, and all pairwise correlations ρ1 = 0.
Second, we simulate n2 observations from a p-variate normal distribution
with equal means µ2 = 0, equal variances σ2

2 = 5 and all pairwise correla-
tions ρ2 = 0.9. The values of all parameters are chosen in light of the results
from Section 4.3 as an extreme case of unbalanced groups in terms of sample
size, variance, and correlation. We have examined different sample sizes and
dimensions, but focus here on the results for p = 100 and several choices
of n1, n2 representing unbalanced, nearly balanced and perfectly balanced
designs. It would be an interesting area of future research to look at a wide
range of covariance structures and sample sizes in order to try to understand
the relative contributions of variance, correlation, and sample size to error
control in finite samples. We know that the difference in covariance struc-
tures between the two populations will cause problems for the permutation
method when n1 6= n2, and our goal is to study the effect for several finite
sample sizes (n1, n2).

For each simulated data set, we compute two test statistics: the differ-
ence in means Dn and the standardized t-statistic Tn. The null distributions
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of these statistics are then estimated by (i) permutation-based Qn(P0n), (ii)

the non-parametric bootstrap Q#
0n, and (iii) the parametric bootstrap-based

Qn(P0n) (i.e: P0n = N(0,Ψn), where Ψn is the observed data covariance
matrix). Notice that in (iii) we use the correct parametric distribution for
the data. Equation (16) holds for the data generating distribution in the
simulations, so we expect all three estimators to perform well asymptoti-
cally. The goal is to examine their finite sample performance. In each case,
B = 1000 independent resampled data sets are used. Since we know the
true distribution P in this simulation, we can compare parameters of the
estimated null distributions to their true values.

Permutation Non-parametric Parametric True
Bootstrap Bootstrap Value

mean (sd) over I = 200 data sets

n1 = 5, n2 = 6

V AR(Dj) 0.97 (0.40) 0.67 (0.28) 0.80 (0.48) 0.85
V AR(Tj) 1.21 (0.030) 3.26 (0.80) 1.56 (0.12) 1.62

n1 = 100, n2 = 5

V AR(Dj) 0.071 (0.034) 0.84 (0.60) 1.038 (0.73) 1.001
V AR(Tj) 1.34 (0.18) 16.58 (21.08) 1.96 (0.21) 1.996

n1 = 200, n2 = 10

V AR(Dj) 0.052 (0.030) 0.65 (0.50) 0.78 (0.64) 0.5005
V AR(Tj) 1.23 (0.18) 8.95 (13.69) 1.65 (0.49) 1.285

n1 = 19, n2 = 20

V AR(Dj) 0.26 (0.075) 0.23 (0.070) 0.25 (0.074) 0.26
V AR(Tj) 1.05 (0.047) 1.14 (0.075) 1.11 (0.057) 1.11

n1 = 50, n2 = 50

V AR(Dj) 0.101 (0.02) 0.100 (0.02) 0.102 (0.02) 0.102
V AR(Tj) 1.02 (0.04) 1.05 (0.05) 1.04 (0.05) 1.041

Table 3: Variance of the permutation, non-parametric bootstrap, and para-
metric bootstrap null distributions of the difference in means Dj and the
t-statistic Tj . Since all variables have the same marginal distribution in
this simulation, we report the results for one and note that they are repre-
sentative for all variables. The true values are from formulas (approximate
for the t-statistics, Moore and McCabe [2002]) and have been confirmed by
simulation.
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4.4.2 Choice of Test Statistic

We compare Dn and Tn based on the ease with which their null distributions
can be estimated. For most models there are consistent finite sample esti-
mators of the null distributions of both test statistics, although it is known
that the null distribution of pivotal statistics (such as Tn) can be estimated
with less asymptotic error than that of Dn in many cases (Hall [1992]). In
our simulations, we observed the finite sample bias of the estimated null
distributions of Tn noted in Section 4.3, while null distributions of both test
statistics had observed means close to zero when the observed difference in
means between the two samples was close to zero. The covariance structure
of the test statistic null distributions was more difficult to estimate (See Ta-
ble 3). In particular, the variance of Tn’s null distribution is usually much
too large with the non-parametric bootstrap estimator (resulting in conser-
vative error rate control). In addition, whenever n1 6= n2 the permutation
estimates of the variance and correlation of the null distribution of Dn and
the correlation (but not the variance) of the null distribution of Tn are far
from the truth, as predicted by the formulas in Section 4.3. Thus, it is
certainly interesting to do multiple testing with Dn in addition to Tn.

We suggest that Dn may be a better choice at small sample sizes and
with non-parametric data generating models, whereas Tn is often preferable
with larger sample sizes or more parametric models. In other words, pivoting
(i.e.: dividing by sd(µn)) only helps when the estimate sd(µn) is close to a
constant (e.g.: asymptotically). How fast it becomes beneficial to pivot (as
n → ∞) is determined by the variance of sd(µn), which depends on (i) the
data generating model (i.e.: model-based estimation versus non-parametric
estimation) and (ii) the variance of the data.

4.4.3 Choice of Estimated Null Distribution

For both Dn and Tn, we compare the three choices of test statistic null
distribution estimators. The comparison is based on the ability of each
method to estimate the true null distribution and consequently to control
error rates of interest. The most striking finding is that when n1 = n2, the
permutation method performs very well even when the covariance struc-
tures are unbalanced, as predicted by the algebraic results in Section 4.3.
Predictably, using a parametric bootstrap estimate of the data null distri-
bution P0 performs well when the model is correct, but quite poorly oth-
erwise. The non-parametric bootstrap generally performs better for Dn

than for Tn for two reasons. First, the bootstrap method estimates sd(µn)
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non-parametrically. Second, ties in the resampling can result in very small
estimates sd(µn). Smoothing the empirical distribution does reduce this
problem. Both of these factors contribute to the bootstrap method pro-
ducing highly variable and unrealistically large resampled t-statistics. In
contrast, the permutation-based test statistic (which uses a pooled estimate
sd(µn)) is much less variable, so that the asymptotic results of Hall [1992]
will apply.

Permutation Non-parametric Parametric
Bootstrap Bootstrap

n1 = 5, n2 = 6

Dj 0.090 0.24 0.20
Tj 0.11 0.045 0.075

n1 = 5, n2 = 100

Dj 0.67 0.15 0.12
Tj 0.095 0.0050 0.035

n1 = 10, n2 = 200

Dj 0.77 0.12 0.10
Tj 0.085 0.015 0.025

n1 = 19, n2 = 20

Dj 0.045 0.080 0.070
Tj 0.055 0.035 0.045

n1 = 50, n2 = 50

Dj 0.080 0.085 0.090
Tj 0.080 0.065 0.065

Table 4: Estimates α̂ of the error rate P (Vn > 10) over I = 200 indepen-
dent data sets with p = 100 variables for the permutation, non-parametric
bootstrap, and parametric bootstrap null distributions of Dn and Tn. We
can expect the error in the estimates to be on the order of 0.05. The target
error rate is α = 0.05.

4.4.4 Error Rate Control

Since the two population mean vectors are equal, we know that any rejected
null hypotheses are false positives, so we can estimate error rates. We report
results from using Equation (13) with k = 10 to control P (Vn > 10) ≤ α =
0.05, where Vn is the number of false positives. Results for other error rates
followed similar patterns. Table 4 shows the estimates of α over I = 200
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independent data sets, where the thresholds are computed independently
for each data set. A few interesting points emerge. First, conservative
error control is associated with overestimating V AR(Tj) (causing the upper
quantiles cj to be too large) and conversely, failure to control the error rate
is due to under-estimation. Second, the direction of the bias in ˆV AR(Tj)
has consequences in terms of the size of the bias of α̂. In particular, the
skewedness of type I error means that bias due to an underestimate of the
variance is much larger in magnitude than the bias due to a similarly sized
overestimate of the variance. Finally, the parametric and non-parametric
bootstrap methods tend to be conservative for Tn and anti-conservative for
Dn, whereas the permutation method tends to be anti-conservative for both
statistics (but particularly for Dn).

We have also conducted simulations with some differences in means not
truly zero. Estimated error rates tend to be slightly larger when there are
some false null hypotheses. Also, the methods with the largest error rates
have the most power. In practice, one might want to use a cost function
that accounts for both type I and type II errors in order to optimize both
the error rate and power.

5 Applications to Gene Expression Data Analysis

In this paper, we have focused on asymptotics for fixed dimension p and
n → ∞. Under these asymptotics, the usual central limit theorem applies,
and N(0,Σ(P )) is the correct test statistic null distribution. In many appli-
cations, such as gene expression studies, however, the number of variables
is typically always much larger than the number of samples. We present a
few preliminary ideas on this topic. First, it is clear that some error rates
should be harder to control than others because they depend on the most
extreme gene(s) (e.g.: family-wise error). Second, parameters whose estima-
tors have second order terms (e.g.: regression coefficients) will make error
control harder than with sample means. Third, what we can say about the
asymptotic distribution of the test statistics depends on the rate at which
p → ∞ relative to n.

When p ≫ n, there is no multivariate central limit theorem. Hence,
proving an approximation by a multivariate normal will only be possible
with restrictive parametric assumptions on the observed data, though we
rarely believe such a parametric model for the data in the gene expression
context. We consider the example studied by van der Laan and Bryan [2001]
and Pollard and van der Laan [2002], in which n

log p → ∞. Let (µ,Σ) denote

25

Hosted by The Berkeley Electronic Press



the mean and covariance of the data X. Then, if the minimum eigen value
of Σ is bounded away from zero, van der Laan and Bryan [2001] have shown
that when n

log p → ∞

1. maxi,j |Σn,i,j − Σi,j | → 0,

2. maxi,j |Σ−1
n,i,j − Σ−1

i,j | → 0.

This uniform consistency result is very different from a central limit

theorem and does not guarantee that
√

n(µn −µ)
D−−−−−→

n
log p

→∞
N(0,Σ). It does

show us that when X ∼ N(µ,Σ) one should control the error rate under
the test statistic null distribution N(0,Σn). Furthermore, in general, for
X ∼ P one might reasonably choose to use one of the consistent estimators
of N(0,Σ) discussed in this paper as a null distribution for multiple testing.
Note, however, that for any n there will typically be some genes whose
marginal distribution is not yet normal (i.e.: the central limit theorem does
not yet apply). It is a topic of future research to investigate the precise
conditions under which the multivariate normal approximation N(0,Σ(P ))
is valid.

5.1 Data Analysis

We apply resampling-based multiple testing methods to a publicly available
data set (Alizadeh et al. [2000]). Expression levels of 13, 412 clones (relative
to a pooled control) were measured in the blood samples of 40 diffuse large
B-cell lymphoma (DLBCL) patients using cDNA arrays. According to Al-
izadeh et al. [2000], the patients belong to two molecularly distinct disease
groups, 21 Activated and 19 Germinal Center (GC). We log the data (base
2), replace missing values with the mean for that gene, and truncate any
expression ratio greater than 20-fold to log2(20).

5.1.1 Testing for a Difference in Means

Our goal is to identify and then cluster clones with significantly different
mean expression levels between the Activated and GC groups. We com-
pute standardized t-statistics Tjn for each gene. We use permutation and
non-parametric bootstrap methods to compute joint null distributions of the
t-statistics. We choose to control the usual FWER (k = 1) and compare
the clones identified as having significantly different means between the two
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groups using: (i) Equation (13) common quantiles (for gene-specific thresh-
olds) with the non-parametric bootstrap distribution, (ii) single-step Bon-
ferroni common quantiles with the non-parametric bootstrap distribution,
(iii) Equation (13) common quantiles with the permutation distribution, (iv)
single-step Bonferroni common quantiles with the permutation distribution,
and (v) Bonferroni adjusted common threshold with the tabled t-distribution
for each marginal distribution.

Method Null Distribution Rejections

Equation (13) common quantiles bootstrap 186
Bonferroni common quantiles bootstrap 186
Equation (13) common quantiles permutations 287
Bonferroni common quantiles permutations 287
Bonferroni common threshold t-distribution 32

Table 5: Number of rejected null hypotheses (out of p = 13, 412) for five
different choices of thresholds and null distribution. All 32 of the genes in the
t-distribution subset are in both the permutation and the bootstrap subset,
and the bootstrap and permutation subsets have 156 genes in common. Data
are from Alizadeh et al. [2000].

Table 5 shows how many of the p = 13, 412 null hypotheses are rejected
using each method. Interestingly, Equation (13) and single-step Bonferroni
common quantiles produce the same subset of clones (for both the boot-
strap and the permutation null distributions), though this need not be the
case since the single-step Bonferroni quantiles are always smaller. We see
that the variances of the t-statistics across the B = 1000 samples tend to
be smaller in the permutation distribution compared to the bootstrap dis-
tribution, resulting in the larger number of rejected null hypotheses with
permutations. Based on the results of Section 4.4, we believe that the per-
mutation subset is likely to be larger and the bootstrap subset to be smaller
than the true subset. We believe that the permutation subset is likely to be
closer to the true subset, since it makes use of a pooled variance estimate in
Tn and n1 ≈ n2.

We repeat this analysis using the difference in means Dn as the test
statistic. For all of the resampling approaches, more clones are selected
than with the t-statistics. This result confirms our observation in the simu-
lations that Dn tends to be more anti-conservative than Tn. We also repeat
the analysis with two random Activated patients removed so that the design
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is perfectly balanced. Slightly fewer genes are significantly different between
the two groups, but setting n1 = n2 = 19 did not change the results signifi-
cantly.

5.1.2 Testing for an Association with Disease Group Using Lo-

gistic Regression

One might also be interested in testing for an association between gene
expression and an outcome Y of interest, such as survival or disease group.
In this case, a regression model E(Y | Xj) = m(Xj | βj) (e.g.: linear or
logistic regression) is fit for every gene j = 1, . . . , p, producing a vector of
observed regression coefficients βn which measure the association between
gene expression and the outcome. The usual test statistics can be used
(with µj = βj as the parameter) to test the hypotheses H0,j : βj = 0,
j = 1, . . . , p (or more generally, H0,j : βj = β0

j ). The bootstrap method of
Section 2.7.2 can then be used to estimate the test statistic null distribution,
using appropriate resampled random variables (e.g.: Z#

n =
√

n(β#
n −βn) for

test statistics
√

n(βn − 0)).
We apply the non-parametric bootstrap method to the data set of Al-

izadeh et al. [2000], with disease group (Activated versus GC) as a binary
outcome and a logistic regression model. This is an example of a case that
illustrates the simplicity of the bootstrap method. Despite the fact that (i)
the outcome is not a linear function of gene expression and (ii) the error
may not be independent of gene expression, the bootstrap can be applied
directly without concern about the form of the test statistic distribution. In
contrast, the usual resampling-based multiple testing methods (e.g.: permu-
tations or resampling residuals as proposed by Westfall and Young [1993])
do not work, because the assumptions under which they are appropriate
do not hold. Table 6 contains the number of genes that are significantly
associated with disease group. The finding that the number of rejected null
hypotheses is the same for k = 1, 10, 50 is partially due to the discreteness of
the resampled null distribution (with B = 1000 resamples). By resampling
more times (e.g.: B = 10000), a sharper bound can be achieved.

5.1.3 Clustering

We choose to use the subset of 186 clones selected with the bootstrap null
distribution as having a significant difference in means for further analy-
sis. Using the uncentered correlation (or cosine-angle) metric, we apply a
hierarchical clustering algorithm called HOPACH (van der Laan and Pol-
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k = 1 10 50 100 200

Rejections 303 303 303 471 553

Table 6: Logistic Regression Parameters. Number of rejected null hypothe-
ses (out of p = 13, 412) using the non-parametric bootstrap estimated null
distribution and controlling the gFWER P (Vn > k) for different choices of
k, where Vn is the number of false positives. The test statistics used are√

n ∗ (βn − 0). Fine-tuned common quantiles {cj : j = 1, . . . , p} are com-
puted using Equation (13) with the estimated null distribution in order to
control the gFWER at level α = 0.05. Data are from Alizadeh et al. [2000].

lard [2003]) to identify the main clusters of clones and order the clones in
a sensible way. Figure 3 shows the clone-by-clone distance matrix ordered
according to the final level of the HOPACH tree. The six main clusters
identified in the first level of the tree are marked. One of these clusters
has an expression profile that is significantly associated with survival time
in a multiplicative intensity model and a cox proportional hazards model.
Investigating the relationship between expression and survival in this data
set is an area of future work.

5.1.4 Real Data Simulations

We conduct some additional simulations using 100 randomly selected genes
from the data set of Alizadeh et al. [2000] centered to all have mean zero
in the Activated and GC groups as the true data generating distribution.
The idea is to make use of a real data set in order to (i) avoid assumptions
about the parametric form of the underlying distribution and (ii) have a
more realistic covariance structure between the genes. We treat the 21 Ac-
tivated and 19 GC patients as the population and randomly sample n1 < 21
Activated and n2 < 19 GC patients from it to create an “observed” data set
I = 200 times. We estimate the null distributions of the t-statistic and the
difference in means, each resampling B = 1000 times. In each case, we use
Equation (13) to control the gFWER P (V > 10) ≤ α = 0.05. We repeat
the simulation for three choices of (n1, n2). Overall, the permutation distri-
bution does the worst job and the non-parametric bootstrap the best job of
controlling the error rate. Notice that the normal distribution parametric
bootstrap is no longer the best method, since the data model is not normal.

We also repeat the simulation with ten genes whose means are non-zero
in population 2 (as in Section 4.4). Error control rates are similar to those
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Ordered distance matrix for 186 clones differently 
 expressed in GC vs. Activated DLBCL

Clones

C
lo

n
e

s

Figure 3: Uncentered correlation pairwise distance matrix of the 186 clones
differently expressed in GC versus Activated DLBCL. The clones are ordered
according to the final level of the HOPACH hierarchical tree. The dotted
lines mark the boundaries between the six main clusters identified in the
first level of the tree. Red corresponds with smallest and white with largest
distance. Data are from Alizadeh et al. [2000].

in Table 7, and power is very high (at least 0.88 for all null distributions).

6 Discussion

Defining a formal statistical framework for hypothesis testing in multivariate
settings has lead us to a better understanding of the correct null distribution
for testing multiple hypotheses simultaneously. First, we have learned that
for common choices of test statistics one should use a null distribution which
is a projection of the true test statistic distribution on the space of mean zero
distributions. Second, when the test statistics are based on asymptotically
linear estimates µn of the parameter of interest µ(P ), then the asymptoti-
cally correct test statistic null distribution is N(0,Σ(P )), where Σ(P ) is the
covariance of the vector influence curve of µn. Third, our theorem shows
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Permutation Non-parametric Parametric
Bootstrap Bootstrap

n1 = 5, n2 = 15

Dj 0.21 0.025 0.085
Tj 0.020 0.025 0.020

n1 = 9, n2 = 11

Dj 0.13 0.050 0.065
Tj 0.015 0.065 0.015

n1 = 10, n2 = 10

Dj 0.17 0.060 0.070
Tj 0.020 0.055 0.035

Table 7: Estimates α̂ of the error rate Pr(V > 10) over I = 200 independent
simulated data sets with p = 100 genes for permutation, non-parametric
bootstrap and parametric bootstrap null distributions of Dj and Tj . In
each case, Equation (13) was used to adjust for multiple tests. The target
error rate is α = 0.05

that under weak conditions, a class of estimators of the test statistic null
distribution provides asymptotic control of most type I error rates for any
data generating distribution P . A standard bootstrap method produces one
such estimator. In particular, the bootstrap approach does not require the
subset pivotality condition. Using a data null distribution P0 to obtain a
test statistic null distribution, in contrast, only provides asymptotic control
when the subset pivotality condition of Westfall and Young [1993] holds, or
according to our formal definition, when Σ(P ) = Σ(P0).

In the context of testing for a difference in means in the two sample prob-
lem, we have illustrated that the commonly used method of estimating a test
statistic null distribution Qn(P0n) via a permutation data null distribution
P0n indeed has the correct covariance if Σ(P ) = Σ(P0) or, interestingly, if
the design is balanced (i.e.: equal sample sizes in the two groups). It is a
very powerful fact that whenever n1 = n2, the permutation method provides
an estimated test statistic null distribution which is asymptotically correct
and may in fact be more efficient for small sample sizes (by using pooled
estimates of the covariance matrix). However, the permutation method suf-
fers from a bias that depends on the observed difference in the means. In
our limited simulation study, the standardized t-statistic Tn worked poorly
compared to Dn when sd(µn) was variable (e.g.: non-parametric bootstrap
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with a small sample size).
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APPENDIX: Derivations of formulas in Section 4.3

The derivations of expressions for (i) the variances of Dj (j = 1, 2) and
(ii) the covariance of (D1, D2) are similar, and both make use of the double
expectation theorem. For simplicity, assume that the null hypotheses hold
for both variables, so that the means for the two populations are zero vectors
µ1 = µ2 = (0, 0). Consider variable j.

Recall the models P1 and P2 defined in Section 4.1. The distribution
P b ∈ P1 is defined by Xb | Lb = 1 ∼ P1 and Xb | Lb = 2 ∼ P2. The
distribution P ∗ ∈ P2 is defined by X∗ ∼ P0, L∗ ⊥ X∗, and P (L∗ = 1) = 0.5.
Let Db

j denote the test statistic based on n i.i.d. observations of (Xb, Lb) ∼
P b ∈ P1. Let D∗

j denote the test statistic based on n i.i.d. observations
of (X∗, L∗) ∼ P ∗ ∈ P2. Asymptotically, the distribution of D∗

j equals the
distribution of the permutation test statistic. Our bootstrap estimate of
the distribution of Dj (Section 2.7.2) converges to the distribution of Db

j ,
while the permutation estimate of the distribution of Dj converges to the
distribution of D∗

j .

The variance of the difference in means test statistic Dj under P b is:

V ar(Db
j) = E((Db

j)
2) − E(Db

j)
2

= E((Db
j)

2)

= E

(

n
∑

i=1

I(Lb
i = 2)(Xb

i )
2

n2
2

+
I(Lb

i = 1)(Xb
i )

2

n2
1

)

= nE

(

E

(

I(Lb = 2)(Xb)2

n2
2

+
I(Lb = 1)(Xb)2

n2
1

|Lb

))

= nE

(

E

(

I(Lb = 2)(Xb)2

n2
2

+
I(Lb = 1)(Xb)2

n2
1
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)

∗ P (Lb = 1)

)

+nE

(

E

(

I(Lb = 2)(Xb)2

n2
2

+
I(Lb = 1)(Xb)2
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)
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(
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1
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n
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)

=
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1,j

n1
+

σ2
2,j

n2
.
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Similarly, the variance of the test statistic Dj under P ∗ is:

V ar(D∗
j ) = E((D∗

j )
2) − E(D∗

j )
2

= E((D∗
j )

2)

= E

(

n
∑

i=1

I(L∗
i = 2)(X∗

i )2

n2
2

+
I(L∗
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i )2

n2
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)
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n2
2
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n

)

=
σ2

1,j

n2
+

σ2
2,j

n1
.

Note that in this derivation, the variance of X∗ is 1
n(σ2

1,jn1+σ2
2,jn2) for both

values of L∗, since X∗ is independent of L∗. It is interesting to note that
the final expression for the variance of D∗

j resembles that of the variance of
Dj , except with the roles of n1 and n2 reversed.
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Now, consider the covariance between the test statistics for the two genes.
Under P b we have:

Cov(Db
1, D

b
2) = E(Db

1 ∗ Db
2)

= E
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Under P ∗ we have:
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+

1/n(φ1n1 + φ2n2)

n2
2

n2

n

)

=
φ1

n2
+

φ2

n1
.

Note that in the permutation derivation, the covariance of X∗
1 and X∗

2 is
1
n(φ1n1 +φ2n2) for both values of L∗, since Z∗ is independent of L∗. Again,
it is interesting to note that the final expression for the covariance under P ∗

resembles that under P b, except with the roles of n1 and n2 reversed.
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