
Resampling imbalanced data for network
intrusion detection datasets

Sikha Bagui* and Kunqi Li

Introduction

Cybersecurity is increasingly becoming a major concern due to the increased reliance

on computers and the Internet. In order to detect Cyber-attacks, it is prudent that we

build efficient Network Intrusion Detection Systems, and the basis for doing this is to be

able to analyze network traffic flow data, termed here as Cybersecurity data, efficiently

and quickly. �ere is an inherent problem with most network traffic flow data or Cyber-

security data—the data is highly imbalanced, that is, there is a disproportionately large

amount of good or normal traffic data and, in a most cases, very few attack instances.

Even existing benchmark datasets suffer from this problem. Using imbalanced data for

machine learning or deep learning algorithms like Artificial Neural Networks (ANN) is

a major challenge. Moreover, many of these datasets require multi-class classification.

Abstract

Machine learning plays an increasingly significant role in the building of Network Intru-

sion Detection Systems. However, machine learning models trained with imbalanced

cybersecurity data cannot recognize minority data, hence attacks, effectively. One way

to address this issue is to use resampling, which adjusts the ratio between the different

classes, making the data more balanced. This research looks at resampling’s influence

on the performance of Artificial Neural Network multi-class classifiers. The resampling

methods, random undersampling, random oversampling, random undersampling and

random oversampling, random undersampling with Synthetic Minority Oversampling

Technique, and random undersampling with Adaptive Synthetic Sampling Method

were used on benchmark Cybersecurity datasets, KDD99, UNSW-NB15, UNSW-NB17

and UNSW-NB18. Macro precision, macro recall, macro F1-score were used to evalu-

ate the results. The patterns found were: First, oversampling increases the training

time and undersampling decreases the training time; second, if the data is extremely

imbalanced, both oversampling and undersampling increase recall significantly; third,

if the data is not extremely imbalanced, resampling will not have much of an impact;

fourth, with resampling, mostly oversampling, more of the minority data (attacks) were

detected.

Keywords: Oversampling, Undersampling, Resampling, Imbalanced Data, Network

Intrusion Detection Systems, SMOTE, ADASYN, Artificial Neural Networks, Macro

precision, Macro recall

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

RESEARCH

Bagui and Li J Big Data (2021) 8:6

https://doi.org/10.1186/s40537-020-00390-x

*Correspondence:

bagui@uwf.edu

Department of Computer

Science, University of West

Florida, Pensacola, FL 32514,

USA

http://orcid.org/0000-0002-1886-4582
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00390-x&domain=pdf

Page 2 of 41Bagui and Li J Big Data (2021) 8:6

ANN needs to be trained on historical data, and can be seriously affected by imbal-

anced proportions in the data. When training data is extremely imbalanced, that is,

when one class (or classes) outnumbers the other class(es) by a large proportion, major-

ity data (the class or classes with larger proportions) will have a stronger influence on the

ANN model than minority data (the class or classes in lesser proportions). Under these

circumstances, the ANN model will recognize majority data well but have poor perfor-

mance on recognizing minority data.

In most network traffic flow data or Cybersecurity data, benign or normal data makes

up a large proportion of the dataset, and attack data makes up only a small proportion of

the dataset. If this imbalanced data is used to train an ANN model, the ANN model will

have good performance on recognizing the benign data and bad performance on recog-

nizing the attack data. �is means that the model will recognize benign data as benign

data and might also recognize attack data as benign. Especially in multiclassification, if

there are small numbers of certain attack types, the minority attack data may be recog-

nized as benign data or majority attack data. When network traffic cybersecurity data

is being used for attack detection, recognizing minority attack data correctly is more

important than recognizing majority benign data correctly.

In order to improve performance on classifying imbalanced data, researchers have sug-

gested a number of approaches including resampling, cost sensitive kernel modification

methods, and active learning methods [15]. �is paper focuses on resampling strategies.

�e resampling techniques, random undersampling (RU), random oversampling (RO),

random undersampling and random oversampling (RURO), random undersampling

with Synthetic Minority Oversampling Technique (RU-SMOTE), and random under-

sampling with Adaptive Synthetic Sampling Method (RU-ADASYN) were applied to

six benchmark cybersecurity datasets, KDD99,1 UNSW-NB15,2 UNSW-NB17-Ecobee_

�ermostat,3 UNSW-NB17-Danmini_Doorbell (see Footnote 3), UNSW-NB17-Philips_

B120N10_Baby_Monitor (see Footnote 3), and UNSW-NB18 [18], before performing

classification using ANN. �e classification results are evaluated using macro metrics

including macro precision, macro recall and macro F-1 score. �e training time, which

usually forms the major part of the total running time of the algorithm, was also consid-

ered. Results of regular ANN using scikit-learn were compared to ANN in the Big Data

framework using an EC2 instance of the Spark Machine Learning Library (MLlib) on an

EMR Cluster.

�e uniqueness of this work can be stated as:

• Applying new resampling technique combinations of random undersampling and

random oversampling on imbalanced data. �e following unique resampling combi-

nations were used:

– Random undersampling and random oversampling taken together (RURO).

1 http://kdd.ics.uci.edu/datab ases/kddcu p99/kddcu p99.html (Accessed 03-15-2020).
2 "�e UNSW-NB15 Dataset Description," Cyber Range Lab of the Australian Centre for Cyber Security (ACCS),
[Online]. Available: https ://www.unsw.adfa.edu.au/unsw-canbe rra-cyber /cyber secur ity/ADFA-NB15-Datas ets/.
(Accessed 09-19-2019).
3 https ://archi ve.ics.uci.edu/ml/datas ets/detec tion_of_IoT_botne t_attac ks_N_BaIoT .

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT

Page 3 of 41Bagui and Li J Big Data (2021) 8:6

– Random undersampling with the random oversampling technique, SMOTE (RU-

SMOTE).

– Random undersampling with the random oversampling technique, ADASYN

(RU-ADASYN).

• Studying the behavior of the above and other resampling techniques, random under-

sampling and random oversampling, in the domain of Cybersecurity data, a crucial

emerging domain with respect to imbalanced data.

• Applying resampling to classification using ANN.

• �e application of all of the above on the Big Data Framework using Spark.

�e rest of this paper is organized as follows. A background of the different resampling

techniques is presented in the "Resampling techniques implemented” section; this is fol-

lowed by a section on "Related works"; the following section provides a brief "Descrip-

tion of the datasets" used in this study; the “Experimental design” section presents the

study design, followed by the "Evaluation metrics", "Results and discussion"; and finally,

the "Conclusion" is presented.

Resampling techniques implemented

To address the problem of imbalanced learning, many resampling techniques have

been created. Resampling techniques include: oversampling, undersampling, com-

bining oversampling and undersampling techniques, and ensembling sampling.

Both oversampling and undersampling are aimed at changing the ratios between the

majority classes and minority classes. Combining oversampling and undersampling

techniques use both oversampling and undersampling techniques to create a more

balanced new dataset. By making the training data more balanced, resampling enables

different classes to have relatively the same influence on the outcomes of the classifi-

cation model. �e resampling techniques used in this paper, random undersampling,

random oversampling, random undersampling and random oversampling, random

undersampling with SMOTE, and random undersampling with ADASYN, are pre-

sented next.

Random undersampling refers to the process of reducing the number of samples.

Samples from the majority class(es) are randomly picked with or without replace-

ment.4 After random undersampling, the number of cases (of the majority class) in the

dataset decrease, which significantly reduces the training time in a model. However,

data points removed by random undersampling may include important information,

which may lead to a decrease in classification results. Lemaître et al. [20] presents a

scikit learn toolbox to resample training data. In this paper, this toolbox was used to

resample training data and Listing 1 presents example scikit learn code for random

undersampling.

4 https ://imbal anced -learn .readt hedoc s.io/en/stabl e/gener ated/imble arn.under _sampl ing.Rando mUnde rSamp ler.
html#imble arn.under _sampl ing.Rando mUnde rSamp ler.

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler

Page 4 of 41Bagui and Li J Big Data (2021) 8:6

Random oversampling over-samples the minority class(es) by picking samples at ran-

dom with replacement from the minority class(es) (see Footnote 1). Since oversampling

increases the number of cases in the training dataset, random oversampling increases

the training time of a model. Random oversampling may also lead to overfitting because

Page 5 of 41Bagui and Li J Big Data (2021) 8:6

it adds replicated data to the dataset. Listing 2 presents example scikit learn code for

random oversampling.

Random undersampling and random oversampling uses the two methods together.

Synthetic Minority Oversampling Technique (SMOTE), commonly used as a bench-

mark for oversampling [9, 34], improves on simple random oversampling by creating

synthetic minority class samples [4] and addresses the problem of overfitting [5] that

can happen with simple random oversampling. �is is because the new data points gen-

erated by SMOTE are synthetic data points instead of mere duplications. To generate

new minority data points, a linear combination of two similar samples from the minority

class are used [4]. New feature values are uniformly interpolated between the minority

instance and its respective nearest neighbors. SMOTE only considers within class neigh-

bors. Listing 3 presents example scikit learn code for SMOTE oversampling, including

the sampling strategy used. In this work, random undersampling is applied in combina-

tion with SMOTE, hence this is referred to as RU-SMOTE.

Page 6 of 41Bagui and Li J Big Data (2021) 8:6

ADASYN [14], a pseudo-probabilistic oversampling technique, uses a weighted distri-

bution for different minority data points according to their level of difficulty in learning.

With ADASYN, more synthetic data is generated for minority class examples that are

harder to learn as compared to those minority examples that are easier to learn. A fixed

number of instances is generated for each minority instance, based on a weighted dis-

tribution of its neighbors [1]. Listing 4 presents example scikit learn code for ADASYN

oversampling. In this work, random undersampling has been applied in combination

with ADASYN, hence it is referred to as RU-ADASYN.

Table 1 presents a brief comparison of Random oversampling, SMOTE and ADASYN.

Page 7 of 41Bagui and Li J Big Data (2021) 8:6

Related works

Resampling stems from the class imbalance problem. Leevy et al. [19] stressed on the

importance of the class imbalance problem and presented a survey of works on the class

imbalance problem. �e works were mainly divided into data-level methods and algo-

rithm-level methods.

Some of the recent works on algorithm-level methods are: Johnson and Khoshgoftaar

[17] examined existing deep learning techniques for addressing class imbalance; Raghu-

wanshi and Shukla [28] designed a novel BalanceCascade-based kernelized extreme

learning machine to handle the problem of class imbalance; Luque et al. [21] presented

a new way of measuring imbalance. A set of null-biased multi-perspective Class Balance

Metrics were proposed which extended the concept of Class Balance Accuracy to other

performance metrics.

�ere are also several studies on the data-level methods. Several studies have been

carried out on comparison of oversampling and undersampling methods for handling

the class imbalance problem. Douzas and Bacao [7] developed a conditional version of

Generative Adversarial Networks to approximate the true data distribution and generate

data for minority classes of various imbalanced datasets. Douzas et al. [8] presented an

oversampling method based on k-means clustering and SMOTE which avoids the gen-

eration of noise and overcomes imbalances between and within classes.

More [25] reviewed a number of resampling techniques, including random under-

sampling of the majority class, random oversampling of the minority class, SMOTE,

and many other techniques, to handle unbalanced datasets and study their effect on

classification.

Amin et al. [2] surveyed six well-known sampling techniques: mega-trend diffusion

function (MTDF), SMOTE, ADASYN, couples top-N reverse k-nearest neighbor, major-

ity weighted minority oversampling technique, and immune centroids oversampling

technique. �eir work showed that the overall predictive performance of MTDF and

rules-generation based on genetic algorithms performed the best as compared with the

rest of the evaluated oversampling methods and rule-generation algorithms.

Abdi and Sattar [1] looked at different synthetic oversampling techniques and pro-

posed a new oversampling algorithm based on Mahalanobis distance. �ey showed that

their proposed method generates less duplicate and overlapping data points as opposed

to other oversampling techniques.

Cieslak et al. [6] used SMOTE to detect network traffic intrusions. Blagus and Lusa

[4] investigated the theoretical properties of SMOTE and its performance on high-

dimensional data. �ey considered a two-class classification using Classification and

Regression Trees, k-NN, linear discriminant analysis, random forests and support vector

Table 1 Brief comparison of Random Oversampling, SMOTE and ADASYN

Random OverSampling SMOTE ADASYN

Resampling time The shortest of the three
methods

Medium The longest of the three
methods

Each new data
point is based
on

Only one minority data point Some minority data points
around the new data
point

Both minority data points and
majority data points

Page 8 of 41Bagui and Li J Big Data (2021) 8:6

machines (SVM).Wallace et al. [33] also used SMOTE with SVM as the base classifier.

Past works have also looked at the effects of dimensionality on SMOTE [16]. Hulse

et al. [16] showed that in low-dimensional data, simple undersampling tends to outper-

form SMOTE. Ertekin et al. [10] and Radivojac et al. [27] evaluated the performance of

SMOTE based on the number of samples. Song et al. [29] looked at the class imbalance

problem in software detection prediction.

Many works also looked at resampling in the context of Big Data. Fernandez et al. [11]

looked at the imbalance problem in the Big Data framework. Basgall et al. [3] developed

SMOTE-BD, a fully scalable oversampling technique for imbalanced classification in Big

Data Analytics. Terzi and Sagiroglu [30] developed a distributed cluster based resam-

pling for imbalanced Big Data, which was designed to overcome both between-class and

within-class imbalance problems in big data. Gutiérrez et al. [13] proposed SMOTE-

GPU to efficiently handle large datasets (several millions of instances) on a wide variety

of commodity hardware, including a laptop computer. Triguero et al. [32] independently

managed the majority as well as minority classes. �ey undersampled the majority class

and took advantage of Apache Spark’s in-memory operations to diminish the effects of

the small sample size of the minority class.

In summary, several studies have looked at the class imbalance problem, both in tra-

ditional data as well as big data, using various resampling oversampling and undersam-

pling techniques. However, none of the studies have analyzed the application of the

resampling techniques, random undersampling and random oversampling (RURO) used

together, random undersampling with SMOTE (RU-SMOTE), and random undersam-

pling with ADASYN (RU-ADASYN), using Spark’s ANN multi-class classifier, on imbal-

anced network traffic cybersecurity data, the work performed in this study. In this study,

basically a data-level approach, resampling of the majority and minority classes are han-

dled independently.

Description of the datasets

For experimentation, six popular datasets were used: KDD99 (see Footnote 1), UNSW-

NB15 (see Footnote 2), UNSW-NB17 (Ecobee_�ermostat, Danmini_Doorbell, and

Philips_B120N10_Baby_Monitor) (see Footnote 3), and UNSW-NB18 [18]. Next is a

description of the datasets.

KDD99

�e KDD99 dataset, considered a benchmark cybersecurity dataset for a long time, is

a 41 feature dataset. �e attack records of this dataset can be classified into four broad

categories and 22 subcategories. Table 2 presents the distribution of benign and attack

data (in the four broad categories). �e data is extremely imbalanced. Benign data makes

up almost 20% of the data and the DoS attacks make up almost the other 80% of the data,

hence the other attack categories have extremely few case instances.

UNSW-NB15

�e UNSW-NB15 dataset, created by the Cyber Range Lab of the Australian Cen-

tre for Cyber Security has 49 features [26]. �ere are 10 categories (9 attack categories

plus 1 benign category). Table 3 presents the distribution of benign and attack data in

Page 9 of 41Bagui and Li J Big Data (2021) 8:6

UNSW-NB15. Here too, the data is highly imbalanced. Benign traffic makes up 88.5%

of the traffic, while the nine attack categories combined make up the other 11.5%. It can

be noted that worms make up only 0.0069% of the data, hence there are extremely few

cases.

UNSW-NB17

�e UNSW-NB17 dataset was generated by 9 IoT devices. �ere are 9 sub datasets in

UNSW-NB17, of which three were arbitrarily selected for this study: Ecobee_�er-

mostat, Danmini_Doorbell, and Philips_B120N10_Baby_Monitor. Each sub dataset

includes two of the most common IoT botnets, Gafgyt and Mirai [22]. Each of the bot-

nets has 5 attack subcategories, hence there are 10 categories of attack traffic and 1

benign category. �ere are 115 independent features in this data set. �e csv files were

used, which were extracted from pcap files by Kitsune [23]. Tables 4, 5, and 6 present the

distribution of the benign and attack data in these datasets respectively. �ese datasets

are imbalanced, but not as imbalanced as the KDD99 or UNSW-NB15. In these datasets,

the Gafgyt_junk and Gafgyt_scan have close of 3% of the data each, but the other attack

categories are a little more balanced. And, in these datasets, the benign traffic is not dis-

proportionately high, as is the case in UNSW-NB15.

UNSW-NB18

�e UNSW-NB18 BoT-IoT dataset was created by designing a realistic network envi-

ronment in the Cyber Range Lab of �e center of UNSW Canberra Cyber [18]. Table 7

presents the distribution of benign and attack data in this dataset. Here again, the data

Table 2 % of benign and attack tra�c in KDD99

Category % of Tra�c (%)

Benign 19.8590

Probe 0.8391

DoS 79.2778

u2r 0.0011

r2l 0.0230

Table 3 % of benign and attack tra�c in UNSW-NB15

Category % of Tra�c (%)

Benign 88.5529

Fuzzers 0.2016

Reconnaissance 0.0702

Shellcode 0.0089

Analysis 0.1069

Backdoors 0.0213

DoS 0.6528

Exploits 1.7773

Generic 8.6012

Worms 0.0069

Page 10 of 41Bagui and Li J Big Data (2021) 8:6

Table 4 % of benign and attack tra�c in UNSW-NB17_Ecobee

Category % of Tra�c (%)

Benign 1.57

Mirai _ack 13.55

Mirai _scan 5.17

Mirai _syn 13.97

Mirai _udp 18.12

Mirai _udpplain 10.4

Gafgyt _combo 6.34

Gafgyt _junk 3.63

Gafgyt _scan 3.29

Gafgyt _tcp 11.37

Gafgyt _udp 12.54

Table 5 % of benign and attack tra�c in UNSW-NB17_Doorbell

Category % of Tra�c (%)

Benign 4.87

Mirai _ack 10.04

Mirai _scan 10.57

Mirai _syn 12.0

Mirai _udp 23.34

Mirai _udpplain 8.05

Gafgyt _combo 5.86

Gafgyt _junk 2.85

Gafgyt _scan 2.93

Gafgyt _tcp 9.05

Gafgyt _udp 10.40

Table 6 % of Benign and Attack Tra�c in UNSW-NB17_Philips

Category % of Tra�c (%)

Benign 15.95

Mirai ack 8.29

Mirai _scan 9.43

Mirai _syn 10.75

Mirai _udp 19.75

Mirai _udpplain 7.36

Gafgyt _combo 5.29

Gafgyt _junk 2.58

Gafgyt _scan 2.54

Gafgyt _tcp 8.43

Gafgyt _udp 9.63

Page 11 of 41Bagui and Li J Big Data (2021) 8:6

is highly imbalanced. TCP attacks make up approximately 43% of the cases and UDP

attacks make up approximately 54% of the cases. In this dataset too, normal traffic makes

up only 0.031% of the dataset, hence is very low. �is is almost the opposite of the pat-

tern in UNSW-NB15.

Experimental design

Figure 1 shows the flow chart of the experimental design. For each dataset, the dataset

was split into a training set (70%) and a testing set (30%). Both training as well as testing

datasets were pre-processed and standardized. �e training dataset was then resampled

and the ANN model trained. �e test dataset was tested on the ANN model.

For each dataset, six sets of classifications were performed with the following combi-

nations of resampling techniques.

• No resampling (NR).

• Random undersampling (RU).

• Random oversampling (RO).

• Random undersampling and random oversampling (RURO).

• Random undersampling and SMOTE (RU-SMOTE).

• Random undersampling and ADASYN (RU-ADASYN).

Resampling of the majority and minority classes was performed independently, mean-

ing that each category in each dataset was considered individually, rather than taking a

fixed % for under or over sampling. Classification was performed using Artificial Neural

Networks (ANN) available in Apache Spark. All experiments were run in two modes:

(i) on a local machine using Scikit Learn, and (ii) for the Big Data framework, Apache

Spark, on Amazon’s Web Service (AWS) EMR cluster. �e AWS EMR cluster was setup

with 3 nodes (one master nodes and two slave nodes). Each node was an m5.xlarge EC2.

Apache Spark

Apache Spark, an open source distributed cluster computing framework, is part of the

Hadoop Ecosystem, but has an edge over Hadoop in terms of speed due to it’s in-mem-

ory processing architecture. Spark can run up to 100 times faster than Hadoop for data

and processes completely residing in-memory [12]. �e Spark framework also provides

benefits such as scalability and fault tolerance [12], as well as providing a rich set of APIs

Table 7 % of Normal and Attack Tra�c in UNSW-NB18

Category % of Tra�c (%)

Normal 0.0130

Data_Exfiltration 0.0002

HTTP 0.0674

Keylogging 0.0020

OS_Fingerprint 0.4883

Service_Scan 1.9945

TCP 43.4284

UDP 54.0062

Page 12 of 41Bagui and Li J Big Data (2021) 8:6

Fig. 1 Flow chart of the experiments

Page 13 of 41Bagui and Li J Big Data (2021) 8:6

that allow developers to perform many complex analytics operations out-of-the-box.

�is work took advantage of the Spark Core and Spark MLlib APIs.

Spark Core allows for basic operations on data including mapping, reducing, and fil-

tering. �ese operations are available in Spark’s primary data structure, Resilient Dis-

tributed Datasets (RDDs) [12], which parallelizes computations in a transparent way.

Apache Spark’s Machine Learning Library, MLlib, makes machine learning scalable and

easy. MLlib provides tools including:

1. ML Algorithms: common learning algorithms such as classification, regression, clus-

tering, and collaborative filtering.

2. Featurization: feature extraction, transformation, dimensionality reduction, and

selection.

3. Pipelines: tools for constructing, evaluating, and tuning ML Pipelines.

4. Persistence: saving and load algorithms, models, and Pipelines.

5. Utilities: linear algebra, statistics, data handling, etc.

�e ANN model used in this paper is multilayer perceptron classifier of Spark MLlib.

Arti�cial Neural Networks

As shown in Fig. 2, ANN is a feed forward neural network in which the information

moves from the input layer to hidden layers then to the output layer. A fully connected

ANN model was used with the number of neurons in the input layer set to the number

of features in the data and the number of neurons in the output layer set to the number

of the classes. �e intermediary layer used a sigmoid function, where i is the input [31]:

�e sigmoid function smoothly puts the input to an output between zero and one. �is

allows for the interpretation or output of any individual layer to be taken as a probability.

�e output layer used the softmax function [31]:

(1)f (zi) =
1

1 + e−zi

Fig. 2 ANN model used

Page 14 of 41Bagui and Li J Big Data (2021) 8:6

�e softmax function is often used as the activation function for the last layer of a neu-

ral network. �is activation function turns numbers into probabilities that sum to one.

�e softmax function outputs a vector that represents the probability distributions to a

list of potential outcomes.

Evaluation metrics

In this section, first a discussion of why the macro metrics was used is presented, and

then the metrics are presented.

Using macro metrics

For this work, macro precision, macro recall, and macro F1-score were used instead of

the micro or weighted metrics to evaluate the results. �e macro metrics compute the

metrics independently for each class and then take the average, hence all classes, major-

ity as well as minority, are weighted equally.

�e micro metrics aggregate the contributions of all classes to compute the average

metric, hence results get skewed towards classes with larger case numbers. Micro met-

rics, in a multi-class setting, with highly imbalanced data, will often produce equal preci-

sion, recall and F1-score that is artificially high. �e good performance of the majority

data overly influences the micro metrics, which is the case for highly imbalanced data.

�e weighted metrics compute the averages by taking the class size into account,

that is, the number of cases for each class, hence it is the “weighted” average. If a model

recognizes majority data correctly but does not recognize minority data correctly, the

weighted metrics will be high. Hence, in this case, the weighted metrics does reflect the

bad performance of the classifying minority data. Also, the weighted metric may pro-

duce an F1-score that is not between precision and recall. Hence, even if the weighted

metrics may be good, it was not used for this work.

Since three of the cybersecurity datasets used in this study are highly imbalanced, after

resampling, the macro metrics were used as the evaluation metrics in this study. �e

macro metrics produce relatively lower results than the micro metrics. �is is because

the macro metrics treat all classes equally, hence the poor performance of the minority

classes will lower the macro metrics. But, though the macro metrics reflect the poor per-

formance of classifying minority data, it was deemed that, for these datasets, the macro

metrics would better reflect the overall performance of classifying the data.

Metrics formulas

Below are the respective formulas for accuracy, precision, recall and the F1-score.

Although the micro, macro and weighted metrics are all computed slightly differently (as

discussed in the previous section), all three metrics use the same formulas for calculat-

ing precision, recall and the F1-score.

Precision is the positive predictive value, or the percentage of classified attack

instances that are truly classified as attack, calculated by [24]:

(2)f (zi) =

ezi
∑N

k=1
ezk

Page 15 of 41Bagui and Li J Big Data (2021) 8:6

Recall or attack detection rate (ADR) is the effectiveness of a model in identifying an

attack. �e objective is to target a higher ADR. �e ADR is calculated by [24]:

F-measure is the harmonic mean of precision and recall. �e higher the F-measure,

the more robust the classification model. �e F-measure is calculated by [24]:

True Positive (TP) is the number of positive records that were correctly labeled as pos-

itive. True Negative (TN) is the number of negative records that were correctly labeled

as negative. False Positive (FP) is the number of negative records that were incorrectly

labeled as positive. False Negative (FN) is the number of positive records that were cor-

rectly labeled as negative.

Results and discussion

In this section, first, the classification results for all six datasets, with no resampling, is

presented. �is will be used as a benchmark for analyzing the results. �en, for each

dataset, resampling results and the classification results using the different resampling

techniques, are presented. �e ANN classification was done in two modes: (i) on the Big

Data framework using Spark’s Machine Learning Library; and (ii) using Scikit Learn on a

local machine. Observations and discussions follow each set of results.

Classi�cation with original datasets (no resampling)

�e first set of classifications were done with the original six datasets, that is, with no

resampling. �ese results form the benchmark for the ANN classification results.

Table 8 present the macro precision, macro recall, macro F1 score and training time

taken for ANN classification with no resampling on AWS with Spark for all the six data-

sets. Similarly, Table 9 presents the macro precision, macro recall, macro F1 score and

training time taken for ANN classification with no resampling on the local machine for

all the six datasets. �e testing time was not recorded since the training time is the more

significant of the two. Figure 3 graphically presents the macro precision, macro recall,

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 − score = F =
2 × precision × recall

precision + recall

Table 8 ANN Classi�cation results on AWS with Spark (no resampling)

KDD99 NB15 BoT-IoT NB17-Ecobee NB17-Danmini NB17-Philips

Macro precision 0.735853 0.337079 0.571675 0.825617 0.792128 0.82112

Macro recall 0.732151 0.320941 0.451428 0.874221 0.842704 0.864271

Macro F1 score 0.733986 0.308697 0.466182 0.842014 0.806466 0.827655

Training time (s) 534 432 426 390 576 660

Page 16 of 41Bagui and Li J Big Data (2021) 8:6

macro F1 score for all six datasets run on Spark with no resampling. �e results on the

local machine show a similar trend, hence were not presented.

Observations and discussion

• ANN classification on Scikit-Learn has better performance than ANN classification

on Spark. �e macro precision, macro recall, and macro F1-score are higher on the

ANN classification on Scikit-Learn.

• �e ANN classification model on Spark trains faster than the ANN classification

model of the local machine. �is is expected since Spark is the Big Data framework,

hence parallel processing is performed.

• UNSW-NB15 has one category that has the most cases, that is, the benign category

comprises almost 88% of the cases, hence this imbalance is causing the low results for

this non-resampled dataset. BoT-IoT has two categories that have a large combined

total number of cases, TCP (43%) and UDP (54%), hence this imbalance is also caus-

ing low results. �e results of UNSW-NB17 are pretty high even without resampling,

mainly because the three UNSW-NB17 datasets are relatively balanced compared to

the other three datasets.

Classi�cation with the Resampled datasets

�is section presents the results of the resampling and classification on the six differ-

ent datasets, KDD99 (see Footnote 1), UNSW-NB15 (see Footnote 2), UNSW-NB17

(Ecobee_�ermostat, Danmini_Doorbell, and Philips_B120N10_Baby_Monitor) (see

Footnote 3), and UNSW-NB18 [18]. For all datasets, macro results are presented. For

Table 9 ANN classi�cation results on Scikit-Learn on local machine (no resampling)

KDD99 NB15 BoT-IoT NB17-Ecobee NB17-Danmini NB17-Philips

Macro precision 0.877317 0.53307 0.607171 0.929664 0.924668 0.912172

Macro recall 0.832509 0.412258 0.57664 0.907989 0.903897 0.893773

Macro F1 score 0.842974 0.411132 0.585591 0.876052 0.875883 0.869574

Training time (s) 504.875 1119.422 1696.188 2356.359 896.3594 1385.156

Fig. 3 Classification results with no resampling on AWS

Page 17 of 41Bagui and Li J Big Data (2021) 8:6

two of the datasets, KDD99 and UNSW-NB15, however, the micro metrics were also

presented (for AWS runs), but these metrics were not presented for the rest of the data-

sets because of the artificially high micro results as well as almost equal micro recall,

micro precision and micro F1 score. Also, the confusion matrices were presented for the

highly imbalanced datasets, since there was little influence on the not highly imbalanced

datasets. Also, in the respective resampling sections, for brevity’s sake, only the RU, RO,

and RURO are presented, though RU-SMOTE and RU-ADASYN resampling was also

done for the classifications.

Experimentation on KDD99

�e first section presents the resampling of KDD99 and then the classification results

are presented. An analysis of the KDD99 results are presented in the observations and

discussions section.

Resampling KDD99 Table 10 presents the number of samples after before resampling,

after RU, after RO, and after RURO and Fig. 4 presents the number of samples before

resampling, after RU, and after RO. Before Resampling represents 70% of the original

KDD99 dataset, which was used for training the model. From Table 10, it can be noted

that u2r had only 40 instances and r2l had only 794 instances before resampling, so over-

sampling makes a big difference for these two attacks. With RU, the number of instances

of benign and DoS were reduced to the number of Probe instances, making all three cat-

egories equal, while there was still a low number of instances for u2r and r2l. Hence with

RU, the data still appears to be imbalanced overall. With RO, the number of Probe, DoS

Table 10 Resampling of KDD99

KDD99 Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 680,671 28,609 680,671 28,609

Probe 1 28,609 28,609 28,609 28,609

DoS 2 2,718,787 28,609 2,718,787 28,609

u2r 3 40 40 28,609 28,609

r2l 4 794 794 28,609 28,609

Fig. 4 Resampling of KDD99

Page 18 of 41Bagui and Li J Big Data (2021) 8:6

and r2l instances were made the same, although the number of benign and DoS instances

were still high. With RURO, the number of instances for each attack were made equal,

hence the results were not shown in Fig. 4.

Classification results for KDD99 Table 11 presents the ANN classification results for

KDD99 on AWS using Spark and Table 12 presents the ANN classification results for

KDD99 run on the local machine with Scikit-Learn. �e results of macro precision,

macro recall and macro F1 score are presented for NR, RU, RO, RURO, RU-SMOTE,

RU-ADAYSN for KDD99. Table 11 also presents the results of the micro precision, micro

Table 11 ANN Classi�cation results for KDD99 on AWS with Spark for various resampling

methods

KDD99 NR RU RO RURO RU-SMOTE RU-ADASYN

Micro precision 0.99962 0.998557 0.998661 0.995024 0.99499 0.993675

Micro recall 0.99962 0.998557 0.998661 0.995024 0.99499 0.993675

Micro F1 score 0.99962 0.998557 0.998661 0.995024 0.99499 0.993675

Macro precision 0.735853 0.689996 0.676256 0.601879 0.596781 0.590074

Macro Recall 0.732151 0.905783 0.918453 0.968456 0.955936 0.955935

Macro F1 score 0.733986 0.74276 0.712264 0.619913 0.619568 0.609858

Macro training time (s) 534 78 522 96 96 96

Table 12 ANN classi�cation results for KDD99 on local machine for various resampling

methods

KDD99 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.877317 0.710881 0.692416 0.618828 0.625649 0.616133

Macro recall 0.832509 0.88417 0.937749 0.922727 0.960406 0.96097

Macro F1 score 0.842974 0.761345 0.730075 0.651291 0.659022 0.643459

Training time (s) 504.875 69.71875 904.6563 329.9844 355.3281 350.5469

Fig. 5 Comparison for micro and macro metrics on AWS

Page 19 of 41Bagui and Li J Big Data (2021) 8:6

recall and micro F1 score. �e training time of the models was also recorded in Tables 11

and 12. Figure 5 presents a comparison of the micro and macro metrices run on AWS

for no resampling and random undersampling. It can be noted that the micro precision,

micro recall and micro F1 score were almost equal as well as artificially high, hence the

evaluations were based on the macro metrics.

Figure 6 presents the graphical results of the different resampling methods using

Spark. �e results of the different resampling methods on the local machine show a sim-

ilar trend, hence are not presented.

Fig. 6 ANN classification results for KDD99 on AWS with Spark for various resampling methods

Table 13 Confusion matrix: KDD99 NR

KDD99 NR Predicted label

0 1 2 3 4

True label

 0 291,884 107 22 0 97

 1 161 12,329 3 0 0

 2 45 3 1,164,535 0 0

 3* 7 0 1 0 4

 4* 108 0 0 0 224

Table 14 Confusion Matrix: KDD99 RU

KDD99 RU Predicted label

0 1 2 3 4

True label

 0 290,910 647 42 55 456

 1 16 12,476 0 0 1

 2 785 76 1,163,701 0 21

 3* 2 0 0 7 3

 4* 15 0 0 1 316

Page 20 of 41Bagui and Li J Big Data (2021) 8:6

Confusion matrices for KDD99

Tables 13, 14, 15, 16, 17 and 18 show the confusion matrices using the various resa-

mpling methods for the AWS runs on Spark. The predicted label vs the true labels

Table 15 Confusion Matrix: KDD99 RO

KDD99 RO Predicted label

0 1 2 3 4

True label

 0 290,943 150 159 335 523

 1 225 12,259 6 3 0

 2 536 6 1,164,037 1 3

 3* 2 0 0 8 2

 4* 15 0 1 1 315

Table 16 Confusion Matrix: KDD99 RURO

KDD99 RURO Predicted label

0 1 2 3 4

True label

 0 286,222 608 61 967 4252

 1 93 12,394 0 6 0

 2 1001 278 1,163,274 3 27

 3* 0 0 0 11 1

 4* 5 0 0 10 317

Table 17 Confusion Matrix: KDD99 RU-SMOTE

KDD99 RU-SMOTE Predicted Label

0 1 2 3 4

True label

 0 286,351 984 105 812 3858

 1 65 12,424 0 3 1

 2 1088 408 1,163,059 1 27

 3* 1 0 0 10 1

 4* 6 0 0 3 323

Table 18 Confusion Matrix: KDD99 RU-ADASYN

KDD99 RU-ADASYN Predicted label

0 1 2 3 4

True label

 0 284,845 1180 100 930 5055

 1 62 12,430 0 1 0

 2 1520 362 1,162,652 2 47

 3* 0 0 0 11 1

 4* 13 0 0 22 297

Page 21 of 41Bagui and Li J Big Data (2021) 8:6

are shown, that is, if it was predicted as attack type 1, was it really attack type 1. The

categories that had a really low number of instances are marked with an asterisk and

the increases in the minority data identification are in italics.

Observations and discussion Few conclusions that can be drawn from these above

sets of results:

• The mirco precision, micro recall and micro F1 score were showing very arti-

ficially high numbers as well as almost the same results for NR as well as RU

(Fig. 5), hence were not considered useful for any further analysis.

• There is almost no overall significant difference between the ANN classification

results on AWS and ANN classification results on the local machine in terms of

the macro precision and macro recall, and macro F1 score. After oversampling

though, it took longer to run on the local machine than on AWS.

• On both AWS and the local machine, when the minority data is increased by

oversampling or majority data is decreased by undersampling, the macro pre-

cision decreases, and the macro recall increases. Oversampling improves the

macro recall significantly. Macro precision decreasing implies that the ratio of

the false positive to true positive is going up, and the macro recall increasing

implies that the ratio of the false negative to true positive is going down. This

means that, for this set of experiments, the false positives are going up and the

false negatives are going down.

• The confusion matrices also show an increase in the number of correctly classi-

fied cases for the very low minority classes (shown with asterisk) with resampling

(results are in italics in Tables 13, 14, 15, 16, 17 and 18), with the best results for

RURO and RU-SMOTE. From Table 10 it can be noted that RURO had an equal

number of for all the attack types. And, even though the RU still had an imbal-

anced distribution, it was better than no resampling, and also performed better

than no resampling.

• Generally, the F1 score went down for both undersampling and oversampling. It

went slightly up only for RU on AWS, but not significantly.

• Except for RO, the training time decreased in all resampling scenarios, for both

the local machine as well as AWS, and of course, the training time on AWS was

a lot shorter than on the local machine (though it was higher on AWS when no

resampling was done).

• From Table 11 (AWS), it can be observed that RURO’s macro recall was the high-

est, at 96%, while RU-SMOTE and RU-ADAYSN’s macro recall were very close,

at 95.59%. RU’s macro recall (90.5%) was lower than the recall of the other resa-

mpling methods, but a lot better than NR (73%).

• From Table 12 (local machine), it can be observed that, RU-SMOTE and RU-

ADASYN performed the best in terms of macro recall, at 96%. RU again had the

lowest macro recall of the all the resampling methods (88%), but performed bet-

ter than NR (83%).

Page 22 of 41Bagui and Li J Big Data (2021) 8:6

Experimentation on UNSW‑NB15

�e first section presents the resampling of UNSW-NB15 and then the classification

results are presented. An analysis of the UNSW-NB15 results are presented in the obser-

vations and discussions section.

Resampling UNSW-NB15 Table 19 presents the number of samples before resampling,

after RU, after RO, and after RURO and Fig. 7 graphically presents the data before resam-

pling, after RU, and after RO. Before Resampling represents 70% of the original UNSW-

NB15 dataset, which was used for training the model. From Table 19 it can be noted that,

with RU, though the number of benign and generic instances were reduced, some of the

other attacks like Shellcode, Backdoors and Worms still had a lower number of instances.

And overall, with RU, the data was still imbalanced. RO makes the attack instances equal

for the rest of the attacks except the benign and generic traffic. �e number of benign

traffic instances was still very high compared to the rest of the attacks, as shown in Fig. 7.

By RURO all the attack instances are made equal.

Classification results for UNSW-NB15 Table 20 presents the ANN classification

results for UNSW-NB15 on AWS using Spark and Table 21 presents the ANN clas-

Table 19 Resampling of UNSW-NB15

UNSW-NB15 Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 1,552,663 31,313 1,552,663 31,313

Fuzzers 1 3563 3563 31,313 31,313

Reconnaissance 2 1217 1217 31,313 31,313

Shellcode 3 165 165 31,313 31,313

Analysis 4 1790 1790 31,313 31,313

Backdoors 5 361 361 31,313 31,313

DoS 6 11,439 11,439 31,313 31,313

Exploits 7 31,313 31,313 31,313 31,313

Generic 8 151,074 31,313 151,074 31,313

Worms 9 130 130 31,313 31,313

Fig. 7 Resampling of UNSW-NB15

Page 23 of 41Bagui and Li J Big Data (2021) 8:6

Table 20 ANN Classi�cation results for UNSW-NB15 on AWS with Spark for various

resampling methods

NB15 NR RU RO RURO RU-SMOTE RU-ADASYN

Micro precision 0.985149 0.981616 0.97705 0.967425 0.966663 0.966274

Micro recall 0.985149 0.981616 0.97705 0.967425 0.966663 0.966274

Micro F1 score 0.985149 0.981616 0.97705 0.967425 0.966663 0.966274

Macro precision 0.337079 0.428798 0.397854 0.35708 0.360195 0.368759

Macro recall 0.320941 0.423203 0.733399 0.744253 0.746937 0.737735

Macro F1 score 0.308697 0.376054 0.423431 0.384293 0.391973 0.3865

Macro training time (s) 432 138 600 180 186 186

Table 21 ANN classi�cation results for UNSW-NB15 on local machine for various

resampling methods

UNSW-NB15 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.53307 0.545088 0.425312 0.400095 0.411192 0.399882

Macro recall 0.412258 0.500229 0.760052 0.775892 0.763106 0.764241

Macro F1 score 0.411132 0.449319 0.453457 0.443606 0.449048 0.443679

Training time (s) 1119.422 623.2188 1682 1191.922 1498.344 1713.953

Fig. 8 Comparison of the micro and macro metrics for UNSW-NB15

Fig. 9 ANN classification results for UNSW-NB15 on AWS with Spark for various resampling methods

Page 24 of 41Bagui and Li J Big Data (2021) 8:6

sification results for UNSW-NB15 run on the local machine with Scikit-Learn. �e

results of macro precision, macro recall and macro F1 score are presented for NR, RU,

RO, RURO, RU-SMOTE and RU-ADASYN for UNSW-NB15. Table 20 also presents

the results of the micro precision, micro recall and micro F1 score. �e training time

was also recorded in Tables 19 and 20 respectively. Figure 8 presents a comparison of

the micro and macro metrices on AWS for no resampling and random oversampling.

It can be noted that the micro precision, micro recall and micro F1 score were almost

equal as well as artificially high, hence the evaluations were done based on the macro

metrics.

Table 22 Confusion Matrix: NB15 NR

NB15 NR Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 664,828 262 0 0 3 0 2 694 4 0

 1 879 427 0 0 0 0 0 181 1 0

 2 432 11 0 0 0 0 0 95 4 0

 3* 1 1 0 0 0 0 0 56 0 0

 4 148 66 0 0 0 0 17 656 0 0

 5* 2 70 0 0 0 0 0 101 0 0

 6 167 85 0 0 0 0 93 4535 34 0

 7 609 162 0 0 0 0 121 12,306 14 0

 8 201 22 0 0 0 0 13 1468 62,703 0

 9* 3 0 0 0 0 0 0 41 0 0

Table 23 Confusion Matrix: NB15 RU

NB15 RU Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 660,598 1587 331 2 181 0 14 2809 271 0

 1 43 1155 27 0 0 0 1 240 22 0

 2 27 70 201 0 0 0 0 239 5 0

 3* 0 0 1 5 0 0 0 50 2 0

 4 10 100 0 0 54 1 4 718 0 0

 5* 0 105 0 0 0 0 0 68 0 0

 6 23 116 20 1 2 1 43 4584 124 0

 7 64 270 14 0 22 0 45 12,673 124 0

 8 20 31 16 2 10 0 8 1347 62,973 0

 9* 0 2 0 0 0 0 0 41 1 0

Page 25 of 41Bagui and Li J Big Data (2021) 8:6

Table 24 Confusion Matrix: NB15 RO

NB15 RO Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 661,537 1337 972 102 929 9 136 503 98 170

 1 76 890 226 6 4 240 16 8 0 22

 2 3 32 434 1 0 5 6 0 5 56

 3* 2 0 0 55 0 0 0 1 0 0

 4 1 0 0 0 262 151 424 49 0 0

 5* 0 1 3 7 3 150 5 4 0 0

 6 66 34 90 79 712 231 2778 648 93 183

 7 331 141 243 541 1131 394 3607 5342 187 1295

 8 65 54 80 207 109 14 421 505 62,784 168

 9* 0 1 2 0 0 0 0 2 0 39

Table 25 Confusion matrix: NB15 RURO

NB15 RURO Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 654,173 4790 2057 655 1156 280 161 1255 548 718

 1 0 982 192 1 1 245 14 19 5 29

 2 0 29 443 0 0 6 3 1 3 57

 3* 0 0 1 55 0 0 0 1 0 1

 4 1 2 1 0 251 154 452 26 0 0

 5* 0 2 3 7 1 151 5 4 0 0

 6 3 70 100 52 612 259 2905 664 45 204

 7 3 283 190 334 1447 419 3769 5352 73 1342

 8 1 83 132 63 92 18 441 591 62,685 301

 9* 0 2 1 0 0 0 0 1 0 40

Table 26 Confusion Matrix: NB15 RU-SMOTE

NB15
RU-SMOTE

Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 653,429 5917 1946 229 1033 89 172 1605 687 686

 1 0 1018 176 0 2 244 13 7 4 24

 2 0 36 447 0 0 7 3 1 3 45

 3* 0 0 1 55 0 0 0 1 0 1

 4 0 3 4 0 298 152 391 39 0 0

 5* 2 1 2 7 2 148 6 5 0 0

 6 8 87 129 33 909 239 2581 640 92 196

 7 8 326 340 201 1574 473 3305 5689 100 1196

 8 1 92 141 50 151 23 367 533 62,760 289

 9* 0 2 0 0 0 1 0 1 0 40

Page 26 of 41Bagui and Li J Big Data (2021) 8:6

Figure 9 presents the graphical results of the different resampling methods using

Spark. �e results of the different resampling methods on the local machine show a

similar trend, hence are not presented.

Confusion matrices for UNSW-NB15

Tables 22, 23, 24, 25, 26 and 27 show the confusion matrices using the various resam-

pling methods for the AWS runs on Spark. �e predicted label vs the true labels are

shown. �e categories that had a really low number of instances are marked with an

asterisk and the increases in the minority data identification are in italics.

Observations and discussion

• �e mirco precision, micro recall and micro F1 score were showing very artificially

high numbers as well as almost the same results for NR as well as RO (Fig. 8), hence

were not considered useful for any further analysis.

• �ere is almost no overall significant difference between the ANN classification

results on AWS and ANN classification results on the local machine in terms of the

macro precision, macro recall, and macro F1 score. After oversampling though, it

took longer to run on the local machine than on AWS.

• When the minority data is increased by oversampling or majority data is decreased

by undersampling, both the macro precision and macro recall increase, though resa-

mpling improves the macro recall significantly. Macro precision increasing implies

that the ratio of the false positive to true positive is going down, and the macro recall

increasing implies that the ratio of the false negative to true positive is going down.

So, for this set of experiments, the true positives went up.

• �e confusion matrices also show an increase in the number of correctly classi-

fied cases for the very low minority classes (shown with asterisk) with resampling

(results are in italics in Tables 22, 23, 24, 25, 26 and 27). �ough RU did not perform

as well as the other resampling measures, it was at least better than NR (though very

Table 27 Confusion Matrix: NB15 RU-ADASYN

NB15
RU-ADASYN

Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 654,532 4696 2098 79 2118 128 273 494 837 538

 1 7 942 187 0 8 247 6 0 3 88

 2 0 28 433 0 2 7 3 0 4 65

 3* 0 0 1 55 0 0 0 0 0 2

 4 0 0 0 0 446 147 255 36 0 3

 5* 2 1 2 7 1 151 3 4 0 2

 6 16 105 63 39 1724 202 1854 590 47 274

 7 11 371 216 242 2756 434 2535 4996 63 1588

 8 2 93 66 53 254 22 312 509 62,723 373

 9* 0 3 0 0 0 0 0 1 0 40

Page 27 of 41Bagui and Li J Big Data (2021) 8:6

slightly). RURO performed the best, though the other resampling options like RO,

RU-SMOTE and RU-ADAYSN performed almost as well.

• With respect to training time, on the local machine, except for undersampling, the

training time went up in all scenarios of oversampling. But, on AWS, except for

RO, the training time went significantly down. And of course, comparing the local

machine to AWS, AWS had a lot lower training time in all cases.

• From Table 20 (AWS), it can be observed that RURO and RU-SMOTE’s macro recall

were the highest, and very close, at 74.4% and 74.6% respectively. RU’s macro recall

(42%) was lower than the recall of the other resampling methods, but a lot better

than NR (32%).

• From Table 12 (local machine), it can be observed that, RURO’s macro recall was the

highest at 77.5% and RU-SMOTE and RU-ADASYN’s macro recall were pretty close,

at 76.4%. Again, RU had the lowest macro recall of the all the resampling methods

(50%), but performed better than NR (41%).

Table 28 Resampling of UNSW-NB18 (BoT-IoT)

UNSW-NB18 Number of cases for training model

Category Label Before resampling RU RO RURO

Normal 0 345 345 12,617 12,617

Data_Exfiltration 1 4 4 12,617 12,617

HTTP 2 1732 1732 12,617 12,617

Keylogging 3 50 50 12,617 12,617

OS_Fingerprint 4 12,617 12,617 12,617 12,617

Service_Scan 5 51,134 51,134 51,134 51,134

TCP 6 1,115,760 51,134 1,115,760 51,134

UDP 7 1,386,323 51,134 1,386,323 51,134

Fig. 10 Resampling of UNSW-NB18 (BoT-IoT)

Page 28 of 41Bagui and Li J Big Data (2021) 8:6

Experimentation on UNSW‑NB18

�e first section presents the re-sampling of UNSW-NB18 and then the classification

results are presented. An analysis of the UNSW-NB18 results are presented in the obser-

vations and discussions section.

Resampling UNSW-NB18 Table 28 presents the number of samples before resampling,

after RU, after RO, and after RURO and Fig. 10 graphically presents the data before resa-

mpling, after RU, and after RO. Before Resampling represents 70% of the original UNSW-

NB18 dataset, which was used for training the model. From Table 28 it can be noted that

Data Exfiltration and Keylogging had only 4 and 50 instances respectively before resa-

mpling, so oversampling makes a big difference for these two attacks. With RU, mainly

the number of TCP and UDP attacks, which had the most instances, was reduced. But

overall, with RU as well as with RO, the data was still imbalanced. TCP and UDP still have

a lot more instances.

Table 29 ANN classi�cation results for UNSW-NB18 (BoT-IoT) on AWS with Spark

for various resampling methods

UNSW-NB18 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.571675 0.420429 0.626432 0.460293 0.496489 0.465322

Macro recall 0.451428 0.544637 0.824786 0.858747 0.858425 0.786073

Macro F1 score 0.466182 0.458041 0.586281 0.533695 0.561807 0.509871

Training time (s) 426 84 426 84 84 84

Table 30 ANN classi�cation results for UNSW-NB18 (BoT-IoT) on local machine for various

resampling methods

UNSW-NB18 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.607171 0.651555 0.707524 0.548372 0.630532 0.473781

Macro recall 0.57664 0.636077 0.862225 0.881982 0.887849 0.767004

Macro F1 score 0.585591 0.608576 0.7241 0.621413 0.688235 0.547812

Training Time (s) 1696.188 424.5469 910.6094 653.6719 574 635.2813

Fig. 11 ANN classification results for UNSW-NB18 (BoT-IoT) on AWS with Spark for various resampling

methods

Page 29 of 41Bagui and Li J Big Data (2021) 8:6

Classification results for UNSW-NB18 (BoT-IoT) Table 29 presents the ANN classifi-

Table 31 Confusion matrix: NB18 NR

NB18 NR Predicted label

0 1 2 3 4 5 6 7

True label

 0 66 0 0 0 4 52 6 4

 1* 0 0 0 0 2 0 0 0

 2 0 0 86 0 30 155 471 0

 3* 0 0 0 0 19 3 1 0

 4 0 0 17 0 144 4942 193 1

 5 11 0 49 0 102 21,397 475 0

 6 0 0 8 0 49 1246 476,116 0

 7 0 0 0 0 0 2 11 594,894

Table 32 Confusion matrix: NB18 RU

NB18 RU Predicted label

0 1 2 3 4 5 6 7

True label

 0 73 0 0 0 2 52 2 3

 1* 2 0 0 0 0 0 0 0

 2 3 0 412 0 76 208 43 0

 3* 6 0 0 0 0 17 0 0

 4 4 0 18 0 1599 3549 127 0

 5 21 0 17 0 435 21,348 213 0

 6 87 0 2042 0 5624 2528 467,123 15

 7 131 0 0 0 0 64 17 594,695

Table 33 Confusion matrix: NB18 RO

NB18 RO Predicted label

0 1 2 3 4 5 6 7

True label

 0 124 6 0 0 0 0 1 1

 1* 0 2 0 0 0 0 0 0

 2 0 1 627 16 0 44 54 0

 3* 3 0 1 19 0 0 0 0

 4 6 2 54 11 273 4241 710 0

 5 47 3 298 39 14 20,732 901 0

 6 10 8 233 112 20 1829 475,207 0

 7 1 0 0 0 0 0 13 594,893

Page 30 of 41Bagui and Li J Big Data (2021) 8:6

cation results for UNSW-NB18 (BoT-IoT) on AWS using Spark and Table 30 presents

the ANN classification results for UNSW-NB18 (BoT-IoT) on the local machine with

Scikit-Learn. �e results of macro precision, macro recall and macro F1 score are pre-

sented for NR, RU, RO, RURO, RU-SMOTE RU-ADASYN for UNSW-NB18. �e training

time for the model was also recorded in Tables 29 and 30 respectively. Figure 11 presents

Table 34 Confusion matrix: NB18 RURO

NB18 RURO Predicted label

0 1 2 3 4 5 6 7

True label

 0 129 2 0 0 0 0 0 1

 1* 0 2 0 0 0 0 0 0

 2 3 0 701 13 0 24 1 0

 3* 2 0 1 20 0 0 0 0

 4 8 0 53 12 792 4363 66 3

 5 42 9 403 35 268 21,054 220 3

 6 206 0 1385 126 2944 7220 464,735 803

 7 16 0 0 5 0 4 24 594,858

Table 35 Confusion matrix: NB18 RU-SMOTE

NB18
RU-SMOTE

Predicted label

0 1 2 3 4 5 6 7

True label

 0 129 2 0 0 0 0 0 1

 1* 0 2 0 0 0 0 0 0

 2 4 0 668 7 0 61 2 0

 3* 2 1 1 19 0 0 0 0

 4 4 1 4 15 1213 3951 109 0

 5 41 11 335 39 343 21,115 146 4

 6 80 0 1239 90 1939 7090 466,243 738

 7 18 1 0 22 0 5 17 594,844

Table 36 Confusion Matrix: NB18 RU-ADAYSN

NB18
RU-ADASYN

Predicted label

0 1 2 3 4 5 6 7

True label

 0 123 2 0 2 0 2 1 2

 1* 0 2 0 0 0 0 0 0

 2 1 0 596 13 0 132 0 0

 3* 2 0 13 8 0 0 0 0

 4 17 2 39 11 1385 3731 107 5

 5 55 10 101 37 152 21,517 160 2

 6 184 0 3785 84 1314 9054 462,293 705

 7 6 0 0 40 0 5 315 594,541

Page 31 of 41Bagui and Li J Big Data (2021) 8:6

the graphical results of the different resampling methods using Spark. �e results of the

different resampling methods on the local machine show a similar trend, hence are not

presented.

Confusion matrices for UNSW-NB18

Tables 31, 32, 33, 34, 35 and 36 show the confusion matrices using the various resam-

pling methods for the AWS runs on Spark. �e predicted label vs the true labels are

shown. �e categories that had a really low number of instances are marked with an

asterisk and the increases in the minority data identification are in italics.

Observations and discussion

• �ere is almost no overall significant difference between the ANN classification

results on AWS and ANN classification results on the local machine in terms

of the macro precision, macro recall, and macro F1 score. After oversampling

though, it took longer to run on the local machine than on AWS.

• When the minority data is increased by oversampling or the majority data is

decreased by undersampling, the macro recall or ADT increases. Oversampling

improves the macro recall significantly. �e macro precision went up in only one

case, in the case of RO. In all other cases, the macro precision decreased. Macro pre-

cision decreasing implies that the ratio of the false positive to true positive is going

up. Since the macro recall increased, this implies that the ratio of the false negative to

true positive is going down. So, in these set of experiments, it can be concluded that

the false positives went up and false negatives went down.

• �e confusion matrices also show an increase in the number of correctly classified

cases for the very low minority classes (shown with asterisk) with RO, RURO, RU-

SMOTE, and RU-ADASYN (results are in italics in Tables 31, 32, 33, 34, 35 and 36),

though the latter did not do as well as the earlier three resampling methods. It can be

noted from Table 32 that RU did not have any effect on these results. From Table 28

Table 37 Resampling of NB17-Ecobee

NB17-Ecobee Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 9129 9129 21,308 21,308

Mirai_ack 1 79,362 21,308 79,362 21,308

Mirai_scan 2 30,348 21,308 30,348 21,308

Mirai_syn 3 81,682 21,308 81,682 21,308

Mirai_udp 4 105,884 21,308 105,884 21,308

Mirai_udpplain 5 61,216 21,308 61,216 21,308

Gafgyt_combo 6 37,065 21,308 37,065 21,308

Gafgyt_junk 7 21,308 21,308 21,308 21,308

Gafgyt_scan 8 19,420 19,420 21,308 21,308

Gafgyt_tcp 9 66,308 21,308 66,308 21,308

Gafgyt_udp 10 73,391 21,308 73,391 21,308

Page 32 of 41Bagui and Li J Big Data (2021) 8:6

it can be noted that Data_Exfiltration and Keylogging still have very small number of

attacks for RU, which is why the ANN classifier could not train effectively for RU.

• Using Spark, only with RO, the training time was the same as the benchmark (which

had no resampling), but in all other resampling cases the training time decreased. On

the local machine, all cases of resampling had lower times. But again, Spark took a lot

less time for training the model than the local machine.

• From Table 29 (AWS), it can be observed that RURO and RU-SMOTE’s macro recall

were the highest, and very close, at 85.87% and 85.84% respectively. In this case

RU-ADAYSN did not perform as well as RURO or RU-SMOTE. RU’s macro recall

(54.46%) was lower than the recall of the other resampling methods, but a lot better

than NR (45.14%).

• From Table 30 (local machine), it can be observed that, RURO’s macro recall was

the highest at 88.78% and RU-SMOTE’s macro recall was pretty close, at 88.1%. In

this case, too, RU-ADAYSN did not perform as well as RURO or RU-SMOTE. RU,

Fig. 12 Resampling of NB17-Ecobee

Table 38 ANN classi�cation results for NB17-Ecobee on AWS with Spark for various

resampling methods

NB17-Ecobee NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.825617 0.828213 0.805486 0.859248 0.81543 0.798424

Macro recall 0.874221 0.87087 0.852089 0.853259 0.859054 0.836491

Macro F1 score 0.842014 0.831575 0.821682 0.812984 0.817154 0.793221

Training time (s) 390 198 432 198 198 198

Table 39 ANN classi�cation results for NB17-Ecobee on local machine for various

resampling methods

NB17-Ecobee NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.929664 0.928654 0.951042 0.928425 0.938275 0.909

Macro recall 0.907989 0.905878 0.908256 0.905622 0.904341 0.905353

Macro F1 score 0.876052 0.87639 0.879551 0.872209 0.876632 0.875529

Training time (s) 2356.359 948.5313 1985.313 1589.625 1427.734 1014.813

Page 33 of 41Bagui and Li J Big Data (2021) 8:6

again, had the lowest macro recall of the all the resampling methods (63.6%), but per-

formed better than NR (57.6%).

Experimentation on NB17‑Ecobee

�e first section presents the re-sampling of NB17-Ecobee and then the classification

results are presented. An analysis of the NB17-Ecobee results are presented in the obser-

vations and discussions section.

Resampling NB17-Ecobee Table 37 presents the number of samples before resampling,

after RU, after RO, and after RURO and Fig. 12 graphically presents the data before resa-

mpling, after RU, and after RO. �e Before Resampling column represents 70% of the

original NB17-Ecobee dataset, which was used for training the model. Figure 12 shows

the imbalance in the data before resampling. In this dataset there were a lower number

of benign cases (lower than any of the attacks), and there were no attacks with extremely

low number of cases. After RU, the data were more balanced than before resampling, but

RO seemed to give the same pattern as before resampling, and the data was balanced for

each category with RURO, hence this category was not shown in Fig. 12.

Classification results for NB17-Ecobee Table 38 presents the ANN classification

results for NB17-Ecobee on AWS using Spark and Table 39 presents the ANN clas-

sification results for NB17-Ecobee on the local machine with Scikit-Learn. �e results

of macro precision, macro recall and macro F1 score are presented for NR, RU, RO,

RURO, RU-SMOTE, and RU-ADASYN for NB17-Ecobee. �e training time (in sec-

onds) for the model was also recorded in Tables 38 and 39 respectively. Figure 13 pre-

sents the graphical results of the different resampling methods using Spark. �e results

of the different resampling methods on the local machine show a similar trend, so they

are not presented graphically.

Observations and discussion

• Resampling does not seem to have any effect on macro precision, macro recall or

macro F1 score in this dataset. In fact, on AWS, Table 38, it can be observed that

Fig. 13 ANN classification results for NB17-Ecobee on AWS with Spark for various resampling methods

Page 34 of 41Bagui and Li J Big Data (2021) 8:6

Table 40 Resampling of NB17-Danmini

NB17-Danmini Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 34,474 34,474 34,474 34,474

Mirai_ack 1 71,551 34,474 71,551 34,474

Mirai_scan 2 75,375 34,474 75,375 34,474

Mirai_syn 3 85,704 34,474 85,704 34,474

Mirai_udp 4 166,466 34,474 166,466 34,474

Mirai_udpplain 5 57,708 34,474 57,708 34,474

Gafgyt_combo 6 41,821 34,474 41,821 34,474

Gafgyt_junk 7 20,254 20,254 34,474 34,474

Gafgyt_scan 8 20,931 20,931 34,474 34,474

Gafgyt_tcp 9 64,280 34,474 64,280 34,474

Gafgyt_udp 10 74,244 34,474 74,244 34,474

Fig. 14 Resampling of NB17-Danmini

Table 41 ANN Classi�cation results for NB17-Danmini on AWS with Spark for various

resampling methods

NB17-Danmini NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.792128 0.812195 0.805464 0.816337 0.824546 0.830129

Macro recall 0.842704 0.861566 0.852281 0.872596 0.87531 0.871693

Macro F1 score 0.806466 0.821549 0.816367 0.82951 0.838391 0.844219

Training time (s) 576 270 594 288 282 288

Table 42 ANN classi�cation results for NB17-Danmini on local machine for various

resampling methods

NB17-Danmini NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.924668 0.945596 0.940988 0.935772 0.925392 0.942088

Macro recall 0.903897 0.905597 0.905295 0.905451 0.905824 0.905248

Macro F1 score 0.875883 0.871401 0.875896 0.870879 0.876621 0.871806

Training time (s) 896.3594 1625.172 1095.422 662.0625 745.3281 1158.844

Page 35 of 41Bagui and Li J Big Data (2021) 8:6

NR and RU performed better than the other resampling methods. On the local

machine however, Table 39, NR and the other resampling measures seemed to

give almost the save percentage for macro recall.

• Except for RO, the training time is lower than the benchmark in all other cases.

And of course, the training time on the local machine is higher than AWS.

Experimentation on NB17‑Danmini

�e first section presents the resampling of NB17-Danmini and then the classification

results are presented. An analysis of the NB17-Danmini results are presented in the

observations and discussions section.

Resampling NB17-Danmini Table 40 presents the number of samples before resa-

mpling, after RU, after RO, and after RURO and Fig. 14 graphically presents the data

before resampling, after RU, and after RO. Before Resampling represents 70% of the

original NB17-Danmini dataset, which was used for training the model. Figure 14

shows the imbalance in the data before resampling. In this dataset, Gafgyt_junk and

Gafgyt_scan had a lower number of cases, but the number of cases were not as low

as some of the extremely low number of attacks in KDD99, UNSW-NB15 or UNSW-

NB18. After RU the data was more balanced than before resampling, but RO seemed

to give the same pattern as before resampling, and the data was balanced for each

category with RURO, hence this latter category was not shown in Fig. 14.

Classification results for NB17-Danmini Table 41 presents the ANN classification

results for NB17-Danmini on AWS using Spark and Table 42 presents the ANN clas-

sification results for NB17-Danmini on the local machine with Scikit-Learn. The

results of macro precision, macro recall and macro F1 score are presented for NR,

RU, RO, RURO, RU-SMOTE and RU-ADASYN for NB17-Danmini. The training time

(in seconds) for the model was also recorded in Tables 41 and 42 respectively. Fig-

ure 15 presents the graphical results of the different resampling methods using Spark.

The results of the different resampling methods on the local machine show a similar

trend, hence were not presented.

Fig. 15 ANN classification results for NB17-Danmini on AWS with Spark for various resampling methods

Page 36 of 41Bagui and Li J Big Data (2021) 8:6

Observations and discussion

• Resampling does not seem to have any effect on macro precision, macro recall

or macro F1 score in this dataset. On AWS, Table 41, NR had a macro recall of

84% while resampling measures had a macro recall of 85–87%. And, on the local

machine however, Table 42, NR and the other resampling measures seemed to

give almost the save percentage for macro recall, a little above 90%.

• On AWS, except for RO, the training time went down in all cases. On the local

machine, however, the time went up for RU, RO, and RU-ADASYN. And again,

overall, it took much longer to run on the local machine.

Table 43 Resampling of NB17-Philips

NB17-Philips Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 122,776 40,816 122,776 40,816

Mirai_ack 1 63,730 40,816 63,730 40,816

Mirai_scan 2 72,661 40,816 72,661 40,816

Mirai_syn 3 82,508 40,816 82,508 40,816

Mirai_udp 4 151,887 40,816 151,887 40,816

Mirai_udpplain 5 56,504 40,816 56,504 40,816

Gafgyt_combo 6 40,816 40,816 40,816 40,816

Gafgyt_junk 7 19,941 19,941 40,816 40,816

Gafgyt_scan 8 19,503 19,503 40,816 40,816

Gafgyt_tcp 9 64,786 40,816 64,786 40,816

Gafgyt_udp 10 73,961 40,816 73,961 40,816

Fig. 16 Resampling of NB17-Philips

Table 44 ANN classi�cation results for NB17-Philips on AWS with Spark for various

resampling methods

NB17-Philips NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.82112 0.806622 0.82313 0.820742 0.836191 0.806937

Macro recall 0.864271 0.860525 0.867278 0.873116 0.871455 0.856891

Macro F1 score 0.827655 0.825717 0.828891 0.828997 0.82753 0.823355

Training time (s) 660 318 660 336 342 330

Page 37 of 41Bagui and Li J Big Data (2021) 8:6

Experimentation on NB17‑Philips

�e first section presents the resampling of NB17-Philips and then the classification

results are presented. An analysis of the NB17-Philips results are presented in the obser-

vations and discussions section.

Resampling NB17-Philips Table 43 presents the number of samples before resam-

pling, after RU, after RO, and after RURO and Fig. 16 graphically presents the data before

resampling, after RU, and after RO. Before Resampling represents 70% of the original

NB17-Philips dataset, which was used for training the model. Figure 16 shows the imbal-

ance in the data before resampling. In this dataset, Gafgyt_junk and Gafgyt_scan had

a lower number of cases, but again, the cases were not as low as some of the attacks in

KDD99, UNSW-NB15 or UNSW-NB18. After RU, the data was more balanced (as shown

in Fig. 16), but after RO the pattern of distribution of data closely followed the before

resampling. After RURO, the number of cases were balanced for each category, hence this

was not included in Fig. 16.

Classification results for NB17-Philips Table 44 presents the ANN classification

results for NB17-Philips on AWS using Spark and Table 45 presents the ANN clas-

sification results for NB17-Philips on the local machine with Scikit-Learn. �e results

of macro precision, macro recall and macro F1 score are presented for NR, RU, RO,

RURO, RU- SMOTE and RU-ADASYN for NB17-Philips. �e training time (in sec-

onds) for the model was also recorded in Tables 44 and 45 respectively. Figure 17 pre-

sents the graphical results of the different resampling methods using Spark. �e results

of the different resampling methods on the local machine show a similar trend, so it

was not presented.

Table 45 ANN classi�cation results for NB17-Philips on local machine for various

resampling methods

NB17-Philips NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.912172 0.931224 0.930606 0.892025 0.904524 0.891446

Macro recall 0.893773 0.903667 0.906043 0.899702 0.907286 0.907512

Macro F1 score 0.869574 0.871905 0.877093 0.86307 0.878986 0.87948

Training time (s) 1385.156 834.5156 1871.328 1172.344 1643.234 1514.453

Fig. 17 ANN classification results for NB17-Philips on AWS with Spark for various resampling methods

Page 38 of 41Bagui and Li J Big Data (2021) 8:6

Observations and discussion

• Resampling does not seem to have any effect on macro precision, macro recall or

macro F1 score in this dataset. From both Tables 44 and 45, it can be observed

that almost all the resampling methods performed close to NR, on both AWS and

the local machine.

• On AWS, except for RO, the training time went down in all cases. On the local

machine, however, the time went up for RO, RU-SMOTE and RU-ADASYN. And

again, overall, it took much longer to run on the local machine.

Conclusion

Five different forms of resampling were applied to six different datasets. �ree of these

datasets can be considered highly imbalanced, and the other three datasets can be con-

sidered less imbalanced. �e high imbalanced datasets were, KDD99, UNSW-NB15, and

UNSW-NB18(BoT-IoT). And, the three UNSW-NB17 datasets can be considered less

imbalanced. �e following conclusions can be drawn from the resampling:

1. Oversampling increases the training time taken while undersampling decreases the

training time taken. �is is natural because oversampling increases the number of

cases in training data, while undersampling decreases the number of cases in train-

ing data.

2. In the highly imbalanced datasets, both oversampling and undersampling increase

recall significantly. �is means that the ratio of the false negatives to the true posi-

tives decreases. So, the ANN model recognized more minority data correctly. And

this was also shown by the confusion matrices. In some cases, the macro precision

Table 46 Summary for oversampling and undersampling highly imbalanced datasets

Time of training steps Macro precision Macro recall

Oversampling Increases Increases, sometimes decrease Increases

Undersampling Decreases Increases, sometimes decrease Increases

Table 47 Summary for recognizing minority and majority instances on highly imbalanced

datasets

In�uence
on minority’s
recall

In�uence
on minority’s
precision

In�uence
on majority’s
recall

In�uence
on majority’s
precision

Overall In�uence
on recall
and precision

Recognize
more minority
instances cor-
rectly

Increase Increase No influence No influence Increase recall
Increase precision

Recognize
more majority
instances incor-
rectly

No influence Decrease Little influence Little influence Decrease precision

Combined influ-
ence

Increase Decrease Little influence Little influence Increase recall
Decrease precision

Page 39 of 41Bagui and Li J Big Data (2021) 8:6

decreases, which means that the ANN model incorrectly recognized more majority

data as minority data.

 In some cases, the macro precision decreased, meaning that the ANN model incor-

rectly recognized some majority data as minority data. A summary of the behavior

of oversampling and undersampling the highly imbalanced datasets is presented in

Table 46.

 With no resampling, micro precision and micro recall were high, but the macro pre-

cision and macro recall were relatively lower. �is is because although the model

recognized almost all majority instances correctly, it recognized minority instances

incorrectly, which means that the model recognized most minority instances as

belonging to the majority class. �is made the macro precision and macro recall rela-

tively lower.

 With resampling, however, micro precision and micro recall were still high. �e

macro recall increases after resampling because the model recognizes more minority

instances as the minority class, and this was also reflected in the confusion matrices.

However, macro precision decreases after resampling because the model also recog-

nizes some majority instances as minority instances. �e number of misrecognitions

of majority instances is not relatively large in comparison with the number of major-

ity instances. But the number of misrecognitions of majority instances is relatively

large in comparison with the number of minority instances, which decreases the pre-

cision of minority classes. So, with resampling, generally, it can be stated that more

minority instances were recognized correctly. Table 47 presents a summary of the

behavior of the recognizing the minority and majority instances in highly imbalanced

datasets.

3. Also, for highly imbalanced datasets, NB15 and NB18, from the confusion matri-

ces it appears that RURO performed the best in terms of identifying minority cases,

Table 48 Oversampling and Undersampling in not extremely Imbalanced Datasets

Time of training steps Macro precision Macro recall

Oversampling Increase Almost unchanged Almost unchanged

Undersampling Decrease Almost unchanged Almost unchanged

Table 49 Summary for recognizing minority and majority instances in not highly

imbalanced datasets

In�uence
on minority’s
recall

In�uence
on minority’s
precision

In�uence
on majority’s
recall

In�uence
on majority’s
precision

Overall In�uence
on recall
and precision

Recognize
more minority
instances cor-
rectly

Increase slightly
Good enough

without resam-
pling

Increase slightly No influence No influence Almost
unchanged

Recognize
more majority
instances
incorrectly

No influence Decrease slightly Little influence Little influence Decrease precision

Combined influ-
ence

Almost
unchanged

Almost
unchanged

Little influence Little influence Almost
unchanged

Page 40 of 41Bagui and Li J Big Data (2021) 8:6

though in some cases this was only a small improvement above RU-SMOTE and

RU-ADASYN. For KDD99, RURO and RU-SMOTE can be considered to have per-

formed equally well in identifying minority cases.

4. For highly imbalanced datasets, KDD99, NB15 and NB18, in most cases, the RURO

and RU-SMOTE performed the best, in terms of macro recall. RU usually did not

perform as well as the other resampling measures in terms of macro recall, but per-

formed better than NR. And RO always performed better than RU in terms of macro

recall, and sometimes it was comparable to RURO, RU-SMOTE, and RU-ADASYN.

5. If the data is not extremely imbalanced, for example, NB17, resampling makes no dif-

ference, as shown in Table 48.

�is could be because:

 i. Since the data set is not extremely imbalanced, majority data does not have a very

strong influence on the model. Minority data has enough influence on the model,

hence the model can classify minority data well.

 ii. Imbalance may not be the reason for the inaccuracy. Resampling improves the

accuracy by reducing the extent of imbalance. If the inaccuracy is not caused by the

imbalance, resampling will not be able to improve the accuracy.

Table 49 presents a summary of behavior of recognizing the minority and majority

instances in not highly imbalanced datasets.

Abbreviations

AWS: Amazon’s Web Service; ANN: Artificial Neural Networks; ADR: Attack Detection Rate; SMOTE: Synthetic Minor-

ity Oversampling Technique; ADASYN: Adaptive synthetic sampling method; MLlib: Machine learning library; NR: No

resampling; RU: Random undersampling; RO: Random oversampling; RU-RO: Random undersampling and random

oversampling; RU-SMOTE: Random undersampling and SMOTE; RU-ADASYN: Random undersampling and ADASYN; TP:

True positive; TN: True negative; FP: False positive; FN: False negative; SVM: Support vector machines.

Acknowledgements

This work has been partially supported by the Askew Institute of the University of West Florida.

Author’s contributions

This work was conceptualized by both authors. The programming was done by KL, and both authors participated in the

write-up of the paper. Both authors read and approved the final manuscript.

Funding

This work is not funded

Availability of data and materials

Not applicable

Competing interests

None of the authors have any competing interests.

Received: 23 August 2020 Accepted: 4 December 2020

References

 1. Abdi L, Sattar H. To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans

Knowl Data Eng. 2016;28(1):238–51.

 2. Amin A, Anwar S, Adnan A, Nawaz M, Howard N, Quadir J, Havalah A, Hussain A. Comparing oversampling tech-

niques to handle the class imbalance problem: a customer churn prediction case study. IEEE Access. 2016;4:7940–

57. https ://doi.org/10.1109/ACCES S.2016.26197 19.

https://doi.org/10.1109/ACCESS.2016.2619719

Page 41 of 41Bagui and Li J Big Data (2021) 8:6

 3. Basgall MJ, Hasperué W, Naiouf M, Fernández A, Herrera F. SMOTE-BD: An exact and scalable oversampling method

for imbalanced classification in big data. J Comput Sci Technol. 2018;18(03):e23. https ://doi.org/10.24215 /16666

038.18.e23.

 4. Blagus R, Lusa L. SMOTE for High-dimensional class-imbalanced data. BMC Bioinf. 2013; 14:106.

 5. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over sampling technique. J Artif Intellig

Res. 2002;16:321–57.

 6. Cieslak, D. A., Chawla, N. W., & Striegel, A (2006). Combating Imbalance in Network Intrusion Datasets. Proc IEEE Int

Conf Granular Computing, 2006, Atlanta, Georgia, USA, 732-737.

 7. Douzas G, Bacao F. Effective data generation for imbalanced learning using conditional generative adversarial

networks. Exp Syst Appl. 2018;91:464–71.

 8. Douzas G, Bacao F, Last F. Improving imbalanced learning through a heuristic oversampling method based on

k-means and SMOTE. Inf Sci. 2018;465:1–20.

 9. Ertekin CS. Adaptive oversampling for imbalanced data classification. In: Proceedings of the 28th international

symposium on computing and information sciences. 2013; 264:261–9.

 10. Ertekin SE, Huang J, Bottou L, Giles CL. Learning on the border: active learning in imbalanced data classification. In:

Proceedings of ACM Conference on information and knowledge management, Lisbon, Portugal; 2007, 127–36.

 11. Fernandez A, Rio S, Chawla N, Herrera F. An insight into imbalanced Big Data classification: outcomes and chal-

lenges. Complex Intell Syst. 2017;3:105–20.

 12. Guller M. Big data analysis with spark. New York: Apress; 2015.

 13. Gutiérrez PD, Lastra M, Benítez JM, Herrara F. SMOTE-GPU: big data preprocessing on commodity hardware for

imbalanced classification. Prog Artif Intell. 2017;6:347–54. https ://doi.org/10.1007/s1374 8-017-0128-2.

 14. He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE interna-

tional joint conference on neural networks (IEEE world congress on computational intelligence); 2008, p 1322–8.

 15. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84.

 16. Hulse JV, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data. In: Proceed-

ings of the 24th international conference on machine learning, Corvallis, Oregon: Oregon State University; 2007, p

935–42.

 17. Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data. 2019;6:27. https ://doi.

org/10.1186/s4053 7-019-0192-5.

 18. Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the internet

of things for network forensic analytics: bot-iot dataset. Fut Gener Comput Syst. 2019; 100:779–96. arXiv :1811.00701

v1.

 19. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.

2018;5:42. https ://doi.org/10.1186/s4053 7-018-0151-6.

 20. Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in

machine learning. J Mach Learn Res. 2017;18:1–5.

 21. Luque A, Carrasco A, Martin A, Heras de las A. The impact of class imbalance in classification performance

metrics based on the binary confusion matrics. Pattern Recogn. 2019;19:216–31. https ://doi.org/10.1016/j.patco

g.2019.02.023.

 22. Meidan Y, Bohadana M, Mathov Y, Mirsky Y, Breitenbacher D, Shabtai A, Elovici Y. N-BaIoT: network-based detection

of iot botnet attacks using deep autoencoders. IEEE Pervas Comput. 2018;13(9):1–8.

 23. Mirsky Y, Doitshman T, Elovici Y, Shabtai AJ. Kitsune: an ensemble of autoencoders for online network intrusion

detection. In: Network and distributed systems security symposium. 2018.

 24. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. 2nd ed. Cambridge: MIT Press; 2018.

 25. More A. Survey of resampling techniques for improving classification performance in unbalanced datasets. 2018.

 26. Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15

network data set). MilCIS. 2015;2015:1–6.

 27. Radivojac P, Chawla NV, Dunker AK, Obradovic Z. Classification and knowledge discovery in protein databases. J

Biomed Inform. 2004;37(4):224–39. https ://doi.org/10.1016/j.jbi.2004.07.008.

 28. Raghuwanshi BS, Shukla S. SMOTE based class-specific extreme learning machine for imbalanced learning. Pattern

Anal Appl. 2020;187:104814.

 29. Song Q, Guo Y, Shepperd M. A comprehensive investigation of the role of imbalanced learning for software defect

prediction. IEEE Trans Software Eng. 2019;45(12):1253–69. https ://doi.org/10.1109/TSE.2018.28364 42.

 30. Terzi DS, Sagiroglu S. A new big data model using distributed cluster-based resampling for class-imbalance prob-

lem. Appl Comput Syst. 2019;24(2):104–10. https ://doi.org/10.2478/acss-2019-0013.

 31. Trask AW. Deep learning. New York: Manning Publication; 2019.

 32. Triguero I, Galar M, Merino D, Maillo J, Bustince H, Herrera F. Evolutionary undersampling for extremely imbalanced

Big Data classification under Apache Spark. In: 2016 IEEE congress on evolutionary computation (CEC), Vancouver,

BC; 2016, p 640–7. https ://doi.org/10.1109/cec.2016.77438 53.

 33. Wallace B, Small K, Brodley C, Trikalinos T. Class imbalance, redux. In: IEEE 11th international conference on data min-

ing (ICDM), Vancouver, Canada; 2011, p 754–63.

 34. Wang J, Xu M, Wang H, Zhang J. Classification of imbalanced data by using the smote algorithm and locally linear

embedding. In: Proceedings of the 8th international conference on signal processing; 2006, p 1–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.24215/16666038.18.e23
https://doi.org/10.24215/16666038.18.e23
https://doi.org/10.1007/s13748-017-0128-2
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
http://arxiv.org/abs/1811.00701v1
http://arxiv.org/abs/1811.00701v1
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1016/j.jbi.2004.07.008
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.2478/acss-2019-0013
https://doi.org/10.1109/cec.2016.7743853

	Resampling imbalanced data for network intrusion detection datasets
	Abstract
	Introduction
	Resampling techniques implemented
	Related works
	Description of the datasets
	KDD99
	UNSW-NB15
	UNSW-NB17
	UNSW-NB18

	Experimental design
	Apache Spark
	Artificial Neural Networks

	Evaluation metrics
	Using macro metrics
	Metrics formulas

	Results and discussion
	Classification with original datasets (no resampling)
	Observations and discussion

	Classification with the Resampled datasets
	Experimentation on KDD99
	Resampling KDD99
	Classification results for KDD99
	Confusion matrices for KDD99

	Observations and discussion

	Experimentation on UNSW-NB15
	Resampling UNSW-NB15
	Classification results for UNSW-NB15
	Confusion matrices for UNSW-NB15

	Observations and discussion

	Experimentation on UNSW-NB18
	Resampling UNSW-NB18
	Classification results for UNSW-NB18 (BoT-IoT)
	Confusion matrices for UNSW-NB18

	Observations and discussion

	Experimentation on NB17-Ecobee
	Resampling NB17-Ecobee
	Classification results for NB17-Ecobee
	Observations and discussion

	Experimentation on NB17-Danmini
	Resampling NB17-Danmini
	Classification results for NB17-Danmini
	Observations and discussion

	Experimentation on NB17-Philips
	Resampling NB17-Philips
	Classification results for NB17-Philips
	Observations and discussion

	Conclusion
	Acknowledgements
	References

