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Application of resampling methods in sample survey settings presents considerable practical
and conceptual difficulties. Various potential solutions have recently been proffered in the
statistical literature. This paper provides a brief critical review of these methods. Our main
conclusion is that, while resampling methods may be useful in some problems, there is little
evidence of their usefulness as general purpose techniques for the analysis of complex surveys.

Introduction

In this paper we will review some of the resampling methods for the analysis of sample surveys
that have been proposed in the literature and discuss the extent to which they are worthwhile.
Reasons for considering the use of resampling methods, which justify the additional computa-
tional burden they impose, include (a) improved accuracy over standard but less computation-
ally intensive procedures in simple settings; and (b) ease of generalization and automation in
complex problems to which standard methods either do not apply or break down.

Throughout most of this paper we will emphasize stratified random sampling and estimation
using the stratified sample mean because this setting, despite its simplicity, is broad enough to
illustrate our main points. In fact, the simple random sampling without replacement setting
is sufficient for describing the resampling schemes we shall consider. We omit most technical
details and all proofs. These can be found in a technical report written by the authors or in
other references cited.

Simple and Stratified Random Sampling

We follow the notation of Cochran (1977, Chapters 2 & 5). Thus, P = {Y1, . . . , YN} denotes a
population of measurements and S = {y1, . . . , yn} denotes a random sample selected without
replacement from P . The sample mean ȳ then estimates the population mean Ȳ with variance
V (ȳ) = 1

n
(1− f)S2, where S2 is the population variance (with divisor N − 1) and f = n/N is

the sampling fraction. An unbiased estimate of V (ȳ), denoted by v(ȳ), is obtained by replacing
S2 by its unbiased estimator s2 based on the sample.

In stratified random sampling from L strata an additional index, h = 1, . . . , L, is required.
The estimate of the population mean based on a stratified random sample is ȳst =

∑L
h=1Whȳh,

whereWh = Nh/N is the stratum weight. The variance of ȳst is V (ȳst) =
∑L
h=1W

2
h
1
nh

(1−fh)S2h.
Bootstrap Methods

The basic principle underlying bootstrap estimation based on with replacement sampling schemes
is the plug-in rule, whereby a population characteristic or functional τ = τ(F ) is estimated by
τ̂ = τ(F̂ ); i.e. by plugging in an empirical version of the population distribution function
F (Efron and Tibshirani, 1993, Chapter 4). When sampling without replacement, the finite
population P plays the role of the unknown distribution function. The key step in extending



the bootstrap to this context is appropriately defining an empirical population P̂.

When the population size is an integer multiple of the sample size, N = kn, then an empirical
population can be obtained by replicating the sample values k times (Gross, 1980). Booth,
Butler and Hall (1994) propose a modification to this definition for the situation where N =
kn+ l, for some integer 1 ≤ l < n, whereby the additional l values in the empirical population
are obtained by sampling without replacement from S. In this case the empirical population
is a random quantity, P̂∗ say, conditional on the sample. This requires a modification of the
plug-in principle in order that the bootstrap estimate be well defined; namely τ̂ = E{τ(P̂∗)|S}.
That is, the bootstrap estimate is defined as the average value of the characteristic over all
empirical populations.

An alternative approach is motivated by an assumption that the population P is a realization
of a with replacement sample from a superpopulation with unknown distribution function F .
This suggests empirical populations be obtained as with replacement samples of size N from
the sample S. As with the previous approach, bootstrap estimates are defined as averages over
all possible empirical populations.

Both the replication and superpopulation bootstrap methods extend in an obvious way to
stratified samples by defining empirical populations as the union of empirical strata. Also,
note that sampling with replacement is probabilistically equivalent to sampling from an infinite
population. If N is allowed to increase fast enough that f converges to zero, both approaches
described in this section converge to the familiar, with replacement, bootstrap plug-in rule.

Variance Estimation

An obvious characteristic of interest associated with any estimate, θ̂ say, is its variance in
repeated sampling, τ = Var(θ̂|P) . In the case of the mean the variance is known and an
exactly unbiased estimate is available, and so it is instructive to compare how well various
resampling methods perform in this case.

Both replication and superpopulation bootstrap estimates of V (ȳ) turn out to be proportional
to the unbiased estimate; τ̂ = c v(ȳ). The constant c depends on the value of l for the replication
method and equals (n − 1)/n using the superpopulation approach. In both cases the bias is
negligible if n is moderately large and the sampling fraction is small. However, bootstrap
variance estimation is potentially problematic in stratified samples if the sample sizes are small
in some strata. While the bias of the bootstrap estimate of V (ȳ) might be considered a serious
deficiency, it is worth noting that the same bias issue occurs in the infinite population setting
(see Efron 1982, Chapter 5).

Distribution Estimation

The variance (or standard error) of an estimator provides a crude assessment of its accuracy.
Often, however, the performance of an estimator can be more measured more precisely by
examining its sampling distribution or that of its Studentized form.

In the stratified sampling setting the Studentized estimate is given by T = (ȳst − Ȳ )/
√
v(ȳst).

Let tα denote the α-quantile of the distribution of T , so that P (T ≤ tα|P) = α. Then, the



percentile-t interval (ȳst − t1−α√v, ȳst − tα√v) contains Ȳ with probability 1 − 2α exactly in
repeated sampling. Unfortunately, use of this formula in practice requires full knowledge of
the sampling distribution of ȳst and hence of P . A solution is to replace tα by its asymptotic
approximation zα, the corresponding standard normal quantile, or by an estimate t̂α, obtained
by inverting the bootstrap distribution function E{P (T ∗ ≤ t|P̂∗)|S}.
The arguments of Booth, Butler and Hall (1994) show that, if the responses are continuous and
the number strata is fixed, the error in the bootstrap estimate of the distribution function is
asymptotically smaller than that of the normal approximation. This translates into more accu-
rate approximation of the ideal quantile function tα and closer-to-nominal, one-sided coverage to
the left and right of the corresponding confidence interval. Specifically, if n = n1+. . .+nL is the
total sample size and the sampling fractions remain fixed between zero and one, then the end-
points of the standard normal interval are first-order correct in the sense that zα = tα+O(n−1/2),
whereas t̂α = tα+Op(n−1) making the bootstrap endpoints second-order correct. These results
are analogous to well known results for the infinite population bootstrap (see e.g. Hall, 1993,
Chapter 3).

Unfortunately, the improvements offered by the bootstrap in the traditional n-asymptotic set-
ting with a fixed number of strata do not carry over to the L-asymptotic setting, applicable
in situations in which small samples are taken from a large number of strata. It is also worth
emphasizing that the theoretical arguments, involving Edgeworth expansions, that underly the
second-order properties of bootstrap confidence intervals do not apply if the responses are
binary, as is often the case in sample surveys.

Other Resampling Methods

Numerous other bootstrap-like methods have been proposed recently for the finite population
sampling setting, including the bootstrap with replacement (McCarthy and Snowden, 1985),
variations on the replication method (Bickel and Freedman, 1984, Chao and Lo, 1965), the
rescaling method (Rao and Wu, 1988) and the mirror-match method (Sitter, 1993b). These
methods are all described and analyzed in detail by Presnell and Booth (1994). For the most
part these resampling schemes are ad hoc methods motivated by a desire to reproduce the
standard unbiased variance estimate, v(ȳst), for the stratified sample mean and not by a general
principle such as the bootstrap plug-in rule. For this reason, they are cumbersome to apply to
distribution estimation even though they were advocated for this purpose in several cases. For
example, it is not always obvious how to create a resample version of a Studentized estimate
even in the simplest case of the sample mean. Moreover, Presnell and Booth (1994) show that,
however the resample version of T is calculated, none of these methods produce second-order
correct confidence intervals either in the n-asymptotic or L-asymptotic framework and they
may not even be first-order correct if not applied with extreme care.

Conclusions

A brief summary of our findings with respect to the two objectives stated in the Introduction
is as follows:

In the stratified sampling setting with a fixed number of strata, bootstrap procedures are avail-



able that provide improvements over classical approaches for constructing confidence intervals
based on the normal approximation. However, the improvements are of second order and are
generally only noticeable when the sample sizes are small. Moreover, in the stratified sampling
setting with an increasing number of strata, none of the methods yet proposed provide any
asymptotic improvement over the standard normal approximation.

It could be argued that some of the resampling methods mentioned in last section are useful if
only for variance estimation, as is the case with more traditional resampling methods such as the
jackknife and balanced repeated replication. However, none of the methods discussed provide
any asymptotic improvement over much less computationally intensive, traditional variance
estimators which are available for most standard sampling designs and hence they appear to
be of little use in these settings. Resampling-based variance estimates have been shown to be
useful in certain specialized problems (see e.g. Canty and Davison, 1999). However, since it is
generally unclear how to extend resampling methods beyond even stratified random sampling,
they should be applied with extreme care and, in general, we are skeptical about their usefulness
for the analysis of complex surveys.
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