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Introduction

Cybersecurity is increasingly becoming a major concern due to the increased reliance 

on computers and the Internet. In order to detect Cyber-attacks, it is prudent that we 

build efficient Network Intrusion Detection Systems, and the basis for doing this is to be 

able to analyze network traffic flow data, termed here as Cybersecurity data, efficiently 

and quickly. �ere is an inherent problem with most network traffic flow data or Cyber-

security data—the data is highly imbalanced, that is, there is a disproportionately large 

amount of good or normal traffic data and, in a most cases, very few attack instances. 

Even existing benchmark datasets suffer from this problem. Using imbalanced data for 

machine learning or deep learning algorithms like Artificial Neural Networks (ANN) is 

a major challenge. Moreover, many of these datasets require multi-class classification.
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ANN needs to be trained on historical data, and can be seriously affected by imbal-

anced proportions in the data. When training data is extremely imbalanced, that is, 

when one class (or classes) outnumbers the other class(es) by a large proportion, major-

ity data (the class or classes with larger proportions) will have a stronger influence on the 

ANN model than minority data (the class or classes in lesser proportions). Under these 

circumstances, the ANN model will recognize majority data well but have poor perfor-

mance on recognizing minority data.

In most network traffic flow data or Cybersecurity data, benign or normal data makes 

up a large proportion of the dataset, and attack data makes up only a small proportion of 

the dataset. If this imbalanced data is used to train an ANN model, the ANN model will 

have good performance on recognizing the benign data and bad performance on recog-

nizing the attack data. �is means that the model will recognize benign data as benign 

data and might also recognize attack data as benign. Especially in multiclassification, if 

there are small numbers of certain attack types, the minority attack data may be recog-

nized as benign data or majority attack data. When network traffic cybersecurity data 

is being used for attack detection, recognizing minority attack data correctly is more 

important than recognizing majority benign data correctly.

In order to improve performance on classifying imbalanced data, researchers have sug-

gested a number of approaches including resampling, cost sensitive kernel modification 

methods, and active learning methods [15]. �is paper focuses on resampling strategies. 

�e resampling techniques, random undersampling (RU), random oversampling (RO), 

random undersampling and random oversampling (RURO), random undersampling 

with Synthetic Minority Oversampling Technique (RU-SMOTE), and random under-

sampling with Adaptive Synthetic Sampling Method (RU-ADASYN) were applied to 

six benchmark cybersecurity datasets, KDD99,1 UNSW-NB15,2 UNSW-NB17-Ecobee_

�ermostat,3 UNSW-NB17-Danmini_Doorbell (see Footnote 3), UNSW-NB17-Philips_

B120N10_Baby_Monitor (see Footnote 3), and UNSW-NB18 [18], before performing 

classification using ANN. �e classification results are evaluated using macro metrics 

including macro precision, macro recall and macro F-1 score. �e training time, which 

usually forms the major part of the total running time of the algorithm, was also consid-

ered. Results of regular ANN using scikit-learn were compared to ANN in the Big Data 

framework using an EC2 instance of the Spark Machine Learning Library (MLlib) on an 

EMR Cluster.

�e uniqueness of this work can be stated as:

• Applying new resampling technique combinations of random undersampling and 

random oversampling on imbalanced data. �e following unique resampling combi-

nations were used:

– Random undersampling and random oversampling taken together (RURO).

1 http://kdd.ics.uci.edu/datab ases/kddcu p99/kddcu p99.html (Accessed 03-15-2020).
2 "�e UNSW-NB15 Dataset Description," Cyber Range Lab of the Australian Centre for Cyber Security (ACCS), 
[Online]. Available: https ://www.unsw.adfa.edu.au/unsw-canbe rra-cyber /cyber secur ity/ADFA-NB15-Datas ets/. 
(Accessed 09-19-2019).
3 https ://archi ve.ics.uci.edu/ml/datas ets/detec tion_of_IoT_botne t_attac ks_N_BaIoT .

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
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– Random undersampling with the random oversampling technique, SMOTE (RU-

SMOTE).

– Random undersampling with the random oversampling technique, ADASYN 

(RU-ADASYN).

• Studying the behavior of the above and other resampling techniques, random under-

sampling and random oversampling, in the domain of Cybersecurity data, a crucial 

emerging domain with respect to imbalanced data.

• Applying resampling to classification using ANN.

• �e application of all of the above on the Big Data Framework using Spark.

�e rest of this paper is organized as follows. A background of the different resampling 

techniques is presented in the "Resampling techniques implemented” section; this is fol-

lowed by a section on "Related works"; the following section provides a brief "Descrip-

tion of the datasets" used in this study; the “Experimental design” section presents the 

study design, followed by the "Evaluation metrics", "Results and discussion"; and finally, 

the "Conclusion" is presented.

Resampling techniques implemented

To address the problem of imbalanced learning, many resampling techniques have 

been created. Resampling techniques include: oversampling, undersampling, com-

bining oversampling and undersampling techniques, and ensembling sampling. 

Both oversampling and undersampling are aimed at changing the ratios between the 

majority classes and minority classes. Combining oversampling and undersampling 

techniques use both oversampling and undersampling techniques to create a more 

balanced new dataset. By making the training data more balanced, resampling enables 

different classes to have relatively the same influence on the outcomes of the classifi-

cation model. �e resampling techniques used in this paper, random undersampling, 

random oversampling, random undersampling and random oversampling, random 

undersampling with SMOTE, and random undersampling with ADASYN, are pre-

sented next.

Random undersampling refers to the process of reducing the number of samples. 

Samples from the majority class(es) are randomly picked with or without replace-

ment.4 After random undersampling, the number of cases (of the majority class) in the 

dataset decrease, which significantly reduces the training time in a model. However, 

data points removed by random undersampling may include important information, 

which may lead to a decrease in classification results. Lemaître et  al. [20] presents a 

scikit learn toolbox to resample training data. In this paper, this toolbox was used to 

resample training data and Listing 1 presents example scikit learn code for random 

undersampling.

4 https ://imbal anced -learn .readt hedoc s.io/en/stabl e/gener ated/imble arn.under _sampl ing.Rando mUnde rSamp ler.
html#imble arn.under _sampl ing.Rando mUnde rSamp ler.

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler
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Random oversampling over-samples the minority class(es) by picking samples at ran-

dom with replacement from the minority class(es) (see Footnote 1). Since oversampling 

increases the number of cases in the training dataset, random oversampling increases 

the training time of a model. Random oversampling may also lead to overfitting because 
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it adds replicated data to the dataset. Listing 2 presents example scikit learn code for 

random oversampling.

Random undersampling and random oversampling uses the two methods together.

Synthetic Minority Oversampling Technique (SMOTE), commonly used as a bench-

mark for oversampling [9, 34], improves on simple random oversampling by creating 

synthetic minority class samples [4] and addresses the problem of overfitting [5] that 

can happen with simple random oversampling. �is is because the new data points gen-

erated by SMOTE are synthetic data points instead of mere duplications. To generate 

new minority data points, a linear combination of two similar samples from the minority 

class are used [4]. New feature values are uniformly interpolated between the minority 

instance and its respective nearest neighbors. SMOTE only considers within class neigh-

bors. Listing 3 presents example scikit learn code for SMOTE oversampling, including 

the sampling strategy used. In this work, random undersampling is applied in combina-

tion with SMOTE, hence this is referred to as RU-SMOTE.
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ADASYN [14], a pseudo-probabilistic oversampling technique, uses a weighted distri-

bution for different minority data points according to their level of difficulty in learning. 

With ADASYN, more synthetic data is generated for minority class examples that are 

harder to learn as compared to those minority examples that are easier to learn. A fixed 

number of instances is generated for each minority instance, based on a weighted dis-

tribution of its neighbors [1]. Listing 4 presents example scikit learn code for ADASYN 

oversampling. In this work, random undersampling has been applied in combination 

with ADASYN, hence it is referred to as RU-ADASYN.

Table 1 presents a brief comparison of Random oversampling, SMOTE and ADASYN.
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Related works

Resampling stems from the class imbalance problem. Leevy et al. [19] stressed on the 

importance of the class imbalance problem and presented a survey of works on the class 

imbalance problem. �e works were mainly divided into data-level methods and algo-

rithm-level methods.

Some of the recent works on algorithm-level methods are: Johnson and Khoshgoftaar 

[17] examined existing deep learning techniques for addressing class imbalance; Raghu-

wanshi and Shukla [28] designed a novel BalanceCascade-based kernelized extreme 

learning machine to handle the problem of class imbalance; Luque et al. [21] presented 

a new way of measuring imbalance. A set of null-biased multi-perspective Class Balance 

Metrics were proposed which extended the concept of Class Balance Accuracy to other 

performance metrics.

�ere are also several studies on the data-level methods. Several studies have been 

carried out on comparison of oversampling and undersampling methods for handling 

the class imbalance problem. Douzas and Bacao [7] developed a conditional version of 

Generative Adversarial Networks to approximate the true data distribution and generate 

data for minority classes of various imbalanced datasets. Douzas et al. [8] presented an 

oversampling method based on k-means clustering and SMOTE which avoids the gen-

eration of noise and overcomes imbalances between and within classes.

More [25] reviewed a number of resampling techniques, including random under-

sampling of the majority class, random oversampling of the minority class, SMOTE, 

and many other techniques, to handle unbalanced datasets and study their effect on 

classification.

Amin et  al. [2] surveyed six well-known sampling techniques: mega-trend diffusion 

function (MTDF), SMOTE, ADASYN, couples top-N reverse k-nearest neighbor, major-

ity weighted minority oversampling technique, and immune centroids oversampling 

technique. �eir work showed that the overall predictive performance of MTDF and 

rules-generation based on genetic algorithms performed the best as compared with the 

rest of the evaluated oversampling methods and rule-generation algorithms.

Abdi and Sattar [1] looked at different synthetic oversampling techniques and pro-

posed a new oversampling algorithm based on Mahalanobis distance. �ey showed that 

their proposed method generates less duplicate and overlapping data points as opposed 

to other oversampling techniques.

Cieslak et  al. [6] used SMOTE to detect network traffic intrusions. Blagus and Lusa 

[4] investigated the theoretical properties of SMOTE and its performance on high-

dimensional data. �ey considered a two-class classification using Classification and 

Regression Trees, k-NN, linear discriminant analysis, random forests and support vector 

Table 1 Brief comparison of Random Oversampling, SMOTE and ADASYN

Random OverSampling SMOTE ADASYN

Resampling time The shortest of the three 
methods

Medium The longest of the three 
methods

Each new data 
point is based 
on

Only one minority data point Some minority data points 
around the new data 
point

Both minority data points and 
majority data points
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machines (SVM).Wallace et al. [33] also used SMOTE with SVM as the base classifier. 

Past works have also looked at the effects of dimensionality on SMOTE [16]. Hulse 

et al. [16] showed that in low-dimensional data, simple undersampling tends to outper-

form SMOTE. Ertekin et al. [10] and Radivojac et al. [27] evaluated the performance of 

SMOTE based on the number of samples. Song et al. [29] looked at the class imbalance 

problem in software detection prediction.

Many works also looked at resampling in the context of Big Data. Fernandez et al. [11] 

looked at the imbalance problem in the Big Data framework. Basgall et al. [3] developed 

SMOTE-BD, a fully scalable oversampling technique for imbalanced classification in Big 

Data Analytics. Terzi and Sagiroglu [30] developed a distributed cluster based resam-

pling for imbalanced Big Data, which was designed to overcome both between-class and 

within-class imbalance problems in big data. Gutiérrez et  al. [13] proposed SMOTE-

GPU to efficiently handle large datasets (several millions of instances) on a wide variety 

of commodity hardware, including a laptop computer. Triguero et al. [32] independently 

managed the majority as well as minority classes. �ey undersampled the majority class 

and took advantage of Apache Spark’s in-memory operations to diminish the effects of 

the small sample size of the minority class.

In summary, several studies have looked at the class imbalance problem, both in tra-

ditional data as well as big data, using various resampling oversampling and undersam-

pling techniques. However, none of the studies have analyzed the application of the 

resampling techniques, random undersampling and random oversampling (RURO) used 

together, random undersampling with SMOTE (RU-SMOTE), and random undersam-

pling with ADASYN (RU-ADASYN), using Spark’s ANN multi-class classifier, on imbal-

anced network traffic cybersecurity data, the work performed in this study. In this study, 

basically a data-level approach, resampling of the majority and minority classes are han-

dled independently.

Description of the datasets

For experimentation, six popular datasets were used: KDD99 (see Footnote 1), UNSW-

NB15 (see Footnote 2), UNSW-NB17 (Ecobee_�ermostat, Danmini_Doorbell, and 

Philips_B120N10_Baby_Monitor) (see Footnote 3), and UNSW-NB18 [18]. Next is a 

description of the datasets.

KDD99

�e KDD99 dataset, considered a benchmark cybersecurity dataset for a long time, is 

a 41 feature dataset. �e attack records of this dataset can be classified into four broad 

categories and 22 subcategories. Table 2 presents the distribution of benign and attack 

data (in the four broad categories). �e data is extremely imbalanced. Benign data makes 

up almost 20% of the data and the DoS attacks make up almost the other 80% of the data, 

hence the other attack categories have extremely few case instances.

UNSW-NB15

�e UNSW-NB15 dataset, created by the Cyber Range Lab of the Australian Cen-

tre for Cyber Security has 49 features [26]. �ere are 10 categories (9 attack categories 

plus 1 benign category). Table 3 presents the distribution of benign and attack data in 
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UNSW-NB15. Here too, the data is highly imbalanced. Benign traffic makes up 88.5% 

of the traffic, while the nine attack categories combined make up the other 11.5%. It can 

be noted that worms make up only 0.0069% of the data, hence there are extremely few 

cases.

UNSW-NB17

�e UNSW-NB17 dataset was generated by 9 IoT devices. �ere are 9 sub datasets in 

UNSW-NB17, of which three were arbitrarily selected for this study: Ecobee_�er-

mostat, Danmini_Doorbell, and Philips_B120N10_Baby_Monitor. Each sub dataset 

includes two of the most common IoT botnets, Gafgyt and Mirai [22]. Each of the bot-

nets has 5 attack subcategories, hence there are 10 categories of attack traffic and 1 

benign category. �ere are 115 independent features in this data set. �e csv files were 

used, which were extracted from pcap files by Kitsune [23]. Tables 4, 5, and 6 present the 

distribution of the benign and attack data in these datasets respectively. �ese datasets 

are imbalanced, but not as imbalanced as the KDD99 or UNSW-NB15. In these datasets, 

the Gafgyt_junk and Gafgyt_scan have close of 3% of the data each, but the other attack 

categories are a little more balanced. And, in these datasets, the benign traffic is not dis-

proportionately high, as is the case in UNSW-NB15.

UNSW-NB18

�e UNSW-NB18 BoT-IoT dataset was created by designing a realistic network envi-

ronment in the Cyber Range Lab of �e center of UNSW Canberra Cyber [18]. Table 7 

presents the distribution of benign and attack data in this dataset. Here again, the data 

Table 2 % of benign and attack tra�c in KDD99

Category % of Tra�c (%)

Benign 19.8590

Probe 0.8391

DoS 79.2778

u2r 0.0011

r2l 0.0230

Table 3 % of benign and attack tra�c in UNSW-NB15

Category % of Tra�c (%)

Benign 88.5529

Fuzzers 0.2016

Reconnaissance 0.0702

Shellcode 0.0089

Analysis 0.1069

Backdoors 0.0213

DoS 0.6528

Exploits 1.7773

Generic 8.6012

Worms 0.0069
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Table 4 % of benign and attack tra�c in UNSW-NB17_Ecobee

Category % of Tra�c (%)

Benign 1.57

Mirai _ack 13.55

Mirai _scan 5.17

Mirai _syn 13.97

Mirai _udp 18.12

Mirai _udpplain 10.4

Gafgyt _combo 6.34

Gafgyt _junk 3.63

Gafgyt _scan 3.29

Gafgyt _tcp 11.37

Gafgyt _udp 12.54

Table 5 % of benign and attack tra�c in UNSW-NB17_Doorbell

Category % of Tra�c (%)

Benign 4.87

Mirai _ack 10.04

Mirai _scan 10.57

Mirai _syn 12.0

Mirai _udp 23.34

Mirai _udpplain 8.05

Gafgyt _combo 5.86

Gafgyt _junk 2.85

Gafgyt _scan 2.93

Gafgyt _tcp 9.05

Gafgyt _udp 10.40

Table 6 % of Benign and Attack Tra�c in UNSW-NB17_Philips

Category % of Tra�c (%)

Benign 15.95

Mirai ack 8.29

Mirai _scan 9.43

Mirai _syn 10.75

Mirai _udp 19.75

Mirai _udpplain 7.36

Gafgyt _combo 5.29

Gafgyt _junk 2.58

Gafgyt _scan 2.54

Gafgyt _tcp 8.43

Gafgyt _udp 9.63



Page 11 of 41Bagui and Li  J Big Data             (2021) 8:6  

is highly imbalanced. TCP attacks make up approximately 43% of the cases and UDP 

attacks make up approximately 54% of the cases. In this dataset too, normal traffic makes 

up only 0.031% of the dataset, hence is very low. �is is almost the opposite of the pat-

tern in UNSW-NB15.

Experimental design

Figure 1 shows the flow chart of the experimental design. For each dataset, the dataset 

was split into a training set (70%) and a testing set (30%). Both training as well as testing 

datasets were pre-processed and standardized. �e training dataset was then resampled 

and the ANN model trained. �e test dataset was tested on the ANN model.

For each dataset, six sets of classifications were performed with the following combi-

nations of resampling techniques.

• No resampling (NR).

• Random undersampling (RU).

• Random oversampling (RO).

• Random undersampling and random oversampling (RURO).

• Random undersampling and SMOTE (RU-SMOTE).

• Random undersampling and ADASYN (RU-ADASYN).

Resampling of the majority and minority classes was performed independently, mean-

ing that each category in each dataset was considered individually, rather than taking a 

fixed  % for under or over sampling. Classification was performed using Artificial Neural 

Networks (ANN) available in Apache Spark. All experiments were run in two modes: 

(i) on a local machine using Scikit Learn, and (ii) for the Big Data framework, Apache 

Spark, on Amazon’s Web Service (AWS) EMR cluster. �e AWS EMR cluster was setup 

with 3 nodes (one master nodes and two slave nodes). Each node was an m5.xlarge EC2.

Apache Spark

Apache Spark, an open source distributed cluster computing framework, is part of the 

Hadoop Ecosystem, but has an edge over Hadoop in terms of speed due to it’s in-mem-

ory processing architecture. Spark can run up to 100 times faster than Hadoop for data 

and processes completely residing in-memory [12]. �e Spark framework also provides 

benefits such as scalability and fault tolerance [12], as well as providing a rich set of APIs 

Table 7 % of Normal and Attack Tra�c in UNSW-NB18

Category % of Tra�c (%)

Normal 0.0130

Data_Exfiltration 0.0002

HTTP 0.0674

Keylogging 0.0020

OS_Fingerprint 0.4883

Service_Scan 1.9945

TCP 43.4284

UDP 54.0062
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Fig. 1 Flow chart of the experiments



Page 13 of 41Bagui and Li  J Big Data             (2021) 8:6  

that allow developers to perform many complex analytics operations out-of-the-box. 

�is work took advantage of the Spark Core and Spark MLlib APIs.

Spark Core allows for basic operations on data including mapping, reducing, and fil-

tering. �ese operations are available in Spark’s primary data structure, Resilient Dis-

tributed Datasets (RDDs) [12], which parallelizes computations in a transparent way. 

Apache Spark’s Machine Learning Library, MLlib, makes machine learning scalable and 

easy. MLlib provides tools including:

1. ML Algorithms: common learning algorithms such as classification, regression, clus-

tering, and collaborative filtering.

2. Featurization: feature extraction, transformation, dimensionality reduction, and 

selection.

3. Pipelines: tools for constructing, evaluating, and tuning ML Pipelines.

4. Persistence: saving and load algorithms, models, and Pipelines.

5. Utilities: linear algebra, statistics, data handling, etc.

�e ANN model used in this paper is multilayer perceptron classifier of Spark MLlib.

Arti�cial Neural Networks

As shown in Fig.  2, ANN is a feed forward neural network in which the information 

moves from the input layer to hidden layers then to the output layer. A fully connected 

ANN model was used with the number of neurons in the input layer set to the number 

of features in the data and the number of neurons in the output layer set to the number 

of the classes. �e intermediary layer used a sigmoid function, where i is the input [31]:

�e sigmoid function smoothly puts the input to an output between zero and one. �is 

allows for the interpretation or output of any individual layer to be taken as a probability.

�e output layer used the softmax function [31]:

(1)f (zi) =
1

1 + e−zi

Fig. 2 ANN model used
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�e softmax function is often used as the activation function for the last layer of a neu-

ral network. �is activation function turns numbers into probabilities that sum to one. 

�e softmax function outputs a vector that represents the probability distributions to a 

list of potential outcomes.

Evaluation metrics

In this section, first a discussion of why the macro metrics was used is presented, and 

then the metrics are presented.

Using macro metrics

For this work, macro precision, macro recall, and macro F1-score were used instead of 

the micro or weighted metrics to evaluate the results. �e macro metrics compute the 

metrics independently for each class and then take the average, hence all classes, major-

ity as well as minority, are weighted equally.

�e micro metrics aggregate the contributions of all classes to compute the average 

metric, hence results get skewed towards classes with larger case numbers. Micro met-

rics, in a multi-class setting, with highly imbalanced data, will often produce equal preci-

sion, recall and F1-score that is artificially high. �e good performance of the majority 

data overly influences the micro metrics, which is the case for highly imbalanced data.

�e weighted metrics compute the averages by taking the class size into account, 

that is, the number of cases for each class, hence it is the “weighted” average. If a model 

recognizes majority data correctly but does not recognize minority data correctly, the 

weighted metrics will be high. Hence, in this case, the weighted metrics does reflect the 

bad performance of the classifying minority data. Also, the weighted metric may pro-

duce an F1-score that is not between precision and recall. Hence, even if the weighted 

metrics may be good, it was not used for this work.

Since three of the cybersecurity datasets used in this study are highly imbalanced, after 

resampling, the macro metrics were used as the evaluation metrics in this study. �e 

macro metrics produce relatively lower results than the micro metrics. �is is because 

the macro metrics treat all classes equally, hence the poor performance of the minority 

classes will lower the macro metrics. But, though the macro metrics reflect the poor per-

formance of classifying minority data, it was deemed that, for these datasets, the macro 

metrics would better reflect the overall performance of classifying the data.

Metrics formulas

Below are the respective formulas for accuracy, precision, recall and the F1-score. 

Although the micro, macro and weighted metrics are all computed slightly differently (as 

discussed in the previous section), all three metrics use the same formulas for calculat-

ing precision, recall and the F1-score.

Precision is the positive predictive value, or the percentage of classified attack 

instances that are truly classified as attack, calculated by [24]:

(2)f (zi) =

ezi
∑N

k=1
ezk
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Recall or attack detection rate (ADR) is the effectiveness of a model in identifying an 

attack. �e objective is to target a higher ADR. �e ADR is calculated by [24]:

F-measure is the harmonic mean of precision and recall. �e higher the F-measure, 

the more robust the classification model. �e F-measure is calculated by [24]:

True Positive (TP) is the number of positive records that were correctly labeled as pos-

itive. True Negative (TN) is the number of negative records that were correctly labeled 

as negative. False Positive (FP) is the number of negative records that were incorrectly 

labeled as positive. False Negative (FN) is the number of positive records that were cor-

rectly labeled as negative.

Results and discussion

In this section, first, the classification results for all six datasets, with no resampling, is 

presented. �is will be used as a benchmark for analyzing the results. �en, for each 

dataset, resampling results and the classification results using the different resampling 

techniques, are presented. �e ANN classification was done in two modes: (i) on the Big 

Data framework using Spark’s Machine Learning Library; and (ii) using Scikit Learn on a 

local machine. Observations and discussions follow each set of results.

Classi�cation with original datasets (no resampling)

�e first set of classifications were done with the original six datasets, that is, with no 

resampling. �ese results form the benchmark for the ANN classification results.

Table 8 present the macro precision, macro recall, macro F1 score and training time 

taken for ANN classification with no resampling on AWS with Spark for all the six data-

sets. Similarly, Table 9 presents the macro precision, macro recall, macro F1 score and 

training time taken for ANN classification with no resampling on the local machine for 

all the six datasets. �e testing time was not recorded since the training time is the more 

significant of the two. Figure 3 graphically presents the macro precision, macro recall, 

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 − score = F =
2 × precision × recall

precision + recall

Table 8 ANN Classi�cation results on AWS with Spark (no resampling)

KDD99 NB15 BoT-IoT NB17-Ecobee NB17-Danmini NB17-Philips

Macro precision 0.735853 0.337079 0.571675 0.825617 0.792128 0.82112

Macro recall 0.732151 0.320941 0.451428 0.874221 0.842704 0.864271

Macro F1 score 0.733986 0.308697 0.466182 0.842014 0.806466 0.827655

Training time (s) 534 432 426 390 576 660



Page 16 of 41Bagui and Li  J Big Data             (2021) 8:6 

macro F1 score for all six datasets run on Spark with no resampling. �e results on the 

local machine show a similar trend, hence were not presented.  

Observations and discussion

• ANN classification on Scikit-Learn has better performance than ANN classification 

on Spark. �e macro precision, macro recall, and macro F1-score are higher on the 

ANN classification on Scikit-Learn.

• �e ANN classification model on Spark trains faster than the ANN classification 

model of the local machine. �is is expected since Spark is the Big Data framework, 

hence parallel processing is performed.

• UNSW-NB15 has one category that has the most cases, that is, the benign category 

comprises almost 88% of the cases, hence this imbalance is causing the low results for 

this non-resampled dataset. BoT-IoT has two categories that have a large combined 

total number of cases, TCP (43%) and UDP (54%), hence this imbalance is also caus-

ing low results. �e results of UNSW-NB17 are pretty high even without resampling, 

mainly because the three UNSW-NB17 datasets are relatively balanced compared to 

the other three datasets.

Classi�cation with the Resampled datasets

�is section presents the results of the resampling and classification on the six differ-

ent datasets, KDD99 (see Footnote 1), UNSW-NB15 (see Footnote 2), UNSW-NB17 

(Ecobee_�ermostat, Danmini_Doorbell, and Philips_B120N10_Baby_Monitor) (see 

Footnote 3), and UNSW-NB18 [18]. For all datasets, macro results are presented. For 

Table 9 ANN classi�cation results on Scikit-Learn on local machine (no resampling)

KDD99 NB15 BoT-IoT NB17-Ecobee NB17-Danmini NB17-Philips

Macro precision 0.877317 0.53307 0.607171 0.929664 0.924668 0.912172

Macro recall 0.832509 0.412258 0.57664 0.907989 0.903897 0.893773

Macro F1 score 0.842974 0.411132 0.585591 0.876052 0.875883 0.869574

Training time (s) 504.875 1119.422 1696.188 2356.359 896.3594 1385.156

Fig. 3 Classification results with no resampling on AWS
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two of the datasets, KDD99 and UNSW-NB15, however, the micro metrics were also 

presented (for AWS runs), but these metrics were not presented for the rest of the data-

sets because of the artificially high micro results as well as almost equal micro recall, 

micro precision and micro F1 score. Also, the confusion matrices were presented for the 

highly imbalanced datasets, since there was little influence on the not highly imbalanced 

datasets. Also, in the respective resampling sections, for brevity’s sake, only the RU, RO, 

and RURO are presented, though RU-SMOTE and RU-ADASYN resampling was also 

done for the classifications.

Experimentation on KDD99

�e first section presents the resampling of KDD99 and then the classification results 

are presented. An analysis of the KDD99 results are presented in the observations and 

discussions section.

Resampling KDD99 Table 10 presents the number of samples after before resampling, 

after RU, after RO, and after RURO and Fig. 4 presents the number of samples before 

resampling, after RU, and after RO. Before Resampling represents 70% of the original 

KDD99 dataset, which was used for training the model. From Table 10, it can be noted 

that u2r had only 40 instances and r2l had only 794 instances before resampling, so over-

sampling makes a big difference for these two attacks. With RU, the number of instances 

of benign and DoS were reduced to the number of Probe instances, making all three cat-

egories equal, while there was still a low number of instances for u2r and r2l. Hence with 

RU, the data still appears to be imbalanced overall. With RO, the number of Probe, DoS 

Table 10 Resampling of KDD99

KDD99 Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 680,671 28,609 680,671 28,609

Probe 1 28,609 28,609 28,609 28,609

DoS 2 2,718,787 28,609 2,718,787 28,609

u2r 3 40 40 28,609 28,609

r2l 4 794 794 28,609 28,609

Fig. 4 Resampling of KDD99
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and r2l instances were made the same, although the number of benign and DoS instances 

were still high. With RURO, the number of instances for each attack were made equal, 

hence the results were not shown in Fig. 4.

Classification results for KDD99 Table 11 presents the ANN classification results for 

KDD99 on AWS using Spark and Table 12 presents the ANN classification results for 

KDD99 run on the local machine with Scikit-Learn. �e results of macro precision, 

macro recall and macro F1 score are presented for NR, RU, RO, RURO, RU-SMOTE, 

RU-ADAYSN for KDD99. Table 11 also presents the results of the micro precision, micro 

Table 11 ANN Classi�cation results for KDD99 on AWS with Spark for various resampling 

methods

KDD99 NR RU RO RURO RU-SMOTE RU-ADASYN

Micro precision 0.99962 0.998557 0.998661 0.995024 0.99499 0.993675

Micro recall 0.99962 0.998557 0.998661 0.995024 0.99499 0.993675

Micro F1 score 0.99962 0.998557 0.998661 0.995024 0.99499 0.993675

Macro precision 0.735853 0.689996 0.676256 0.601879 0.596781 0.590074

Macro Recall 0.732151 0.905783 0.918453 0.968456 0.955936 0.955935

Macro F1 score 0.733986 0.74276 0.712264 0.619913 0.619568 0.609858

Macro training time (s) 534 78 522 96 96 96

Table 12 ANN classi�cation results for  KDD99 on  local machine for  various resampling 

methods

KDD99 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.877317 0.710881 0.692416 0.618828 0.625649 0.616133

Macro recall 0.832509 0.88417 0.937749 0.922727 0.960406 0.96097

Macro F1 score 0.842974 0.761345 0.730075 0.651291 0.659022 0.643459

Training time (s) 504.875 69.71875 904.6563 329.9844 355.3281 350.5469

Fig. 5 Comparison for micro and macro metrics on AWS
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recall and micro F1 score. �e training time of the models was also recorded in Tables 11 

and 12. Figure 5 presents a comparison of the micro and macro metrices run on AWS 

for no resampling and random undersampling. It can be noted that the micro precision, 

micro recall and micro F1 score were almost equal as well as artificially high, hence the 

evaluations were based on the macro metrics.  

Figure  6 presents the graphical results of the different resampling methods using 

Spark. �e results of the different resampling methods on the local machine show a sim-

ilar trend, hence are not presented.

Fig. 6 ANN classification results for KDD99 on AWS with Spark for various resampling methods

Table 13 Confusion matrix: KDD99 NR

KDD99 NR Predicted label

0 1 2 3 4

True label

 0 291,884 107 22 0 97

 1 161 12,329 3 0 0

 2 45 3 1,164,535 0 0

 3* 7 0 1 0 4

 4* 108 0 0 0 224

Table 14 Confusion Matrix: KDD99 RU

KDD99 RU Predicted label

0 1 2 3 4

True label

 0 290,910 647 42 55 456

 1 16 12,476 0 0 1

 2 785 76 1,163,701 0 21

 3* 2 0 0 7 3

 4* 15 0 0 1 316
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Confusion matrices for KDD99

Tables 13, 14, 15, 16, 17 and 18 show the confusion matrices using the various resa-

mpling methods for the AWS runs on Spark. The predicted label vs the true labels 

Table 15 Confusion Matrix: KDD99 RO

KDD99 RO Predicted label

0 1 2 3 4

True label

 0 290,943 150 159 335 523

 1 225 12,259 6 3 0

 2 536 6 1,164,037 1 3

 3* 2 0 0 8 2

 4* 15 0 1 1 315

Table 16 Confusion Matrix: KDD99 RURO

KDD99 RURO Predicted label

0 1 2 3 4

True label

 0 286,222 608 61 967 4252

 1 93 12,394 0 6 0

 2 1001 278 1,163,274 3 27

 3* 0 0 0 11 1

 4* 5 0 0 10 317

Table 17 Confusion Matrix: KDD99 RU-SMOTE

KDD99 RU-SMOTE Predicted Label

0 1 2 3 4

True label

 0 286,351 984 105 812 3858

 1 65 12,424 0 3 1

 2 1088 408 1,163,059 1 27

 3* 1 0 0 10 1

 4* 6 0 0 3 323

Table 18 Confusion Matrix: KDD99 RU-ADASYN

KDD99 RU-ADASYN Predicted label

0 1 2 3 4

True label

 0 284,845 1180 100 930 5055

 1 62 12,430 0 1 0

 2 1520 362 1,162,652 2 47

 3* 0 0 0 11 1

 4* 13 0 0 22 297
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are shown, that is, if it was predicted as attack type 1, was it really attack type 1. The 

categories that had a really low number of instances are marked with an asterisk and 

the increases in the minority data identification are in italics.

Observations and discussion Few conclusions that can be drawn from these above 

sets of results:

• The mirco precision, micro recall and micro F1 score were showing very arti-

ficially high numbers as well as almost the same results for NR as well as RU 

(Fig. 5), hence were not considered useful for any further analysis.

• There is almost no overall significant difference between the ANN classification 

results on AWS and ANN classification results on the local machine in terms of 

the macro precision and macro recall, and macro F1 score. After oversampling 

though, it took longer to run on the local machine than on AWS.

• On both AWS and the local machine, when the minority data is increased by 

oversampling or majority data is decreased by undersampling, the macro pre-

cision decreases, and the macro recall increases. Oversampling improves the 

macro recall significantly. Macro precision decreasing implies that the ratio of 

the false positive to true positive is going up, and the macro recall increasing 

implies that the ratio of the false negative to true positive is going down. This 

means that, for this set of experiments, the false positives are going up and the 

false negatives are going down.

• The confusion matrices also show an increase in the number of correctly classi-

fied cases for the very low minority classes (shown with asterisk) with resampling 

(results are in italics in Tables 13, 14, 15, 16, 17 and 18), with the best results for 

RURO and RU-SMOTE. From Table 10 it can be noted that RURO had an equal 

number of for all the attack types. And, even though the RU still had an imbal-

anced distribution, it was better than no resampling, and also performed better 

than no resampling.

• Generally, the F1 score went down for both undersampling and oversampling. It 

went slightly up only for RU on AWS, but not significantly.

• Except for RO, the training time decreased in all resampling scenarios, for both 

the local machine as well as AWS, and of course, the training time on AWS was 

a lot shorter than on the local machine (though it was higher on AWS when no 

resampling was done).

• From Table 11 (AWS), it can be observed that RURO’s macro recall was the high-

est, at 96%, while RU-SMOTE and RU-ADAYSN’s macro recall were very close, 

at 95.59%. RU’s macro recall (90.5%) was lower than the recall of the other resa-

mpling methods, but a lot better than NR (73%).

• From Table  12 (local machine), it can be observed that,  RU-SMOTE and RU-

ADASYN performed the best in terms of macro recall, at 96%. RU again had the 

lowest macro recall of the all the resampling methods (88%), but performed bet-

ter than NR (83%).
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Experimentation on UNSW‑NB15

�e first section presents the resampling of UNSW-NB15 and then the classification 

results are presented. An analysis of the UNSW-NB15 results are presented in the obser-

vations and discussions section.

Resampling UNSW-NB15 Table 19 presents the number of samples before resampling, 

after RU, after RO, and after RURO and Fig. 7 graphically presents the data before resam-

pling, after RU, and after RO. Before Resampling represents 70% of the original UNSW-

NB15 dataset, which was used for training the model. From Table 19 it can be noted that, 

with RU, though the number of benign and generic instances were reduced, some of the 

other attacks like Shellcode, Backdoors and Worms still had a lower number of instances. 

And overall, with RU, the data was still imbalanced. RO makes the attack instances equal 

for the rest of the attacks except the benign and generic traffic. �e number of benign 

traffic instances was still very high compared to the rest of the attacks, as shown in Fig. 7. 

By RURO all the attack instances are made equal. 

Classification results for  UNSW-NB15 Table  20 presents the ANN classification 

results for UNSW-NB15 on AWS using Spark and Table 21 presents the ANN clas-

Table 19 Resampling of UNSW-NB15

UNSW-NB15 Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 1,552,663 31,313 1,552,663 31,313

Fuzzers 1 3563 3563 31,313 31,313

Reconnaissance 2 1217 1217 31,313 31,313

Shellcode 3 165 165 31,313 31,313

Analysis 4 1790 1790 31,313 31,313

Backdoors 5 361 361 31,313 31,313

DoS 6 11,439 11,439 31,313 31,313

Exploits 7 31,313 31,313 31,313 31,313

Generic 8 151,074 31,313 151,074 31,313

Worms 9 130 130 31,313 31,313

Fig. 7 Resampling of UNSW-NB15
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Table 20 ANN Classi�cation results for  UNSW-NB15 on  AWS with  Spark for  various 

resampling methods

NB15 NR RU RO RURO RU-SMOTE RU-ADASYN

Micro precision 0.985149 0.981616 0.97705 0.967425 0.966663 0.966274

Micro recall 0.985149 0.981616 0.97705 0.967425 0.966663 0.966274

Micro F1 score 0.985149 0.981616 0.97705 0.967425 0.966663 0.966274

Macro precision 0.337079 0.428798 0.397854 0.35708 0.360195 0.368759

Macro recall 0.320941 0.423203 0.733399 0.744253 0.746937 0.737735

Macro F1 score 0.308697 0.376054 0.423431 0.384293 0.391973 0.3865

Macro training time (s) 432 138 600 180 186 186

Table 21 ANN classi�cation results for  UNSW-NB15 on  local machine for  various 

resampling methods

UNSW-NB15 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.53307 0.545088 0.425312 0.400095 0.411192 0.399882

Macro recall 0.412258 0.500229 0.760052 0.775892 0.763106 0.764241

Macro F1 score 0.411132 0.449319 0.453457 0.443606 0.449048 0.443679

Training time (s) 1119.422 623.2188 1682 1191.922 1498.344 1713.953

Fig. 8 Comparison of the micro and macro metrics for UNSW-NB15

Fig. 9 ANN classification results for UNSW-NB15 on AWS with Spark for various resampling methods
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sification results for UNSW-NB15 run on the local machine with Scikit-Learn. �e 

results of macro precision, macro recall and macro F1 score are presented for NR, RU, 

RO, RURO, RU-SMOTE and RU-ADASYN for UNSW-NB15. Table 20 also presents 

the results of the micro precision, micro recall and micro F1 score. �e training time 

was also recorded in Tables 19 and 20 respectively. Figure 8 presents a comparison of 

the micro and macro metrices on AWS for no resampling and random oversampling. 

It can be noted that the micro precision, micro recall and micro F1 score were almost 

equal as well as artificially high, hence the evaluations were done based on the macro 

metrics.

Table 22 Confusion Matrix: NB15 NR

NB15 NR Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 664,828 262 0 0 3 0 2 694 4 0

 1 879 427 0 0 0 0 0 181 1 0

 2 432 11 0 0 0 0 0 95 4 0

 3* 1 1 0 0 0 0 0 56 0 0

 4 148 66 0 0 0 0 17 656 0 0

 5* 2 70 0 0 0 0 0 101 0 0

 6 167 85 0 0 0 0 93 4535 34 0

 7 609 162 0 0 0 0 121 12,306 14 0

 8 201 22 0 0 0 0 13 1468 62,703 0

 9* 3 0 0 0 0 0 0 41 0 0

Table 23 Confusion Matrix: NB15 RU

NB15 RU Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 660,598 1587 331 2 181 0 14 2809 271 0

 1 43 1155 27 0 0 0 1 240 22 0

 2 27 70 201 0 0 0 0 239 5 0

 3* 0 0 1 5 0 0 0 50 2 0

 4 10 100 0 0 54 1 4 718 0 0

 5* 0 105 0 0 0 0 0 68 0 0

 6 23 116 20 1 2 1 43 4584 124 0

 7 64 270 14 0 22 0 45 12,673 124 0

 8 20 31 16 2 10 0 8 1347 62,973 0

 9* 0 2 0 0 0 0 0 41 1 0
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Table 24 Confusion Matrix: NB15 RO

NB15 RO Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 661,537 1337 972 102 929 9 136 503 98 170

 1 76 890 226 6 4 240 16 8 0 22

 2 3 32 434 1 0 5 6 0 5 56

 3* 2 0 0 55 0 0 0 1 0 0

 4 1 0 0 0 262 151 424 49 0 0

 5* 0 1 3 7 3 150 5 4 0 0

 6 66 34 90 79 712 231 2778 648 93 183

 7 331 141 243 541 1131 394 3607 5342 187 1295

 8 65 54 80 207 109 14 421 505 62,784 168

 9* 0 1 2 0 0 0 0 2 0 39

Table 25 Confusion matrix: NB15 RURO

NB15 RURO Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 654,173 4790 2057 655 1156 280 161 1255 548 718

 1 0 982 192 1 1 245 14 19 5 29

 2 0 29 443 0 0 6 3 1 3 57

 3* 0 0 1 55 0 0 0 1 0 1

 4 1 2 1 0 251 154 452 26 0 0

 5* 0 2 3 7 1 151 5 4 0 0

 6 3 70 100 52 612 259 2905 664 45 204

 7 3 283 190 334 1447 419 3769 5352 73 1342

 8 1 83 132 63 92 18 441 591 62,685 301

 9* 0 2 1 0 0 0 0 1 0 40

Table 26 Confusion Matrix: NB15 RU-SMOTE

NB15 
RU-SMOTE

Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 653,429 5917 1946 229 1033 89 172 1605 687 686

 1 0 1018 176 0 2 244 13 7 4 24

 2 0 36 447 0 0 7 3 1 3 45

 3* 0 0 1 55 0 0 0 1 0 1

 4 0 3 4 0 298 152 391 39 0 0

 5* 2 1 2 7 2 148 6 5 0 0

 6 8 87 129 33 909 239 2581 640 92 196

 7 8 326 340 201 1574 473 3305 5689 100 1196

 8 1 92 141 50 151 23 367 533 62,760 289

 9* 0 2 0 0 0 1 0 1 0 40
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Figure  9 presents the graphical results of the different resampling methods using 

Spark. �e results of the different resampling methods on the local machine show a 

similar trend, hence are not presented.

Confusion matrices for UNSW-NB15

Tables 22, 23, 24, 25, 26 and 27 show the confusion matrices using the various resam-

pling methods for the AWS runs on Spark. �e predicted label vs the true labels are 

shown. �e categories that had a really low number of instances are marked with an 

asterisk and the increases in the minority data identification are in italics.

Observations and discussion 

• �e mirco precision, micro recall and  micro F1 score were showing very artificially 

high numbers as well as almost the same results for NR as well as RO (Fig. 8), hence 

were not considered useful for any further analysis.

• �ere is almost no overall significant difference between the ANN classification 

results on AWS and ANN classification results on the local machine in terms of the 

macro precision,  macro recall, and macro F1 score. After oversampling though, it 

took longer to run on the local machine than on AWS.

• When the minority data is increased by oversampling or majority data is decreased 

by undersampling, both the macro precision and macro recall increase, though resa-

mpling improves the macro recall significantly. Macro precision increasing implies 

that the ratio of the false positive to true positive is going down, and the macro recall 

increasing implies that the ratio of the false negative to true positive is going down. 

So, for this set of experiments, the true positives went up.

• �e confusion matrices also show an increase in the number of correctly classi-

fied cases for the very low minority classes (shown with asterisk) with resampling 

(results are in italics in Tables 22, 23, 24, 25, 26 and 27). �ough RU did not perform 

as well as the other resampling measures, it was at least better than NR (though very 

Table 27 Confusion Matrix: NB15 RU-ADASYN

NB15 
RU-ADASYN

Predicted label

0 1 2 3 4 5 6 7 8 9

True label

 0 654,532 4696 2098 79 2118 128 273 494 837 538

 1 7 942 187 0 8 247 6 0 3 88

 2 0 28 433 0 2 7 3 0 4 65

 3* 0 0 1 55 0 0 0 0 0 2

 4 0 0 0 0 446 147 255 36 0 3

 5* 2 1 2 7 1 151 3 4 0 2

 6 16 105 63 39 1724 202 1854 590 47 274

 7 11 371 216 242 2756 434 2535 4996 63 1588

 8 2 93 66 53 254 22 312 509 62,723 373

 9* 0 3 0 0 0 0 0 1 0 40
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slightly). RURO performed the best, though the other resampling options like RO, 

RU-SMOTE and RU-ADAYSN performed almost as well.

• With respect to training time, on the local machine, except for undersampling, the 

training time went up in all scenarios of oversampling. But, on AWS, except for 

RO, the training time went significantly down. And of course, comparing the local 

machine to AWS, AWS had a lot lower training time in all cases.

• From Table 20 (AWS), it can be observed that RURO and RU-SMOTE’s macro recall 

were the highest, and very close, at 74.4% and 74.6% respectively. RU’s macro recall 

(42%) was lower than the recall of the other resampling methods, but a lot better 

than NR (32%).

• From Table 12 (local machine), it can be observed that, RURO’s macro recall was the 

highest at 77.5% and RU-SMOTE and RU-ADASYN’s macro recall were pretty close, 

at 76.4%. Again, RU had the lowest macro recall of the all the resampling methods 

(50%), but performed better than NR (41%).

Table 28 Resampling of UNSW-NB18 (BoT-IoT)

UNSW-NB18 Number of cases for training model

Category Label Before resampling RU RO RURO

Normal 0 345 345 12,617 12,617

Data_Exfiltration 1 4 4 12,617 12,617

HTTP 2 1732 1732 12,617 12,617

Keylogging 3 50 50 12,617 12,617

OS_Fingerprint 4 12,617 12,617 12,617 12,617

Service_Scan 5 51,134 51,134 51,134 51,134

TCP 6 1,115,760 51,134 1,115,760 51,134

UDP 7 1,386,323 51,134 1,386,323 51,134

Fig. 10 Resampling of UNSW-NB18 (BoT-IoT)
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Experimentation on UNSW‑NB18

�e first section presents the re-sampling of UNSW-NB18 and then the classification 

results are presented. An analysis of the UNSW-NB18 results are presented in the obser-

vations and discussions section.

Resampling UNSW-NB18 Table 28  presents the number of samples before resampling, 

after RU, after RO, and after RURO and Fig. 10 graphically presents the data before resa-

mpling, after RU, and after RO. Before Resampling represents 70% of the original UNSW-

NB18 dataset, which was used for training the model. From Table 28 it can be noted that 

Data Exfiltration and Keylogging had only 4 and 50 instances respectively before resa-

mpling, so oversampling makes a big difference for these two attacks. With RU, mainly 

the number of TCP and UDP attacks, which had the most instances, was reduced. But 

overall, with RU as well as with RO, the data was still imbalanced. TCP and UDP still have 

a lot more instances. 

Table 29 ANN classi�cation results for  UNSW-NB18 (BoT-IoT) on  AWS with  Spark 

for various resampling methods

UNSW-NB18 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.571675 0.420429 0.626432 0.460293 0.496489 0.465322

Macro recall 0.451428 0.544637 0.824786 0.858747 0.858425 0.786073

Macro F1 score 0.466182 0.458041 0.586281 0.533695 0.561807 0.509871

Training time (s) 426 84 426 84 84 84

Table 30 ANN classi�cation results for UNSW-NB18 (BoT-IoT) on local machine for various 

resampling methods

UNSW-NB18 NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.607171 0.651555 0.707524 0.548372 0.630532 0.473781

Macro recall 0.57664 0.636077 0.862225 0.881982 0.887849 0.767004

Macro F1 score 0.585591 0.608576 0.7241 0.621413 0.688235 0.547812

Training Time (s) 1696.188 424.5469 910.6094 653.6719 574 635.2813

Fig. 11 ANN classification results for UNSW-NB18 (BoT-IoT) on AWS with Spark for various resampling 

methods
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Classification results for  UNSW-NB18 (BoT-IoT) Table  29 presents the ANN classifi-

Table 31 Confusion matrix: NB18 NR

NB18 NR Predicted label

0 1 2 3 4 5 6 7

True label

 0 66 0 0 0 4 52 6 4

 1* 0 0 0 0 2 0 0 0

 2 0 0 86 0 30 155 471 0

 3* 0 0 0 0 19 3 1 0

 4 0 0 17 0 144 4942 193 1

 5 11 0 49 0 102 21,397 475 0

 6 0 0 8 0 49 1246 476,116 0

 7 0 0 0 0 0 2 11 594,894

Table 32 Confusion matrix: NB18 RU

NB18 RU Predicted label

0 1 2 3 4 5 6 7

True label

 0 73 0 0 0 2 52 2 3

 1* 2 0 0 0 0 0 0 0

 2 3 0 412 0 76 208 43 0

 3* 6 0 0 0 0 17 0 0

 4 4 0 18 0 1599 3549 127 0

 5 21 0 17 0 435 21,348 213 0

 6 87 0 2042 0 5624 2528 467,123 15

 7 131 0 0 0 0 64 17 594,695

Table 33 Confusion matrix: NB18 RO

NB18 RO Predicted label

0 1 2 3 4 5 6 7

True label

 0 124 6 0 0 0 0 1 1

 1* 0 2 0 0 0 0 0 0

 2 0 1 627 16 0 44 54 0

 3* 3 0 1 19 0 0 0 0

 4 6 2 54 11 273 4241 710 0

 5 47 3 298 39 14 20,732 901 0

 6 10 8 233 112 20 1829 475,207 0

 7 1 0 0 0 0 0 13 594,893
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cation results for UNSW-NB18 (BoT-IoT) on AWS using Spark and Table 30 presents 

the ANN classification results for UNSW-NB18 (BoT-IoT) on the local machine with 

Scikit-Learn. �e results of macro precision, macro recall and macro F1 score are pre-

sented for NR, RU, RO, RURO, RU-SMOTE RU-ADASYN for UNSW-NB18. �e training 

time for the model was also recorded in Tables 29 and 30 respectively. Figure 11 presents 

Table 34 Confusion matrix: NB18 RURO

NB18 RURO Predicted label

0 1 2 3 4 5 6 7

True label

 0 129 2 0 0 0 0 0 1

 1* 0 2 0 0 0 0 0 0

 2 3 0 701 13 0 24 1 0

 3* 2 0 1 20 0 0 0 0

 4 8 0 53 12 792 4363 66 3

 5 42 9 403 35 268 21,054 220 3

 6 206 0 1385 126 2944 7220 464,735 803

 7 16 0 0 5 0 4 24 594,858

Table 35 Confusion matrix: NB18 RU-SMOTE

NB18 
RU-SMOTE

Predicted label

0 1 2 3 4 5 6 7

True label

 0 129 2 0 0 0 0 0 1

 1* 0 2 0 0 0 0 0 0

 2 4 0 668 7 0 61 2 0

 3* 2 1 1 19 0 0 0 0

 4 4 1 4 15 1213 3951 109 0

 5 41 11 335 39 343 21,115 146 4

 6 80 0 1239 90 1939 7090 466,243 738

 7 18 1 0 22 0 5 17 594,844

Table 36 Confusion Matrix: NB18 RU-ADAYSN

NB18 
RU-ADASYN

Predicted label

0 1 2 3 4 5 6 7

True label

 0 123 2 0 2 0 2 1 2

 1* 0 2 0 0 0 0 0 0

 2 1 0 596 13 0 132 0 0

 3* 2 0 13 8 0 0 0 0

 4 17 2 39 11 1385 3731 107 5

 5 55 10 101 37 152 21,517 160 2

 6 184 0 3785 84 1314 9054 462,293 705

 7 6 0 0 40 0 5 315 594,541
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the graphical results of the different resampling methods using Spark. �e results of the 

different resampling methods on the local machine show a similar trend, hence are not 

presented.

Confusion matrices for UNSW-NB18

Tables 31, 32, 33, 34, 35 and 36 show the confusion matrices using the various resam-

pling methods for the AWS runs on Spark. �e predicted label vs the true labels are 

shown. �e categories that had a really low number of instances are marked with an 

asterisk and the increases in the minority data identification are in italics.

Observations and discussion 

• �ere is almost no overall significant difference between the ANN classification 

results on AWS and ANN classification results on the local machine in terms 

of the macro precision,  macro recall, and macro F1 score. After oversampling 

though, it took longer to run on the local machine than on AWS.

• When the minority data is increased by oversampling or the majority data is 

decreased by undersampling, the macro recall or ADT increases. Oversampling 

improves the macro recall significantly. �e macro precision went up in only one 

case, in the case of RO. In all other cases, the macro precision decreased. Macro pre-

cision decreasing implies that the ratio of the false positive to true positive is going 

up. Since the macro recall increased, this implies that the ratio of the false negative to 

true positive is going down. So, in these set of experiments, it can be concluded that 

the false positives went up and false negatives went down.

• �e confusion matrices also show an increase in the number of correctly classified 

cases for the very low minority classes (shown with asterisk) with RO, RURO, RU-

SMOTE, and RU-ADASYN (results are in italics in Tables 31, 32, 33, 34, 35 and 36), 

though the latter did not do as well as the earlier three resampling methods. It can be 

noted from Table 32 that RU did not have any effect on these results. From Table 28 

Table 37 Resampling of NB17-Ecobee

NB17-Ecobee Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 9129 9129 21,308 21,308

Mirai_ack 1 79,362 21,308 79,362 21,308

Mirai_scan 2 30,348 21,308 30,348 21,308

Mirai_syn 3 81,682 21,308 81,682 21,308

Mirai_udp 4 105,884 21,308 105,884 21,308

Mirai_udpplain 5 61,216 21,308 61,216 21,308

Gafgyt_combo 6 37,065 21,308 37,065 21,308

Gafgyt_junk 7 21,308 21,308 21,308 21,308

Gafgyt_scan 8 19,420 19,420 21,308 21,308

Gafgyt_tcp 9 66,308 21,308 66,308 21,308

Gafgyt_udp 10 73,391 21,308 73,391 21,308
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it can be noted that Data_Exfiltration and Keylogging still have very small number of 

attacks for RU, which is why the ANN classifier could not train effectively for RU.

• Using Spark, only with RO, the training time was the same as the benchmark (which 

had no resampling), but in all other resampling cases the training time decreased. On 

the local machine, all cases of resampling had lower times. But again, Spark took a lot 

less time for training the model than the local machine.

• From Table 29 (AWS), it can be observed that RURO and RU-SMOTE’s macro recall 

were the highest, and very close, at 85.87% and 85.84% respectively. In this case 

RU-ADAYSN did not perform as well as RURO or RU-SMOTE. RU’s macro recall 

(54.46%) was lower than the recall of the other resampling methods, but a lot better 

than NR (45.14%).

• From Table 30 (local machine), it can be observed that,  RURO’s macro recall was 

the highest at 88.78% and RU-SMOTE’s macro recall was pretty close, at 88.1%. In 

this case, too, RU-ADAYSN did not perform as well as RURO or RU-SMOTE. RU, 

Fig. 12 Resampling of NB17-Ecobee

Table 38 ANN classi�cation results for  NB17-Ecobee on  AWS with  Spark for  various 

resampling methods

NB17-Ecobee NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.825617 0.828213 0.805486 0.859248 0.81543 0.798424

Macro recall 0.874221 0.87087 0.852089 0.853259 0.859054 0.836491

Macro F1 score 0.842014 0.831575 0.821682 0.812984 0.817154 0.793221

Training time (s) 390 198 432 198 198 198

Table 39 ANN classi�cation results for  NB17-Ecobee on  local machine for  various 

resampling methods

NB17-Ecobee NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.929664 0.928654 0.951042 0.928425 0.938275 0.909

Macro recall 0.907989 0.905878 0.908256 0.905622 0.904341 0.905353

Macro F1 score 0.876052 0.87639 0.879551 0.872209 0.876632 0.875529

Training time (s) 2356.359 948.5313 1985.313 1589.625 1427.734 1014.813
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again, had the lowest macro recall of the all the resampling methods (63.6%), but per-

formed better than NR (57.6%).

Experimentation on NB17‑Ecobee

�e first section presents the re-sampling of NB17-Ecobee and then the classification 

results are presented. An analysis of the NB17-Ecobee results are presented in the obser-

vations and discussions section.

Resampling NB17-Ecobee Table 37 presents the number of samples before resampling, 

after RU, after RO, and after RURO and Fig. 12 graphically presents the data before resa-

mpling, after RU, and after RO. �e Before Resampling column represents 70% of the 

original NB17-Ecobee dataset, which was used for training the model. Figure 12 shows 

the imbalance in the data before resampling. In this dataset there were a lower number 

of benign cases (lower than any of the attacks), and there were no attacks with extremely 

low number of cases. After RU, the data were more balanced than before resampling, but 

RO seemed to give the same pattern as before resampling, and the data was balanced for 

each category with RURO, hence this category was not shown in Fig. 12. 

Classification results for  NB17-Ecobee Table  38 presents the ANN classification 

results for NB17-Ecobee on AWS using Spark and Table 39 presents the ANN clas-

sification results for NB17-Ecobee on the local machine with Scikit-Learn. �e results 

of macro precision, macro recall and macro F1 score are presented for NR, RU, RO, 

RURO, RU-SMOTE, and RU-ADASYN for NB17-Ecobee. �e training time (in sec-

onds) for the model was also recorded in Tables 38 and 39 respectively. Figure 13 pre-

sents the graphical results of the different resampling methods using Spark. �e results 

of the different resampling methods on the local machine show a similar trend, so they 

are not presented graphically.

Observations and discussion 

• Resampling does not seem to have any effect on macro precision, macro recall or 

macro F1 score in this dataset. In fact, on AWS, Table 38, it can be observed that 

Fig. 13 ANN classification results for NB17-Ecobee on AWS with Spark for various resampling methods
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Table 40 Resampling of NB17-Danmini

NB17-Danmini Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 34,474 34,474 34,474 34,474

Mirai_ack 1 71,551 34,474 71,551 34,474

Mirai_scan 2 75,375 34,474 75,375 34,474

Mirai_syn 3 85,704 34,474 85,704 34,474

Mirai_udp 4 166,466 34,474 166,466 34,474

Mirai_udpplain 5 57,708 34,474 57,708 34,474

Gafgyt_combo 6 41,821 34,474 41,821 34,474

Gafgyt_junk 7 20,254 20,254 34,474 34,474

Gafgyt_scan 8 20,931 20,931 34,474 34,474

Gafgyt_tcp 9 64,280 34,474 64,280 34,474

Gafgyt_udp 10 74,244 34,474 74,244 34,474

Fig. 14 Resampling of NB17-Danmini

Table 41 ANN Classi�cation results for  NB17-Danmini on  AWS with  Spark for  various 

resampling methods

NB17-Danmini NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.792128 0.812195 0.805464 0.816337 0.824546 0.830129

Macro recall 0.842704 0.861566 0.852281 0.872596 0.87531 0.871693

Macro F1 score 0.806466 0.821549 0.816367 0.82951 0.838391 0.844219

Training time (s) 576 270 594 288 282 288

Table 42 ANN classi�cation results for  NB17-Danmini on  local machine for  various 

resampling methods

NB17-Danmini NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.924668 0.945596 0.940988 0.935772 0.925392 0.942088

Macro recall 0.903897 0.905597 0.905295 0.905451 0.905824 0.905248

Macro F1 score 0.875883 0.871401 0.875896 0.870879 0.876621 0.871806

Training time (s) 896.3594 1625.172 1095.422 662.0625 745.3281 1158.844
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NR and RU performed better than the other resampling methods. On the local 

machine however, Table  39, NR and the other resampling measures seemed to 

give almost the save percentage for macro recall.

• Except for RO, the training time is lower than the benchmark in all other cases. 

And of course, the training time on the local machine is higher than AWS.

Experimentation on NB17‑Danmini

�e first section presents the resampling of NB17-Danmini and then the classification 

results are presented. An analysis of the NB17-Danmini results are presented in the 

observations and discussions section.

Resampling NB17-Danmini Table 40 presents the number of samples before resa-

mpling, after RU, after RO, and after RURO and Fig. 14 graphically presents the data 

before resampling, after RU, and after RO. Before Resampling represents 70% of the 

original NB17-Danmini dataset, which was used for training the model. Figure  14 

shows the imbalance in the data before resampling. In this dataset, Gafgyt_junk and 

Gafgyt_scan had a lower number of cases, but the number of cases were not as low 

as some of the extremely low number of attacks in KDD99, UNSW-NB15 or UNSW-

NB18. After RU the data was more balanced than before resampling, but RO seemed 

to give the same pattern as before resampling, and the data was balanced for each 

category with RURO, hence this latter category was not shown in Fig. 14. 

Classification results for NB17-Danmini Table 41 presents the ANN classification 

results for NB17-Danmini on AWS using Spark and Table 42 presents the ANN clas-

sification results for NB17-Danmini on the local machine with Scikit-Learn. The 

results of macro precision, macro recall and macro F1 score are presented for NR, 

RU, RO, RURO, RU-SMOTE and RU-ADASYN for NB17-Danmini. The training time 

(in seconds) for the model was also recorded in Tables 41 and 42 respectively. Fig-

ure 15 presents the graphical results of the different resampling methods using Spark. 

The results of the different resampling methods on the local machine show a similar 

trend, hence were not presented.

Fig. 15 ANN classification results for NB17-Danmini on AWS with Spark for various resampling methods
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Observations and discussion 

• Resampling does not seem to have any effect on macro precision, macro recall 

or macro F1 score in this dataset. On AWS, Table 41, NR had a macro recall of 

84% while resampling measures had a macro recall of 85–87%. And, on the local 

machine however, Table  42, NR and the other resampling measures seemed to 

give almost the save percentage for macro recall, a little above 90%.

• On AWS, except for RO, the training time went down in all cases. On the local 

machine, however, the time went up for RU, RO, and RU-ADASYN. And again, 

overall, it took much longer to run on the local machine.

Table 43 Resampling of NB17-Philips

NB17-Philips Number of cases for training model

Category Label Before resampling RU RO RURO

Benign 0 122,776 40,816 122,776 40,816

Mirai_ack 1 63,730 40,816 63,730 40,816

Mirai_scan 2 72,661 40,816 72,661 40,816

Mirai_syn 3 82,508 40,816 82,508 40,816

Mirai_udp 4 151,887 40,816 151,887 40,816

Mirai_udpplain 5 56,504 40,816 56,504 40,816

Gafgyt_combo 6 40,816 40,816 40,816 40,816

Gafgyt_junk 7 19,941 19,941 40,816 40,816

Gafgyt_scan 8 19,503 19,503 40,816 40,816

Gafgyt_tcp 9 64,786 40,816 64,786 40,816

Gafgyt_udp 10 73,961 40,816 73,961 40,816

Fig. 16 Resampling of NB17-Philips

Table 44 ANN classi�cation results for  NB17-Philips on  AWS with  Spark for  various 

resampling methods

NB17-Philips NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.82112 0.806622 0.82313 0.820742 0.836191 0.806937

Macro recall 0.864271 0.860525 0.867278 0.873116 0.871455 0.856891

Macro F1 score 0.827655 0.825717 0.828891 0.828997 0.82753 0.823355

Training time (s) 660 318 660 336 342 330
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Experimentation on NB17‑Philips

�e first section presents the resampling of NB17-Philips and then the classification 

results are presented. An analysis of the NB17-Philips results are presented in the obser-

vations and discussions section.

Resampling NB17-Philips Table  43  presents the number of samples before resam-

pling, after RU, after RO, and after RURO and Fig. 16 graphically presents the data before 

resampling, after RU, and after RO. Before Resampling represents 70% of the original 

NB17-Philips dataset, which was used for training the model. Figure 16 shows the imbal-

ance in the data before resampling. In this dataset, Gafgyt_junk and Gafgyt_scan had 

a lower number of cases, but again, the cases were not as low as some of the attacks in 

KDD99, UNSW-NB15 or UNSW-NB18. After RU, the data was more balanced (as shown 

in Fig. 16), but after RO the pattern of distribution of data closely followed the before 

resampling. After RURO, the number of cases were balanced for each category, hence this 

was not included in Fig. 16. 

Classification results for  NB17-Philips Table  44 presents the ANN classification 

results for NB17-Philips on AWS using Spark and Table 45 presents the ANN clas-

sification results for NB17-Philips on the local machine with Scikit-Learn. �e results 

of macro precision, macro recall and macro F1 score are presented for NR, RU, RO, 

RURO, RU- SMOTE and RU-ADASYN for NB17-Philips. �e training time (in sec-

onds) for the model was also recorded in Tables 44 and 45 respectively. Figure 17 pre-

sents the graphical results of the different resampling methods using Spark. �e results 

of the different resampling methods on the local machine show a similar trend, so it 

was not presented.

Table 45 ANN classi�cation results for  NB17-Philips on  local machine for  various 

resampling methods

NB17-Philips NR RU RO RURO RU-SMOTE RU-ADASYN

Macro precision 0.912172 0.931224 0.930606 0.892025 0.904524 0.891446

Macro recall 0.893773 0.903667 0.906043 0.899702 0.907286 0.907512

Macro F1 score 0.869574 0.871905 0.877093 0.86307 0.878986 0.87948

Training time (s) 1385.156 834.5156 1871.328 1172.344 1643.234 1514.453

Fig. 17 ANN classification results for NB17-Philips on AWS with Spark for various resampling methods
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Observations and discussion 

• Resampling does not seem to have any effect on macro precision, macro recall or 

macro F1 score in this dataset. From both Tables  44 and 45, it can be observed 

that almost all the resampling methods performed close to NR, on both AWS and 

the local machine.

• On AWS, except for RO, the training time went down in all cases. On the local 

machine, however, the time went up for RO, RU-SMOTE and RU-ADASYN. And 

again, overall, it took much longer to run on the local machine.

Conclusion

Five different forms of resampling were applied to six different datasets. �ree of these 

datasets can be considered highly imbalanced, and the other three datasets can be con-

sidered less imbalanced. �e high imbalanced datasets were, KDD99, UNSW-NB15, and 

UNSW-NB18(BoT-IoT). And, the three UNSW-NB17 datasets can be considered less 

imbalanced. �e following conclusions can be drawn from the resampling:

1. Oversampling increases the training time taken while undersampling decreases the 

training time taken. �is is natural because oversampling increases the number of 

cases in training data, while undersampling decreases the number of cases in train-

ing data.

2. In the highly imbalanced datasets, both oversampling and undersampling increase  

recall significantly. �is means that the ratio of the false negatives to the true posi-

tives decreases. So, the ANN model recognized more minority data correctly. And 

this was also shown by the confusion matrices. In some cases, the macro precision 

Table 46 Summary for oversampling and undersampling highly imbalanced datasets

Time of training steps Macro precision Macro recall

Oversampling Increases Increases, sometimes decrease Increases

Undersampling Decreases Increases, sometimes decrease Increases

Table 47 Summary for recognizing minority and majority instances on highly imbalanced 

datasets

In�uence 
on minority’s 
recall

In�uence 
on minority’s 
precision

In�uence 
on majority’s 
recall

In�uence 
on majority’s 
precision

Overall In�uence 
on recall 
and precision

Recognize 
more minority 
instances cor-
rectly

Increase Increase No influence No influence Increase recall
Increase precision

Recognize 
more majority 
instances incor-
rectly

No influence Decrease Little influence Little influence Decrease precision

Combined influ-
ence

Increase Decrease Little influence Little influence Increase recall
Decrease precision
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decreases, which means that the ANN model incorrectly recognized more majority 

data as minority data.

 In some cases, the macro precision decreased, meaning that the ANN model incor-

rectly recognized some majority data as minority data. A summary of the behavior 

of oversampling and undersampling the highly imbalanced datasets is presented in 

Table 46.

 With no resampling, micro precision and micro recall were high, but the macro pre-

cision and macro recall were relatively lower. �is is because although the model 

recognized almost all majority instances correctly, it recognized minority instances 

incorrectly, which means that the model recognized most minority instances as 

belonging to the majority class. �is made the macro precision and macro recall rela-

tively lower.

 With resampling, however, micro precision and micro recall were still high. �e 

macro recall increases after resampling because the model recognizes more minority 

instances as the minority class, and this was also reflected in the confusion matrices. 

However, macro precision decreases after resampling because the model also recog-

nizes some majority instances as minority instances. �e number of misrecognitions 

of majority instances is not relatively large in comparison with the number of major-

ity instances. But the number of misrecognitions of majority instances is relatively 

large in comparison with the number of minority instances, which decreases the pre-

cision of minority classes. So, with resampling, generally, it can be stated that more 

minority instances were recognized correctly. Table  47 presents a summary of the 

behavior of the recognizing the minority and majority instances in highly imbalanced 

datasets.

3. Also, for highly imbalanced datasets, NB15 and NB18, from the confusion matri-

ces it appears that RURO performed the best in terms of identifying minority cases, 

Table 48 Oversampling and Undersampling in not extremely Imbalanced Datasets

Time of training steps Macro precision Macro recall

Oversampling Increase Almost unchanged Almost unchanged

Undersampling Decrease Almost unchanged Almost unchanged

Table 49 Summary for  recognizing minority and  majority instances in  not highly 

imbalanced datasets

In�uence 
on minority’s 
recall

In�uence 
on minority’s 
precision

In�uence 
on majority’s 
recall

In�uence 
on majority’s 
precision

Overall In�uence 
on recall 
and precision

Recognize 
more minority 
instances cor-
rectly

Increase slightly
Good enough 

without resam-
pling

Increase slightly No influence No influence Almost 
unchanged

Recognize 
more majority 
instances 
incorrectly

No influence Decrease slightly Little influence Little influence Decrease precision

Combined influ-
ence

Almost 
unchanged

Almost 
unchanged

Little influence Little influence Almost 
unchanged
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though in some cases this was only a small improvement above RU-SMOTE and 

RU-ADASYN. For KDD99, RURO and RU-SMOTE can be considered to have per-

formed equally well in identifying minority cases.

4. For highly imbalanced datasets, KDD99, NB15 and NB18, in most cases, the RURO 

and RU-SMOTE performed the best, in terms of macro recall. RU usually did not 

perform as well as the other resampling measures in terms of macro recall, but per-

formed better than NR. And RO always performed better than RU in terms of macro 

recall, and sometimes it was comparable to RURO, RU-SMOTE, and RU-ADASYN.

5. If the data is not extremely imbalanced, for example, NB17, resampling makes no dif-

ference, as shown in Table 48.

�is could be because:

 i. Since the data set is not extremely imbalanced, majority data does not have a very 

strong influence on the model. Minority data has enough influence on the model, 

hence the model can classify minority data well.

 ii. Imbalance may not be the reason for the inaccuracy. Resampling improves the 

accuracy by reducing the extent of imbalance. If the inaccuracy is not caused by the 

imbalance, resampling will not be able to improve the accuracy.

Table 49 presents a summary of behavior of recognizing the minority and majority 

instances in not highly imbalanced datasets.
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