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We introduce a method for validation of results obtained by clustering
analysis of data. The method is based on resampling the available data. A
figure of merit that measures the stability of clustering solutions against
resampling is introduced. Clusters that are stable against resampling give
rise to local maxima of this figure of merit. This is presented first for a one-
dimensional data set, for which an analytic approximation for the figure
of merit is derived and compared with numerical measurements. Next,
the applicability of the method is demonstrated for higher-dimensional
data, including gene microarray expression data.

1 Introduction

Cluster analysis is an important tool for investigating and interpreting data.
Clustering techniques are the main tool used for exploratory data analysis,
when one is dealing with data about whose internal structure little or no
prior information is available. Cluster algorithms are expected to produce
partitions that reflect the internal structure of the data and identify “natural”
classes and hierarchies present in it.

A wide variety of clustering algorithms have been proposed. Some have
their origins in graph theory, whereas others are based on statistical pat-
tern recognition, self-organization methods, and more. More recently, algo-
rithms rooted in statistical mechanics have been introduced.

Comparing the relative merits of various methods is made difficult by the
fact that when applied to the same data set, different clustering algorithms
often lead to markedly different results. In some cases such differences are
expected, since different algorithms make different (explicit or implicit) as-
sumptions about the structure of the data. If the particular set that is being
studied consists, for example, of several clouds of data point, with each
cloud spherically distributed about its center, methods that assume such
structure (e.g., k-means) will work well. On the other hand, if the data con-
sist of a single nonspherical cluster, the same algorithms will fare miserably,
breaking it up into a hierarchy of partitions. Since for the cases of interest
one does not know which assumptions are satisfied by the data, a researcher
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may run into severe difficulties in interpreting results. By preferring one al-
gorithm’s clusters over those of another, he or she may reintroduce his or
her biases about the underlying structure—precisely those biases that he
or she hoped to eliminate by employing clustering techniques. In addition,
the differences in the sensitivity of different algorithms to noise, which in-
herently exists in the data, also yield a major contribution to the difference
between their results.

The ambiguity is made even more severe by the fact that even when
one sticks exclusively to one’s favorite algorithm, the results may depend
strongly on the values assigned to various parameters of the particular
algorithm. For example, if there is a parameter that controls the resolution at
which the data are viewed, the algorithm produces a hierarchy of clusters (a
dendrogram) as a function of this parameter. One then has to decide which
level of the dendrogram reflects best the “natural” classes present in the
data.

Needless to say, one wishes to answer these questions in an unsuper-
vised manner, making use of nothing more than the available data. Various
methods and indicators that come under the name “cluster validation” at-
tempt to evaluate the results of cluster analysis in this manner (Jain & Dubes,
1988). Numerous studies suggest direct and indirect indices for evaluation
of hard clustering (Jain & Dubes, 1988; Bock, 1985), probabilistic clustering
(Duda & Hart, 1973), and fuzzy clustering (Windham, 1982; Pal & Bezdek,
1995) results. Hard clustering indices are often based on some geometrical
motivation to estimate how compact and well separated the clusters are; an
example is Dunn’s index (Dunn, 1974) and its generalizations (Bezdek & Pal,
1995); others are statistically motivated, for example, comparing the within-
cluster scattering with the between-cluster separation (Davies & Bouldin,
1979). Probabilistic and fuzzy indices are not considered here. Indices pro-
posed for these methods are based on likelihood-ratio tests (Duda & Hart,
1973), information-based criteria (Cutler & Windham, 1994), and more.

Another approach to cluster validity includes some variant of cross-
validation (Fukunaga, 1990). Such methods were introduced in the context
of both hard clustering (Jain & Moreau, 1986) and fuzzy clustering (Smyth,
1996). The approach presented here falls into this category.

In this article, we present a method to help select which clustering result is
more reliable. The method can be used to compare different algorithms, but
it is most suitable to identify, within the same algorithm, those partitions that
can be attributed to the presence of noise. In these cases, a slight modification
of the noise may alter the cluster structure significantly. Our method controls
and alters the noise by means of resampling the original data set.

In order to illustrate the problem we wish to address and its proposed
solution, consider the following example. A scientist is investigating mice
and comes to suspect that there are several types of them. She therefore
measures two features of the mice (such as weight and shade), looks for
clusters in this two-dimensional data set, and indeed finds two clusters.



Resampling Method for Cluster Validity 2575

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
(a)

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
(b)

Figure 1: Two samples, drawn from an eight-shaped uniform distribution. Sam-
ple a is somewhat nontypical.

She can therefore conclude that there are two types of mice in her lab. Or
can she?

Imagine that the data that the scientist collects can be represented by the
points on Figure 1a. This data set was in fact taken from a shaped uniform
distribution (with a relatively narrow “neck” at the middle). Hence, no
partition really exists in the underlying structure of the data, and unless one
makes explicit assumptions about the shape of the data clouds, one should
identify a single cluster. The particular cluster algorithm used breaks the
data into two clusters along the horizontal gap seen in Figure 1a. This gap
happens to be the result of fluctuations in the data or noise in the sampling
(or measurement) process. More typical data sets, such as that of Figure 1b,
do not have such gaps and are not broken into two clusters by the algorithm.

If more than a single sample had been available, it would have been safe to
assume that this particular gap would not have appeared in most samples.
The partition into two clusters in that case would be easily identified as
unreliable.1 In most cases, however, only a single sample is available, and
resampling techniques are needed in order to generate several ones.

In this article we propose a cluster validation method based on resam-
pling (Good, 1999; Efron & Tibshirani, 1993): subsets of the data under in-
vestigation are constructed randomly, and the cluster algorithm is applied
to each subset. The resampling scheme is introduced in section 2, and a fig-
ure of merit is proposed to identify the stable clustering solutions, which are

1 By “unreliable” we mean that one cannot infer whether the partition into two clusters
is only the consequence of noise and therefore cannot answer the question of whether it
is likely to reappear in another random sample.
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less likely to be the results of noise or fluctuations. The proposed procedure
is tested in section 3 on a one-dimensional data set, for which an analytical
expression for the figure of merit is derived and compared with the corre-
sponding numerical results. In section 4 we demonstrate the applicability
of our method to two artificial data sets (in d = 2 dimensions) and to real
(very high-dimensional) DNA microarray data.

2 The Resampling Scheme

Let us denote the number of data points in the set to be studied by N.
Typically, application of any cluster algorithm necessitates choosing specific
values for some parameters. The results yielded by the clustering algorithm
may depend strongly on this choice. For example, some algorithms (e.g.,
the c-shell fuzzy-clustering in Bezdek, 1981, and the iso-data algorithm in
Cover & Thomas, 1991) take the expected number of clusters as part of their
input. Other algorithms (e.g., Valley-Seeking, of Fukunaga, 1990) have the
number of neighbors of each point as an external parameter.

In particular, many algorithms have a parameter that controls the resolu-
tion at which clusters are identified. In agglomerative clustering methods,
for example, this parameter defines the level of the resulting dendrogram
at which the clustering solution is identified (Jain & Dubes, 1988). For the
K-nearest-neighbor algorithm (Fukunaga, 1990), a change in the number of
neighbors of each point, K, controls the resolution. For deterministic anneal-
ing (DA) (Rose, Gurewitz, & Fox, 1990) and the superparamagnetic cluster-
ing algorithm (SPC) (Blatt, Wiseman, & Domany, 1996; Domany, 1999), this
role is played by the temperature T.

As this control parameter is varied, the data points get assigned to differ-
ent clusters, giving rise to a hierarchy. At the lowest resolution, all N points
belong to one cluster, whereas at the other extreme, one has N clusters, of
a single point in each. As the resolution parameter varies, clusters of data
points break into subclusters, which break further at a higher level. Some-
times the aim is to generate precisely such a dendrogram. In other cases,
one would like to produce a single partitioning of the data, which captures a
particular important aspect. In such a case, we wish to identify that value of
the resolution control parameter at which the most reliable, natural clusters
appear. In these situations, the resolution parameter plays the role of one
(probably the most important) member of the family of parameters of the
algorithm that needs to be fixed. Let us denote the full set of parameters of
our algorithm by V.

Any particular clustering solution can be presented in the form of an
N × N cluster connectivity matrix Tij, defined by

Tij =
{

1 points i and j belong to the same cluster
0 otherwise.

(2.1)
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In order to validate this solution, we construct an ensemble of m such ma-
trices and make comparisons among them. This ensemble is created by
constructing m resamples of the original data set. A resample is obtained by
selecting at random a subset of size f N of the data points. We call 0 ≤ f ≤ 1
the dilution factor.

We apply to every one of these subsets the same clustering procedure
used on the full data set, using the same set of parameters V. This way
we obtain for each resample µ, µ = 1, . . . , m, its own clustering results,
summarized by the f N × f N matrix T (µ).

We define a figure of merit M(V) for the clustering procedure (and the
choice of parameters) that we used. The figure of merit is based on compar-
ing the connectivity matrices of the resamples, T (µ) (µ = 1, . . . , m), with the
original matrix T :

M(V) = 〈〈δTij,T (µ)

ij
〉〉m. (2.2)

The averaging implied by the notation 〈〈·〉〉m is twofold. First, for each re-
sample µ, we average over all those pairs of points ij that were neighbors
in the original sample and have both survived the resampling.2 Second,
this average value is averaged over all the m different resamples. Clearly,
0 ≤ M ≤ 1, with M = 1 for perfect score.

The figure of merit M measures the extent to which the clustering as-
signments obtained from the resamples agree with those of the full sample.
An important assumption we have made implicitly in this procedure is that
the algorithm’s parameters are “intensive,” that is, their effect on the quality
of the result is independent of the size of the data set. We can generalize
our procedure in several ways to cases when this assumption does not hold
(Levine, 2000).3

After calculating M(V), we have to decide whether we accept the clus-
tering result, obtained using a particular value of the clustering parameters.
For very low and very high values of M, the decision may be easy, but for
midrange values, we may need some additional information to guide our
decision. In such a case, the best way to proceed is to change the values of
the clustering parameters and go through the whole process once again.

Having done so for some set parameter choices V, we study the way
M(V) varies as a function of V. Optimal sets of parameters V∗ are identified
by locating the maxima of this function. It should be noted, however, that
some of these maxima are trivial and should not be used. Other maxima
reflect different clustering solutions, which may all be considered valid.

2 For various definition of neighbors, see Fukunaga (1990).
3 For example, we can define our figure of merit on the basis of pairwise comparisons

of our resamples and find an optimal set of parameters V∗
1 in the way explained below.

Next, we look for parameters V∗
2 for which clustering of the full sample yields closest

results to those obtained for the resamples (clustered at V∗
1 ).
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For example, samples out of hierarchical distributions may have several
meaningful solutions, corresponding to different levels of the hierarchy.
Here we demonstrate the case of a single robust solution (examples with
several solutions were given in Levine, 2000).

Let us denote by A(N) the computational complexity of the clustering
algorithm over a sample of size N with a given parameter set. The computa-
tional complexity of the resampling scheme just outlined can be estimated
by vmA( f N), where v is the number of different parameter sets among which
one is searching for a best solution.

Our procedure can be summarized in the following algorithmic form:

Step 0. Choose values for the parameters V of the clustering algorithm.

Step 1. Perform clustering analysis of the full data set.

Step 2. Construct m subsets of the data set by randomly selecting f N of the
N original data points.

Step 3. Perform clustering analysis for each subset.

Step 4. Based on the clustering results obtained in Steps 1 and 3, calculate
M(V), as defined in equation 2.2.

Step 5. Vary the parameters V, and identify stable clusters as those for
which a local maximum of M is observed.

3 Analysis of a One-Dimensional Model

To demonstrate the procedure outlined above, we consider a clustering
problem that is simple enough to allow an approximate analytical calcula-
tion of the figure of meritM and its dependence on a parameter that controls
the resolution. Consider a one-dimensional data set that consists of points
xi, i = 1, . . . , N, selected from two identical but displaced uniform distribu-
tions, such as the one shown in Figure 3. The distributions are characterized
by the mean distance between neighboring points, d = 1/λ, and the distance
or gap between the two distributions, 	. Distances between neighboring
points within a cluster are distributed according to the Poisson distribution,

P(s) = λe−λs ds. (3.1)

The results of a clustering algorithm that reflects the underlying distribution
from which the data were selected should identify two clusters in this data
set.

Consider a simple nearest-neighbor clustering algorithm, which assigns
two neighboring points to the same cluster if and only if the distance be-
tween the two is smaller than a threshold a. Clearly, α = λa is the dimension-
less parameter of the algorithm that controls the resolution of the clustering.
For very small α 
 1, no two points belong to the same cluster, and the num-
ber of clusters equals N, the number of points; at the other extreme, α � 1,
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all pairs of neighbors are assigned to the same cluster, and hence all points
reside in one cluster. Starting from α � 1 and reducing it gradually, one
generates a dendrogram. At an intermediate value of α, we may get any
number of clusters between one and N. Hence, if we picked some particular
value of α at which we obtained some clusters, we must face the dilemma
of deciding whether these clusters are “natural” or the result of the fluc-
tuations (i.e., noise) present in the data. In other words, we would like to
validate the clustering solution obtained for the full data set for a given
value of α. We do this using the resampling scheme described above.

A resample is generated by independently deciding for each data point
whether it is kept in the resample (with probability f ) or is discarded (with
probability 1− f ). This procedure is repeated m times, yielding m resamples.
All length scales of the original problem get rescaled by the resampling
procedure by a factor of 1/f ; the mean distance between neighboring points
in the resampled set is d′ = 1/λf , and the distance between the two uniform
distributions is 	′ = 	/f . Clustering is therefore performed with a rescaled
threshold a′ = a/f on any resample; the resolution parameter keeps its
original value, α′ = a′/d′ = α.

We first wish to get an approximate analytical expression for the figure
of merit M(α) described above. To do this, we consider the gaps between
data points rather than the points themselves.

Let us denote by b the distance between the data point i (of the original
sample) and its nearest left neighbor, b = xi − xi−1, with the two points on
the same side of the gap 	. We first assume that this edge is not broken by
the clustering algorithm, b < a. Given a resample that includes point i, we
define b′ in the same fashion. The new, resampled left neighbor of i resides
in the same cluster as i if b′ < a′; the probability that this happens is given
by (Levine, 2000)

P1(β) =
∞∑

m=1

f 2(1 − f )m−1

(m − 1)!
γ (m, α/f − β), (3.2)

where the dimensionless variable β = λb was introduced. Here γ (n, z) is
Euler’s incomplete gamma function,

γ (n, z) =
∫ z

0
e−ttn−1 dt, (3.3)

except that in our convention, we take γ (n, z < 0) = γ (n, 0).
Similarly, if points i and i − 1 were not assigned to the same cluster in

the original sample, then the probability that the same would happen in a
resample is (Levine, 2000)

P2(β) =
∞∑

m=1

f 2(1 − f )m−1

(m − 1)!
�(m, α/f − β), (3.4)
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where �(n, z) is the other incomplete gamma function,

�(n, z) =
∫ ∞

z
e−ttn−1 dt, (3.5)

and we take �(n, z < 0) = �(n, 0) = (n − 1)!, so Bm = 1 for α ≤ fβ.
We now calculate the index M in an approximate manner by averaging

P1 and P2 over all edges. This calculation matches the definition 2.2 of M
in spirit. For pairs residing within a true cluster, the averaging is done by
integrating over all possible values of b:

A(α) =
∫ α

0
e−βP1(β) dβ +

∫ ∞

α

e−βP2(β) dβ. (3.6)

For pairs that lie on different sides of the gap, we should compare a only
with the size of the gap 	,

B(δ, α) =
{

P1(δ) α ≥ δ

P2(δ) α < δ,
(3.7)

where the dimensionless variable δ = λ	 was introduced.
Clearly, in the one-dimensional example, there are many fewer edges of

the second kind than of the first. This, however, is not the case for data in
higher dimensions, so we give equal weights to the two terms A and B,4

M(α) = 1
2

[A(α) + B(δ, α)] . (3.8)

We now plot M as a function of the resolution parameter α for both
f = 1/2 and f = 2/3 (see Figure 2a), assuming the intercluster distance
δ = 5. A clear peak can be observed in both curves at α � 2.5 and α � 3.3,
respectively. Similarly, for δ = 10 clear peaks are identified at α � 5 and
α � 7 (see Figure 2b). As we will see, these peaks correspond to the most
stable clustering solution, which indeed recovers the original clusters. The
trivial solutions of a single cluster (of all data points) and the opposite limit
of N single-point clusters are also stable and appear as the maxima of M(α)

at α 
 1 and α � 1, respectively.
In order to test how good our analytic approximate evaluation of M is,

we clustered a one-dimensional data set of Figure 3 (top) and calculated the
index M as defined in equation 2.2. The data set consists of N = 300 data
points sampled from two uniform distributions of mean nearest-neighbor
distance 1/λ = 1 and shifted by 	 = 10. The dendrogram obtained by vary-
ing α is shown in Figure 3 (bottom). It clearly exhibits two stable clusters,

4 The ratio between the two terms is of the order (d−1)/d, where d is the dimensionality
of the problem. For high-dimensional problems, this ratio is close to 1.
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Figure 2: Mean behavior of M as a function of the geometric threshold, accord-
ing to equation 3.8, for two clusters. The function is evaluated for the intercluster
distances (a) 	λ = 5 and (b) 	λ = 10, with dilution parameters f = 1/2 and
f = 2/3.

with stability indicated by the wide range of values of α over which the
two clusters “survive.” Next, we generated 100 resamples of size 150 (i.e.,
f = 1/2) and applied the geometrical clustering procedure described above
to each resample.
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Figure 3: Resampling results for a one-dimensional data set. Three hundred
points were chosen uniformly from two clusters, separated by 	λ = 10. The
histogram of the data is given in the top panel. We performed 100 resamples
of 150 points (i.e., f = 1/2) and 100 resamples of 200 points ( f = 2/3), to
calculate two versions of M. In the middle panel, we plot M as a function of
the resolution parameter α. The peak between α ≈ 4 and α ≈ 7 corresponds to
the correct two-cluster solution, as can be seen from the dendrogram shown in
the bottom panel.
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Figure 4: Three-ring problem. Fourteen hundred points are sampled from a
three-component distribution (described in the text).

By averaging over the different resamples, the figure of merit M was
calculated for different values of the dimensionless resolution parameter
α, as shown in Figure 3 (middle). The peak between α ≈ 4 and α ≈ 7,
corresponding to the most stable, “correct” clustering solution, is clearly
identified. The whole procedure was also done with samples of size 200
( f = 2/3), giving similar results. In this case, as in Figure 2, the nontrivial
peak extends to somewhat higher α-values when using larger f . In both
cases, however, the location of the peak corresponds to the same, intuitively
correct solution. The agreement between our approximate analytical curve
of Figure 2b for M(α) and the numerically obtained exact curve of Figure 3
(middle) is excellent and most gratifying.

4 Applications

4.1 Two-Dimensional Toy Data. The analysis of the previous section
predicts a typical behavior ofM as a function of the parameters that control
resolution; in particular, it suggests that one can identify a stable, “natural”
partition as the one obtained at a local maximum of the function M. This
prediction was based on an approximate analytical treatment and backed up
by numerical simulations of one-dimensional data. Here we demonstrate
that this behavior is also observed for a toy problem, which consists of
the two-dimensional data set shown in Figure 4. The angular coordinates
of the data points are selected from a uniform distribution, θ ∼ U[0, 2π ].
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Figure 5: Clustering solution of the three-ring problem as a function of the
resolution parameter (the temperature).

The radial coordinates are normal distributed, r ∼ N[R, σ ], around three
different radii R. The outer “ring” (R = 4.0, σ = 0.2) consists of 800 points,
and the inner “rings” (R = 2.0, 1.0, σ = 0.1) consist of 400 and 200 points,
respectively.

The algorithm we chose to work with is the super-paramagnetic clus-
tering (SPC) algorithm, recently introduced by Blatt et al. (1996; Domany,
1999). This algorithm provides a hierarchical clustering solution. A single
parameter T, called “temperature,” controls the resolution: higher temper-
atures correspond to higher resolutions. A variation of T generates a den-
drogram. The outcome of the algorithm depends also on an additional pa-
rameter K, described in section 4.3.1. The data of Figure 4 were clustered
with K = 20.

The results of the clustering procedure are presented in Figure 5. For
T < 0.02, we get two clusters: the two inner rings constitute one cluster. A
stable phase, in which the three rings are clearly identified as three clusters,
appears in the temperature range 0.03 ≤ T ≤ 0.08.

In order to identify the value of T that yields the “correct” solution, we
generated and clustered 20 different resamples from this toy data set, with
a dilution factor of f = 2/3. The resolution parameter (temperature) of each
resample was rescaled so that the transition temperature at which the single
large cluster breaks up agrees with the temperature of the same transition
in the original sample.

The function M(T), plotted in Figure 6, exhibits precisely the expected
behavior, with two trivial maxima and an additional one at T = 0.05. This
value indeed corresponds to the “correct” solution of three clusters. Note
that this maximum is not attained at the transition to the three-cluster so-
lution (T � 0.03) but at a slightly higher temperature (T � 0.05). This shift
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Figure 6: M as a function of the temperature for the three-ring problem.

reflects the fact that close to the transition, the two-cluster solution is still
obtained for some resamples.

In order to compare our figure of merit with some known index, we
applied several different clustering algorithms to the three-ring data set. For
the K-means and DA algorithms, where the number of expected clusters
must be provided, we searched for three clusters. A typical three-cluster
solution generated by these two methods is shown in Figure 7; the three rings
are not identified as clusters. Among the hierarchy of clustering solutions
generated by SPC and average linkage algorithm (described in the next
section), there appeared some that were very close to the intuitively correct
one; we took these as the cluster assignement that is to be validated. We
used our resampling scheme with 100 resamples and f = 2/3 for each of
the methods. Although the solutions of SPC and average linkage yielded
high M values (above 0.9), the results obtained by K-means and DA gave
low values (below 0.6). We then calculated another index, R, defined by

R = 1
C

∑
c

Sin
c

Sout
c

Sin
c = 1

|c|2
∑
i,j∈c

dij, Sout
c = min

c′

1
|c||c′|

∑
i∈c.,j∈c′

dij, (4.1)

where C is the number of clusters, dij is the distance between points i and j,
and the summation is over all clusters (Jain & Dubes, 1988). This index mea-
sures the mean inner distance of the clusters relative to the distance from
their nearest neighbor. Clearly this index looks for compact, well-separated
clusters. It is therefore not surprising that of the clustering solutions pro-
posed by the different methods, the one with the minimal value of R is that
of Figure 7 obtained by the K-means algorithm (R � 0.56, to be compared
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Figure 7: Clustering solution of the three-ring problem obtained by the K-means
algorithm with K = 3.

with R � 0.87 for the three-ring solution of SPC). We find that our figure
of merit M assigns the highest score to the intuitively expected solution,
whereas the R score is minimal for an “incorrect” solution.

4.2 A Single Cluster—Dealing with Cluster Tendency. A frequent prob-
lem of clustering methods is the so-called cluster tendency, that is, the ten-
dency of the algorithm to partition any data, even when no natural clusters
exist. In particular, agglomerative algorithms, which provide a hierarchy of
clusters, always generate some hierarchy as a control parameter is varied.
We expect this hierarchy to be very sensitive to noise, and thus unstable
against resampling.

We tested this assumption for the data set of Figure 1a. The test was per-
formed using two clustering methods: the SPC algorithm and the average-
linkage clustering algorithm, an agglomerative hierarchical method. The
average-linkage algorithm starts with N distinct clusters, one for each point,
and forms the hierarchy by successively merging the closest pair of clusters,
and redefining the distance between all other clusters and the new one. This
step is repeated N −1 times until only a single element remains. The output
of this hierarchical method is a dendrogram. (For more details, see Jain &
Dubes, 1988.)

We performed our resampling scheme with m = 20 resamples and a
dilution factor of f = 2/3, for different levels of resolution. The results are
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Figure 8: M as a function of the resolution parameter for the single-cluster
problem. Clustering is performed using the SPC algorithm (left) and the average-
linkage algorithm (right). The only natural “partitions” are a single cluster or N
(single point) clusters.

shown in Figure 8. The only stable solutions identified by both algorithms
are the trivial ones, of either a single cluster or N clusters. In this case,
obviously the single-cluster solution is also the natural one.

4.3 Clustering DNA Microarray Data. We turn now to apply our pro-
cedure to real-life data. We present here validation of cluster analysis per-
formed for DNA microarray data.

Gene-array technology provides a broad picture of the state of a cell by
monitoring the expression levels of thousands of genes simultaneously. In
a typical experiment, simultaneous expression levels of thousands of genes
are viewed over a few tens of cell cultures at different conditions. (For details
see Chee et al., 1996; Brown & Botstein, 1999.)

The experiment whose analysis is presented here is on colon cancer tis-
sues (Alon et al., 1999). Expression levels of ng = 2000 genes were measured
for nt = 62 different tissues, out of which 40 were tumor tissues and 22 were
normal ones. Clustering analysis of such data has two aims:

• Searching for groups of tissues with similar gene expression profiles.
Such groups may correspond to normal versus tumor tissues. For this
analysis, the nt tissues are considered as the data points, embedded in
an ng-dimensional space.

• Searching for groups of genes with correlated behavior. For this analy-
sis, we view the genes as the data points, embedded in an nt-dimensional
space, and we hope to find groups of genes that are part of the same
biological mechanism.

Following Alon et al., we normalize each data point (in both cases) such
that the standard deviation of its components is one and its mean vanishes.
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Figure 9: Figure of merit M as a function of K for the colon tissue data.

This way the Euclidean distance between two data points is trivially related
to the Pearson correlation between the two.

4.3.1 Clustering Tissues. The main purpose of this analysis is to check
whether one can distinguish between tumor and normal tissues on the basis
of gene expression data. Since we know in what aspect of the data’s structure
we are interested, the working resolution in this problem is determined as
the value at which the data first break into two (or more) large clusters
(containing, say, more than 10 tissues).

There may be other parameters for the clustering algorithm, which should
be determined. For example, the SPC algorithm has a single parameter K,
which determines how many data points are considered as neighbors of a
given point. The algorithm places edges or arcs that connect pairs of neigh-
bors i, j, and assigns a weight Jij to each edge, whose value decreases with the
distance |�xi − �xj| between the neighboring data points. Hence, the outcome
of the clustering process may depend on K, the number of neighbors con-
nected to each data point by an edge. We would like to use our resampling
method to determine the optimal value for this parameter.

We clustered the tissues, using SPC, for several values of K. For each
case, we identified the temperature at which the first split to large clusters
occurred. For each case, we performed the same resampling scheme, with
m = 20 resamples of size 2

3 nt, and calculated the figure of merit M(K).
The results obtained for several values of K are plotted in Figure 9. Very
low and very high values of K give similarly stable solutions. In the low-
K case, each point is practically isolated, and the data break immediately
into microscopic clusters. The high-K case is just the opposite: each point is
considered “close” to very many other points, and no macroscopic partition
can be obtained.
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Figure 10: Clustering of the tissues, using K = 8. Leaves of the tree are colored
according to the known classification to normal (dark) and tumor (light). The two
large clusters marked by arrows recover the tumor versus normal classification.

At K = 8 we observe, however, another peak in M. At this K, the clus-
tering algorithm yields two large clusters, which correspond to the two
“correct” clusters of normal and tumor tissues, as shown on Figure 10. Such
solutions appear also for some higher values of K, but in these cases the
clusters are not stable against resampling.

4.3.2 Clustering Genes. Cluster analysis of the genes is performed in or-
der to identify groups of genes that act cooperatively. Having identified a
cluster of genes, one may look for a biological mechanism that makes their
expression correlated. Trying to answer this question, one may, for exam-
ple, identify common promoters of these genes (Getz, Levine, Domany, &
Zhang, 2000). One may also use one or more clusters of genes to reclassify
the tissues (Getz, Levine, & Domany, 2000), looking for clinical manifesta-
tions associated with the expression levels of the selected groups of genes.
Therefore, in this case, it is important to assess the reliability of each partic-
ular gene cluster separately.

The SPC clustering algorithm was used to cluster the genes. A resulting
dendrogram is presented in Figure 11, in which each box represents a cluster
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Figure 11: Dendrogram of genes. Clusters of size seven or larger are shown as
boxes. Selected clusters are circled and numbered, as explained in the text.

of genes. Our resampling scheme has been applied to these data using m =
25 resamples of size 1200 ( f = 0.6). This time, however, we calculatedM(C)

for each of the stable clusters C of the full original sample, one at a time.
Since the structure of the dendrogram is sensitive to even slight changes in
the data, we focused our attention only at the stable clusters emerging from
clustering the full set of genes. For each stable cluster C, M was calculated
at the temperature at which C was identified. We therefore get a stability
measure for each cluster. Next, we focus our attention on clusters of the
highest scores. First, we considered the top 20 clusters. If one of these clusters
is a descendant of another one from the list of 20, we discard it. After this
pruning, we were left with 6 clusters, which are circled and numbered in
Figure 11 (the numbers are not related to the stability score).

We are now ready to interpret these stable clusters. The first three consist
of known families of genes. Number 1 is a cluster of ribosomal proteins. The
genes of cluster 2 are all cytochrome C genes, which are involved in energy
transfer. Most of the genes of cluster 3 belong to the HLA-2 family, which
are histocompatibility antigens.

Cluster 4 contains a variety of genes, some related to metabolism. When
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trying to cluster the tissues based on these genes alone, we find a stable
partition to two clusters, which is not consistent with the tumor versus
normal labeling, but rather with a change in an experimental protocol (Getz,
Levine, & Domany, 2000).

Clusters 5 and 6 also contain genes of various types. The genes of these
clusters have the most typical behavior: All the genes of cluster 5 are highly
expressed in the normal tissues but not in the tumor ones, and all genes of
cluster 6 are the other way around.

To summarize, clustering stability score based on resampling enabled
us to zero in on clusters with typical behavior, which may have biologi-
cal meaning. Using resampling enabled us to select clusters without mak-
ing any new assumption, a major advantage in exploratory research. The
downside of this method, however, is its computational burden. We had to
perform clustering analysis 20 times for a rather large data set. This would
be the typical case for DNA microarray data.

5 Discussion

This work proposes a method to validate clustering analysis results, based
on resampling. It is assumed that a cluster that is robust to resampling is
less likely to be the result of a sample artifact or fluctuations.

The strength of this method is that it requires no additional assump-
tions. Specifically, no assumption is made about the structure of the data,
the expected clusters, or the noise in the data. Only the available data are
used.

We introduced a figure of merit, M, which reflects the stability of the
cluster partition against resampling. The typical behavior of this figure of
merit as a function of the resolution parameter allows clear identification
of natural resolution scales in the problem. Using this figure of merit, one
can easily choose among different clustering solutions the one that is most
robust. However, this figure of merit does not reflect the generalization
performance of this clustering solution to new data.

The question of natural resolution levels is inherent in the clustering prob-
lem and thus emerges in any clustering scheme. The resampling method
introduced here is general; it is applicable to any kind of data set and any
clustering algorithm. Note, however, that if the data are so sparse that dilu-
tion can eliminate some of the underlying modes, our resampling scheme
should not be used for cluster validation.

For a simple one-dimensional model, we derived an analytical expres-
sion for our figure of merit and its behavior as a function of the resolution
parameter. Local maxima were identified for values of the parameter corre-
sponding to stable clustering solutions. Such solutions can be either trivial
(at very low and very high resolution) or nontrivial, revealing the genuine
internal structure of the data.

Resampling is a viable method provided the original data set is large
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enough, so that a typical resample still reflects the same underlying struc-
ture. If this is the case, our experience shows that a dilution factor of f � 2/3
works well for both small and large data sets.
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