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Abstract
Efficient surface reconstruction and reverse engineering techniques are usually based on a polygonal mesh rep-

resentation of the geometry: the resulting models emerge from piecewise linear interpolation of a set of sample

points. The quality of the reconstruction not only depends on the number and density of the sample points but also

on their alignment to sharp and rounded features of the original geometry. Bad alignment can lead to severe alias

artifacts. In this paper we present a sampling pattern for feature and blend regions which minimizes these alias

errors. We show how to improve the quality of a given polygonal mesh model by resampling its feature and blend

regions within an interactive framework. We further demonstrate sophisticated modeling operations that can be

implemented based on this resampling technique.

1. Introduction

Surface reconstruction usually refers to the process of deriv-

ing manifold surface information from measured point data.

The input data typically comes as a dense (in general un-

structured) cloud of sample points in 3–space and the output

is the mathematical description of a surface that interpolates

or approximates all or some of the samples.

The classical scattered data interpolation techniques are

mostly based on fitting spline surfaces 11 or surfaces spanned

by radial basis functions 15 to the discrete data. The variety

of shapes that can be reconstructed with these techniques is

limited since a global parameterization of the data over some

parameter domain Ω �
IR2 is required.

With the wider availability and improving performance

of 3D scanning technology, the complexity of geometric

data sets has increased significantly. Data sets with several

million sample points are routinely generated from scan-

ning highly complex shapes. Since classical approximation

techniques can no longer be applied without involved pre–

processing (e.g. segmentation 21 ✁ 22), many surface recon-

struction schemes based on polygonal meshes have been

proposed over the last years.

There are different techniques to generate interpolating or

approximating triangle meshes for a given cloud of sample

points. One approach is to connect the given samples di-

rectly by estimating the neighborhood relation between the

points from their spatial constellation 7 ✁ 1. Some of these al-

gorithms combine the neighbor–finding with a subsampling

mechanism to control the complexity of the resulting mesh
2. Other approaches derive a volumetric signed distance field

for the space around the cloud of samples and generate an

approximating triangle mesh by extracting the zero–level

iso–surface from that volumetric scalar field 9 ✁ 5 ✁ 23.

All the above techniques lead to highly detailed triangle

meshes. Although most algorithms allow the user to con-

trol the output complexity by globally adjusting the resolu-

tion, it is often necessary to set the resolution high enough

to avoid topological ambiguities. An additional drawback is

due to the fact that the resolution can only be changed glob-

ally and hence we either lose relevant geometric detail (if

we set the resolution too low) or we extremely oversample

flat surface regions (if we set the resolution to high). Lo-

cally adapting the resolution is difficult since this requires

to detect the presence of fine detail ( ✂ estimate the surface

curvature) before the surface is actually generated. In coarse-

to-fine approaches like 23 the mesh resolution is adapted by

selective refinement based on an a posteriori estimator.

The standard procedure to avoid these difficulties is there-

fore to first reconstruct highly complex meshes and then ap-

ply some mesh decimation technique 10 ✁ 18 ✁ 13 which effec-

tively reduces the number of triangles while keeping a pre-
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scribed approximation tolerance and optimizing the visual

quality. Out–of–core decimation algorithms are able to pro-

cess data sets of virtually any size 16 ✁ 4. As a result we obtain

a triangle mesh that approximates the original geometry up

to a prescribed tolerance with a minimum number of trian-

gles.

Since most geometry-based decimation schemes are

greedy algorithms that only consider the local shape to de-

cide about which vertex to remove in the next step, one usu-

ally has no direct influence on the distribution and global

alignment of the mesh vertices on the surface. The only guar-

antee is that the vertex distribution correlates with the sur-

face curvature, i.e. we obtain a low vertex density (large tri-

angles) in flat regions and a high density (small triangles)

in curved regions. For the better decimation algorithms we

can further observe that in cylindrical regions with high cur-

vature in one and low curvature in the orthogonal direction,

the vertex distribution is anisotropic, leading to long thin tri-

angles along the cylinder axis direction (cf. Fig. 1). This is

an added value to those decimation schemes since such tri-

angulations approximate cylindrical regions much better for

a fixed triangle budget.

While such decimated meshes are well–suited for dis-

playing, they turn out to be inappropriate for more sophis-

ticated downstream applications like numerical simulation

(e.g. CFD). The reason for this is that the (weighted) random

distribution of vertices ( ✂ surface samples) leads to severe

alias errors which become visible as flat shading artifacts (cf.

Fig. 1) and which can lead to erroneous simulation results.

Those alias errors are caused by the fact that although the

decimated triangle mesh stays pointwise within some tol-

erance to the original data, the normal vectors can deviate

significantly.

This so called normal noise becomes particularly evident

in the vicinity of feature lines on the original shape. Here the

two principal curvatures differ very strongly – in the extreme

case of sharp features, the curvature across the feature even

diverges.

The only way to solve this geometric alias problem in sur-

face reconstruction is to choose the “right” sampling pattern,

i.e. to globally adjust the distribution and alignment of mesh

vertices such that the normal vectors of the triangles approx-

imate the normal vectors of the original surface.

In this paper we propose a solution to this sampling prob-

lem. We present a technique to resample the feature re-

gions of a given triangle mesh such that the alias artifacts

are strongly reduced. We advocate for an integration of this

technique into a semi–automatic set–up since we consider

the problem of detecting feature regions to be independent

from the actual (re–)sampling problem: If we would have a

reliable technique for feature detection, we could combine

it with our resampling technique to implement a fully auto-

matic resampling scheme. For industrial surface design ap-

plications, manual feature detection is acceptable and even

preferred by most designers.

Figure 1: Geometric alias effects such as normal noise be-

come clearly visible under specular shading. The top image

shows an original 3D–scan of a feature region. Although

the point positions have been sampled at high precision, the

normals of the resulting mesh deviate strongly from the nor-

mals of the original surface. Applying mesh decimation (cen-

ter) improves the situation slightly since the triangles are

stretched along the feature but the normal noise is still dis-

turbing. In the bottom image we applied our alias–reducing

feature resampling. Although the mesh resolution has not

changed, the quality has improved due to effective normal

noise elimination.

The main contribution of this paper is the definition, jus-

tification, and application of a sampling pattern for geomet-

ric feature regions which provably satisfies the mesh quality

requirements for numerical simulation applications. We fur-

ther present an efficient and effective technique to reverse–

engineer these sampling patterns with only little user in-

put for the features of a given geometric model. We finally

demonstrate that the additional structure of the resampled

mesh models provides the basis for a number of high level

modeling operations.

2. Feature regions

In the boundary representation of geometric (solid) models

we can distinguish three types of surface regions: there are

geometric primitives (parts of spheres, cylinders, or tori),
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freeform surfaces (smooth surface patches of general shape),

and blends. Blends are usually constructed to join the other

surface parts in order to obtain a consistent representation of

a closed solid.

A blend surface can be thought of as either generated by

rolling a ball with varying or constant radius over the gap

between two surface segments or by sweeping a profile curve

along the two opposite boundaries (cf. Fig. 2). In the extreme

case, a blend can degenerate to a feature curve where two

surface segments meet with discontinuous tangent planes.

We call such feature curves sharp features. They correspond

to rolling ball blends with zero radius of the ball.

Figure 2: Feature regions on a complex surface usually

emerge from blending two separate patches along the cor-

responding boundary. The two patches on the top left can be

joined by computing their intersection. This leads to a sharp

feature line (top right). Alternatively we can roll a ball of

prescribed radius (bottom left) or sweep a more complicated

profile (bottom right).

When sampling a surface, we have to adapt the sampling

density to the local curvature distribution in order to cap-

ture all (and only) relevant geometric details. Obviously, in

highly curved regions where the principal curvatures κ1 and

κ2 are both large, we have to sample more densely than in re-

gions where both principal curvatures are small. If the mag-

nitude of the curvatures does not differ too much then an

isotropic sampling pattern is fine. However, since two prin-

cipal curvatures characterize the local curvature, an optimal

sampling pattern has different densities in the corresponding

principal directions. Hence, in feature regions – character-

ized by κ1 ☎ κ2 – we have to use an anisotropic sampling

pattern and this pattern should be aligned to the principal

directions.

In terms of the above classification into primitives,

freeform patches, and blends the feature regions are usu-

ally the blend areas where, e.g., a sphere of radius 1 ✆ κ2 rolls

along a curve with curvature κ ✝ κ1 ☎ κ2.

3. Surface sampling

In the introduction, we pointed out that the weighted random

distribution of surface samples as it emerges from mesh dec-

imation does not yield satisfactory results in feature regions

due to normal noise. We now give a more precise definition

of normal noise and then present a simple sampling pattern

for feature regions that reduces normal noise to a minimum.

The roughness of a triangle mesh can be measured by

some discrete analogon to the concept of curvature 6 ✁ 20 ✁ 17.

A simple discretization is, e.g., to rate the curvature ( ✂ non–

planarity) across an edge of the mesh by the angle between

the normal vectors of the adjacent triangles. We call this an-

gle the normal jump. If the triangle mesh is an orientable

manifold then we can distinguish convex normal jumps (pos-

itive sign) and concave normal jumps (negative sign). By

adding the normal jumps with respect to its three direct

neighbors, we obtain a single curvature value per triangle

which can be interpreted as discrete mean curvature.

High quality (“class A”) surfaces in Geometric Model-

ing and CAD are usually characterized by low variation of

curvature. Most surface fairing techniques improve a given

shape by reducing the surface’s curvature or its variation in

an optimization process 19 ✁ 6 ✁ 12. Transferring this notion of

fairness to triangle meshes implies that we consider meshes

to be of high quality if the variation of the normal jumps is

low.

For a low quality mesh with strongly varying normal

jumps the individual triangle normals are more or less ran-

domly tilted away from the normal cone corresponding to

the underlying surface patch (cf. Fig. 1). We call this ef-

fect which becomes clearly visible under specular shading

of the surface normal noise, because it behaves very sim-

ilar to surface noise which refers to a high frequency per-

turbation of the vertex positions away from the underlying

surface. The process of reducing or even removing normal

noise by choosing an appropriate sampling pattern is called

surface anti–aliasing.

It is easy to see that random sampling generally leads to

significant normal noise. Consider, e.g., the simple example

of an orthogonal cylinder. Placing the samples randomly on

the surface causes an uncontrollable tilt of the triangle nor-

mals away from the original surface normals which are all

orthogonal to the cylinder’s axis.

If we reduce the sampling density in the direction of the

cylinder axis we obviously reduce the normal noise since the

resulting long and thin triangles become more and more par-

allel to the cylinder axis and hence their normals become ap-

proximately orthogonal to the axis. However in general the

normal noise will never disappear completely and, in fact,

c
✄

The Eurographics Association and Blackwell Publishers 2001.



Botsch and Kobbelt / Surface Anti-Aliasing

we trade the triangle’s aspect ratio (another mesh quality cri-

terion) for the reduced normal noise.

The generic configuration of a triangle’s normal vector

being orthogonal to the cylinder axis occurs if the triangle’s

embedding plane intersects the cylinder in two parallel lines.

Since the triangle is spanned by three surface samples, these

samples also have to lie on those two lines. This implies that

a triangle is free of normal noise if and only if one of its

edges is parallel to the cylinder axis.

Now consider a sampling pattern where all samples lie on

a set of lines which are parallel to the cylinder axis and dis-

tributed equally around the cylinder. Each strip between two

of those lines can be tesselated by a planar triangulation. As

a consequence the normal jumps between triangles are either

zero (within the same strip) or a constant angle that only de-

pends on the number of strips. Hence the normal noise is

minimal. The two different normal jump values correspond

to the two principal curvatures on the cylinder surface.

We now generalize this idea to derive a sampling pattern

for surfaces that are part of an envelope generated by moving

a sphere of constant radius along a space curve. In Section 5

we will apply the same sampling pattern to even more gen-

eral profile sweep surfaces to empirically demonstrate that

we still obtain superior quality meshes compared to random

sampling although we can no longer guarantee zero normal

noise in this generalized setting.

The envelope of a moving sphere can be defined alter-

natively by a center curve g ✞ t ✟ along which a planar circle

profile is moved. The orientation of the circle’s embedding

plane at a time step t0 is defined by the tangent g ✠✡✞ t0 ✟ of the

center curve. The sweep surface itself is the collection of

all profiles at different time steps t ☛✌☞ a ✍ b ✎ . We assume that

the minimum curvature radius of the center curve g is larger

than the radius of the circle profile to avoid the discussion of

surface degeneracies.

According to the above definition we can distinguish two

natural directions on such a sweep surface S: one along the

center line and one around the center line. We can use these

directions for a natural parameterization S ✞ t ✍ u ✟ with t vary-

ing along and u around the center curve. In this parameteri-

zation, the iso–curves with constant parameter t0 are circles

around the center g ✞ t0 ✟ . Iso–curves with constant parameter

u0 are the trajectories along which a specific point on the

circle profile moves. Obviously, the trajectories are offset–

curves to the center curve and consequently the iso–curves

with respect to the parameter t and u intersect perpendic-

ularly. In fact, it can be shown that the iso–curves are the

principal curvature lines of the sweep surface 3. Another im-

portant property of the trajectories which will be used later

on, is that they have constant Euclidean distance as well as

constant geodesic distance.

The sampling pattern for the sweep surface has to dis-

cretize the parameter domain in t and u direction. We

start by discretizing the moving profile itself. This means

we approximate the circle S ✞ 0 ✍ u ✟ by a closed polygon

P ✂✏☞ p0 ✍✒✑✒✑✒✑✓✍ pn ✔ 1 ✎ with pi ✂ S ✞ 0 ✍ i ✆ n ✟ . When sweeping this

closed polygon instead of the circle, we obtain a surface that

consists of n ruled surfaces

Ri ✞ t ✍ u ✟✕✂✖✞ 1 ✗ u ✟ S ✞ t ✍ i

n
✟✙✘ u S ✞ t ✍ i ✘ 1

n
✟✚✑

Because the trajectories along which the points pi move are

perpendicular to the profiles, we immediately see that if we

choose the polygon P to be a regular n–gon then the normal

jump between neighboring ruled patches Ri is exactly 2π✆ n
everywhere (cf. Fig. 3). Hence we have a constant normal

jump ( ✂ zero variation).

Figure 3: By discretizing the sweep profile we approximate

the original envelope surface S by a collection of n ruled

surfaces Ri. Since we replace the circle profile by a regu-

lar n–gon which moves orthogonally to its embedding plane,

all normal jumps between neighboring strips are constantly

equal to 2π✆ n.

Next we have to find a triangulation for each ruled patch

Ri which corresponds to a discretization in t direction. Since

the trajectories are lines of minimal curvature, we do not ex-

pect large normal jumps between triangles within the same

strip. However, we have to make sure that the constant nor-

mal jump property of the n–gon sweep is preserved as good

as possible.

If we approximate the segment g ✞✒☞ t0 ✍ t1 ✎✛✟ by a straight line

or a circular arc then the resulting patch Ri ✞✒☞ t0 ✍ t1 ✎✜✍✚☞ 0 ✍ 1 ✎✛✟ is a

cylindric or conic surface patch. Notice that the approxima-

tion error of a circular arc to the curve segment g ✞✢☞ t0 ✍ t1 ✎✛✟
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decreases like O ✞✒✣ t1 ✗ t0 ✣ 3 ✟ . Hence, even for general cen-

ter curves g we can locally approximate each surface patch

Ri ✞✒☞ t0 ✍ t1 ✎✜✍✚☞ 0 ✍ 1 ✎✛✟ by a cylindric or conic surface patch. More-

over Ri is linear in u direction and the two iso–curves Ri ✞ t ✍ 0 ✟
and Ri ✞ t ✍ 1 ✟ are offsets of each other.

For a conic patch Ri ✞✒☞ t0 ✍ t1 ✎✜✍✚☞ 0 ✍ 1 ✎✛✟ , any two gener-

ator lines (e.g. Ri ✞✒☞ t0 ✎✜✍✚☞ 0 ✍ 1 ✎✤✟ and Ri ✞✢☞ t1 ✎✜✍✚☞ 0 ✍ 1 ✎✛✟ ) inter-

sect in a common point, the apex. Hence the quadri-

lateral ☞ Ri ✞ t0 ✍ 0 ✟✥✍ Ri ✞ t0 ✍ 1 ✟✚✍ Ri ✞ t1 ✍ 0 ✟✚✍ Ri ✞ t1 ✍ 1 ✟✓✎ is planar. If

Ri ✞✒☞ t0 ✍ t1 ✎✜✍✚☞ 0 ✍ 1 ✎✛✟ slightly deviates from a conic patch, the

corresponding quadrilateral will still be very flat. Conse-

quently, the quadrilateral spanned by Ri ✞ t0 ✍ 0 ✟ , Ri ✞ t0 ✍ 1 ✟ ,
Ri ✞ t1 ✍ 0 ✟ , and Ri ✞ t1 ✍ 1 ✟ will be very close to planar and

no matter how we split it into two triangles, we do not

introduce a significant normal jump between the two re-

sulting triangles. In addition, if we look at neighbor-

ing quadrilaterals ☞ Ri ✞ t0 ✍ 0 ✟✥✍ Ri ✞ t0 ✍ 1 ✟✚✍ Ri ✞ t1 ✍ 0 ✟✚✍ Ri ✞ t1 ✍ 1 ✟✜✎ and

☞ Ri ✦ 1 ✞ t0 ✍ 0 ✟✚✍ Ri ✦ 1 ✞ t0 ✍ 1 ✟✚✍ Ri ✦ 1 ✞ t1 ✍ 0 ✟✚✍ Ri ✦ 1 ✞ t1 ✍ 1 ✟✓✎ , the normal

jump between them is approximately 2π✆ n since each quad

is spanned by a pair of generating lines from the neighbor-

ing strips Ri and Ri ✦ 1 for the same parameter value t0 and t1
respectively.

Hence, it turns out that the regular triangulation for each

strip which uses the sample pairs Ri ✞ t j ✍ 0 ✟ and Ri ✞ t j ✍ 1 ✟ for

any sequence of parameter values t j does not introduce sig-

nificant normal noise. Moreover, we can even show that any

modification of the triangulation only increases the normal

noise.

Consider, e.g., the four samples A ✂ S ✞ t0 ✍ i ✆ n ✟ , B ✂
S ✞ t1 ✍ i ✆ n ✟ , C ✂ S ✞ t2 ✍✥✞ i ✗ 1 ✟✢✆ n ✟ , and D ✂ S ✞ t3 ✍✥✞ i ✘ 1 ✟✢✆ n ✟
which define two triangles T1 ✂✧☞ A ✍ B ✍ C ✎ and T2 ✂★☞ D ✍ B ✍ A ✎
in neighboring strips. If the trajectories S ✞ t ✍✥✞ i ✗ 1 ✟✢✆ n ✟ ,
S ✞ t ✍ i ✆ n ✟ , and S ✞ t ✍✥✞ i ✘ 1 ✟✢✆ n ✟ are no straight lines then the

normal angle between T1 and T2 can differ significantly from

the optimal value 2π✆ n when we choose the parameter val-

ues t2 and t3 from the interior of the interval ☞ t0 ✍ t1 ✎ (cf. Fig.

4). This local deviation of the normal jump from the aver-

age 2π✆ n propagates across the mesh because the sum of

the normal jumps along a planar contour around the center

line is constantly equal to 2π.

In conclusion of this section we find that the key to an

anti–aliased sampling pattern on spherical sweeps is to ar-

range the surface samples pi ✩ j ✂ S ✞ ti ✍ u j ✟ such that the the

points ☞ pi ✩ j ✎ i lie on a common circle around the center curve

and the samples ☞ pi ✩ j ✎ j lie on trajectories.

4. Interactive surface reconstruction

In the last section we showed that a rolling–ball blend should

be triangulated based on a sampling pattern that is aligned to

the principal curvature directions (trajectories and circle pro-

files) in order to minimize normal noise. However, sampling

an existing feature with unknown center curve g from a given

triangle mesh is a different situation: unless we are dealing

with a sharp feature (i.e. its radius equals zero) the center

Figure 4: In both images, the feature region is reconstructed

by placing the samples along the trajectories. One the left,

the samples are “synchronized” in the orthogonal direction

(i.e. along the contours) as well, leading a noise free ap-

pearance. One the right, we shifted the phase on every other

trajectory thus provoking extreme normal noise. Notice that

the geometric approximation error is the same in both exam-

ples.

curve does not lie on the given surface, neither do we know

the radius of the profile that was swept along it. Instead,

the surface data only provides us the resulting blend. In or-

der to reverse–engineer the feature and to resample it in an

anti–aliased manner we have to generate the sampling pat-

tern without explicitly knowing the principal direction based

parameterization S ✞ t ✍ u ✟ .
Our goal is to generate the sampling grid using a fishbone–

type of grid structure: we first construct a backbone curve T0

that is approximately aligned along the feature and then we

trace rib curves Ci that branch off perpendicularly from it

(and hence are aligned around the feature). In terms of the

last section, the backbone corresponds to a trajectory on the

sweeping profile, while the ribs represent the contours at dif-

ferent time steps. On each rib Ci we take a set of uniformly

spaced samples pi ✩ j (with respect to arc–length parameter-

ization). If we connect the jth sample from every rib, we

obtain a curve Tj with constant geodesic distance from the

backbone. This implies that the curve Tj is another trajectory

and it follows that the set of samples ☞ pi ✩ j ✎ i ✩ j has the proper-

ties derived in the previous section.

Consequently, the resampled triangle mesh patch is an

anti–aliased approximation of the feature region that we can

insert into a target mesh by using a mesh–stitching method

similar to the one described in 14. This target mesh does not

need to be the same mesh as the one we sampled from. In

the context of surface reconstruction from range data, e.g.,

we may generate the target model using standard methods
5 ✁ 2. This mesh could afterwards be enhanced by stitching

in alias–reduced patches that were resampled from the best

available geometry, i.e. from the original non–decimated

range scans.
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Figure 5: This sequence of images gives a rough overview of our resampling procedure. The backbone is generated by interpo-

lating user selected surface points and a set of ribs is created by intersecting the surface with a set of planes being orthogonal to

the backbone (left). Feature snapping allows to re–position the backbone exactly on a sharp feature line (center left). Additional

trajectories can be defined by marching from rib to rib according to some selection criterion (center). By uniformly sampling

the rib curves, we can generate a regular triangulation of the feature region. The alignment of the sampling grid to the ribs

in one direction and to the trajectories in the orthogonal direction guarantees an anti–aliased reconstruction (center, right). If

necessary, the resampled mesh can be smoothed by applying univariate filters that preserve the feature characteristics. Finally

the resampled mesh is stitched into the original (right).

In the following we explain the basic steps of the resam-

pling procedure in more detail:

The initial backbone is constructed interactively: the de-

signer sketches the feature by picking a few positions on an

estimated trajectory. The backbone curve is then generated

automatically by smoothly interpolating or approximating

these points. Since we do not require the backbone curve

to lie exactly on the surface, this procedure allows us to ob-

tain a smooth backbone curve even if the underlying surface

data is noisy. The only (soft) requirement for the resulting

backbone curve is that it should be an approximate offset of

a trajectory.

To genererate the rib curves, the backbone is sampled ei-

ther uniformly or with a curvature–dependent step width.

For each of the sample points vi we create a rib curve by

intersecting the given surface with the plane positioned at vi

and orthogonal to the backbone’s tangent (cf. Fig. 5, left).

This special rib generation is the reason why the backbone

does not have to lie exactly on the surface. Nevertheless,

each rib is a planar polygon (a fact we will exploit later

on) that exactly lies on the surface. If the given surface is a

polygonal mesh, the plane intersection can be implemented

by a local tracing scheme such that the computation costs do

not depend on the overall complexity of the mesh.

To create a new trajectory the user selects one or more

interpolation points on different ribs. Starting from such a

point, the new trajectory is constructed by marching from

rib to rib. The corresponding points on the neighboring ribs

can be identified according to several different criteria:

✪ We can choose that point which has the same geodesic

distance to an already existing trajectory (to mimic the

offset curve property of trajectories).✪
We can proceed in orthogonal direction to the current rib

(to mimic the principal direction property of trajectories).

Figure 6: At strongly curved features, the ribs may intersect

each other. If we give up the requirement that the ribs have

to be orthogonal to the trajectories, we can still find a decent

triangulation with reduced normal noise.

✪
We can choose the local curvature maximum to trace a

sharp feature line. This is a convenient method to snap the

backbone to a feature line if the initial backbone did not

fit (cf. Fig 5, center left). Notice that the snapping only re-

quires univariate feature detection within each rib curve.✪
We can simply interpolate a given set of points by a

smooth curve. This provides full manual control to the

designer.
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In case we use the backbone snapping we might have to

recompute the ribs by intersecting the surface with a new set

of planes being orthogonal to the new backbone (cf. Fig. 5,

center left). We found this technique particularly useful in

practice since it allows the designer to select sharp feature

lines on a CAD model with a high precision without having

to pick points exactly on the feature by himself.

When the feature is strongly curved we may run into

the problem of overlapping rib curves. To generate an anti–

aliased triangulation in this case, we have to give up the re-

quirement that ribs have to be orthogonal to trajectories. The

following technique yields very satisfactory results: For a

given fishbone ( ✂ backbone samples vi plus ribs) we gen-

erate two additional trajectories ☞ wi ✎ and ☞ w ✠i ✎ with constant

distance along the ribs. In the presence of overlapping ribs,

these trajectories will have kinks and loops. By applying a

simple low–pass filter operator to the outer trajectories we

can straighten out these degeneracies.

After the filtering, the three points vi, wi, and w ✠i which

are associated with the ith rib, define a tilted plane. By inter-

secting the given surface with these new planes, we obtain

new ribs which no longer overlap (cf. Fig. 6).

The last step of the resampling procedure is to compute

equidistant samples on each rib with respect to the arc–

length parameterization. Those samples have the property

that they are (trivially) aligned to the ribs ( ✂ contours) but

also aligned to the trajectories since the jth sample on each

ribs has the same geodesic distance to any other trajectory.

Hence the sampling grid matches the requirements from

Section 3 and therefore we can expect an anti–aliased sur-

face reconstruction. The resampling procedure is concluded

by stitching the new patch into the original mesh.

Figure 7: Rounding a sharp feature: The feature region has

been resampled by our new technique. The image on the

left shows four trajectories and several ribs. The area be-

tween the inner trajectories is modified by replacing each

rib segment with a Hermite interpolating profile having a

prescribed blend radius (right image).

5. Feature modeling

The fishbone metaphor described in the last section not only

enables us to resample geometry in a way that strongly re-

duces normal noise, the additional structural information can

also be used for high level feature modeling.

Changing the characteristics of a feature is a very frequent

operation in product design. For example in CFD simula-

tions it is often necessary to vary the sharpness of a feature

(i.e., the radius of a rolling ball blend) to verify the impact

on the overall aero dynamics. Rounding and sharpening are

the operations which increase or decrease the blend radius

along a feature.

Figure 8: The rounded feature is sharpend by setting the

blend radius for the rib profiles to zero for the upper ring

and to some small but non-zero value in the lower ring.

On a fishbone–wise resampled feature region such mod-

eling operations are very easy to implement. The reason for

this is that we have a perfect alignment of the sampling

grid to trajectories and ribs. Since the ribs are generated by

plane intersections we additionally know that they are planar

which reduces the feature modeling operations to 2D opera-

tions acting on the rib curves.

The generic formulation of a feature modeling operation

is to select two trajectories, remove the part of the fishbone

that lies between them and replace it by another mesh that

fits to the boundary conditions imposed by the remaining

parts. Since each rib can be processed independently we only

have to implement the modeling operation for a planar curve

and then apply it to each rib separately.

The corresponding 2D operation to which the feature

modeling reduces is in fact a Hermite interpolation problem

where two points and tangents are given and a C1 interpolat-

ing curve is sought. These Hermite conditions are imposed

by the remaing parts of each rib.

Let us first consider the rounding or sharpening opera-

tions. As stated above, both operations simply change the

radius of the blend and hence they can be treated analogu-

ously. The generic profile by which we want to solve the

Hermite interpolation problem is depicted in Fig. 9. It con-

sists of two straight segments on both sides of a circular arc.

This generic profile is flexible enough to solve the Hermite

problem for any convex configuration and has one additional

degree of freedom: the circle radius. Hence we can prescribe
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Figure 9: We can use any generic profile for the feature mod-

eling as long as it is flexible enough to solve the Hermite

interpolation problem and provides at least one additional

degree of freedom.

the radius and find the resulting C1 interpolant by a straight-

forward construction. Fig. 7 shows an example where the

blend radius is increased and Fig. 8 shows the perfect re-

construction of a sharp feature by setting the blend radius to

zero.

If we want to model more complicated profile sweeps, we

simply have to replace the generic Hermite interpolant. Fig.

9 shows a parameterized profile with two straight segments

and three circular arcs. The independent degrees of freedom

are the circle radii and the opening angle of the center arc.

Fig. 10 shows the application of this profile to the same fea-

ture that was modified in Fig. 7.

Figure 10: Quite sophisticated modeling operations are pos-

sible if we use more complicated profiles for the 2D Hermite

interpolation on each planar rib curve.

6. Results

We applied the surface anti–alias technique in the context

of CFD simulation for conceptual car design to a highly de-

tailed mesh model of the BMW Z8 car. The normal noise

contained in the models after the triangulation and decima-

tion phase could effectively be removed. Some results are

shown in Fig. 11 ✭ . To re–model the complicated structure

of features around the driver’s window took a one–hour in-

teractive session. Once the fishbones have been created for

each feature, the blend radii can be changed interactively.

7. Conclusions

We demonstrated a new resampling and anti–aliasing

scheme for the feature regions of a given surface. The major

idea is to align the sampling grid to the (estimated) principal

curvature directions of a sweep surface in order to minimize

the normal noise. We presented a geometrical justification

for the intuitive placement of the sample points along trajec-

tories and contours of a rounded feature: it turns out that this

special sampling pattern minimizes the normal noise which

is measured in terms of the variation of normal jumps across

mesh edges. This discrete fairness measure can be inter-

preted as a third order derivative (curvature variation) which

is often used in CAGD to measure the fairness of a surface.
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