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Abstract Time series forecasting is a challenging task,
where the non-stationary characteristics of data portray a hard
setting for predictive tasks. A common issue is the imbal-
anced distribution of the target variable, where some values
are very important to the user but severely under-represented.
Standard prediction tools focus on the average behaviour of
the data. However, the objective is the opposite in many fore-
casting tasks involving time series: predicting rare values. A
common solution to forecasting tasks with imbalanced data is
the use of resampling strategies, which operate on the learn-
ing data by changing its distribution in favour of a given bias.
The objective of this paper is to provide solutions capable of
significantly improving the predictive accuracy on rare cases
in forecasting tasks using imbalanced time series data. We
extend the application of resampling strategies to the time
series context and introduce the concept of temporal and rel-
evance bias in the case selection process of such strategies,
presenting new proposals. We evaluate the results of stan-
dard forecasting tools and the use of resampling strategies,
with and without bias over 24 time series data sets from
six different sources. Results show a significant increase
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in predictive accuracy on rare cases associated with using
resampling strategies, and the use of biased strategies further
increases accuracy over non-biased strategies.
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1 Introduction

Mining time series data is one of the most challenging prob-
lems in data mining [52]. Time series forecasting holds a
key importance in many application domains, where time
series data are highly imbalanced. This occurs when certain
ranges of values are over-represented in comparison with oth-
ers, and the user is particularly interested in the predictive
performance on values that are the least represented. Such
examples may be found in financial data analysis, intrusion
detection in network forensics, oil spill detection and progno-
sis of machine failures. In these scenarios of imbalanced data
sets, standard learning algorithms bias the models towards
the more frequent situations, away from the user preference
biases, proving to be an ineffective approach and a major
source of performance degradation [10].

A common solution for the general problem of mining
imbalanced data sets is to resort to resampling strategies.
These strategies change the distribution of learning data
in order to balance the number of rare and normal cases,
attempting to reduce the skewness of the data. Resampling
strategies commonly achieve their goal by under or oversam-
pling the data. In the former, some of the cases considered
as normal (i.e. the majority of cases) are removed from the
learning data; in the latter, cases considered to be rare (i.e.
the minority) are generated and added to the data. For exam-
ple, in fraud detection problems, fraud cases are infrequent,
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and detecting them is the prime objective. Also, in intrusion
detection problems, most of the behaviour in networks is
normal, and cases of intrusion, which one aims to detect, are
scarce. This task of predicting rare occurrences has proven
to be a difficult task to solve, but due to its importance in so
many domains, it is a fundamental problem within predictive
analytics [16].

Resampling strategies are a popular method for dealing
with imbalanced domains. This is a simple, intuitive and
efficient method for dealing with imbalanced domains. More-
over, it allows the use of any out-of-the-box learner, enabling
a diversity of choices at the learning step. An alternative could
be to develop special-purpose learning methods, or to act at
the post-processing level. Generally, special-purpose learn-
ing methods have the advantage of improving performance
for their specific problem. However, they require a thorough
knowledge of the learning algorithm manipulated and their
application to other problems typically fails. Regarding post-
processing methods, they have not been much explored and
usually involve the output of conditional probabilities.

Most existing work using resampling strategies for pre-
dictive tasks with an imbalanced target variable distribution
involves classification problems ([6,26,38,48]). Recently,
efforts have been made to adapt existing strategies to numeric
targets, i.e. regression problems ([45,46]). To the best of
our knowledge, no previous work addresses this question
using resampling strategies in the context of time series fore-
casting. Although time series forecasting involves numeric
predictions, there is a crucial difference compared to regres-
sion tasks: the time dependency among the observed values.
The main motivation of the current work is our claim that
this order dependency should be taken into account when
changing the distribution of the training set, i.e. when apply-
ing resampling. Our work is driven by the hypothesis that
by biasing the sampling procedure with information on this
order dependency, we are able to improve predictive perfor-
mance.

In this paper, we study the use of resampling strate-
gies in imbalanced time series. Our endeavour is based
on three strategies: (i) the first is based on undersam-
pling (random undersampling [24]); (ii) the second is based
on oversampling (random oversampling [19]); and (iii)
the third combines undersampling and oversampling (ran-
dom undersampling with Synthetic Minority Over-sampling
TEchnique [9]). These strategies were initially proposed for
classification problems and were then extended for regres-
sion tasks [4,45,46]. We will refer to the extension of the
SMOTE resampling strategy as SmoteR.

Time series often exhibit systematic changes in the dis-
tribution of observed values. These non-stationarities are
often known as concept drift [51]. This concept describes
the changes in the conditional distribution of the target vari-
able in relation to the input features (i.e. predictors), while

the distribution of the latter stays unchanged. This raises the
question of how to devise learning approaches capable of
coping with this issue. We introduce the concept of tempo-
ral bias in resampling strategies associated with forecasting
tasks using imbalanced time series. Our motivation is the idea
that in an imbalanced time series, where concept drift occurs,
it is possible to improve forecasting accuracy by introducing
a temporal bias in the case selection process of resampling
strategies. This bias favours cases that are within the tem-
poral vicinity of apparent regime changes. In this paper, we
propose two alternatives for the resampling strategies used
in our work: undersampling, oversampling and SmoteR with
(1) temporal bias, and (2) with temporal and relevance bias.

An extensive experimental evaluation was carried out
to evaluate our proposals comprising 24 time series data
sets from 6 different sources. The objective is to verify if
resampling strategies are capable of improving the predic-
tive accuracy in comparison with standard forecasting tools,
including those designed specifically for time series (e.g.
ARIMA models [8]).

The contributions of this paper are:

– The extension of resampling strategies for time series
forecasting tasks;

– The proposal of novel resampling strategies that intro-
duce the concept of temporal and relevance bias;

– An extensive evaluation including standard regression
tools, time series-specific models and the use of resam-
pling strategies.

The remainder of this paper is structured as follows. In
Sect. 2 the problem tackled in our work is introduced and the
hypotheses in which our proposals are based are presented.
Resampling strategies are described in Sect. 3 along with the
adaptation of previous proposals and new proposals. The data
used to evaluate the proposals are introduced in Sect. 4, as
well as the regression tools used and the evaluation methods.
The evaluation process is described and results presented in
Sect. 5, followed by a discussion in Sect. 6. Finally, previous
work is discussed in Sect. 7 and conclusions are presented in
Sect. 8.

2 Problem definition

The main objective of our proposals is to provide solutions
that significantly improve the predictive accuracy on relevant
(rare) cases in forecasting tasks involving imbalanced time
series.

The task of time series forecasting assumes the availability
of a time-ordered set of observations of a given continuous
variable y1, y2, . . . , yt ∈ Y , where yt is the value measured
at time t . The objective of this predictive task is to forecast
future values of variable Y . The overall assumption is that an
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unknown function correlates the past and future values of Y ,
i.e. Yt+h = f (〈Yt−k, . . . , Yt−1, Yt 〉). The goal of the learn-
ing process is to provide an approximation of this unknown
function. This is carried out using a data set with historic
examples of the function mapping (i.e. training set).

Time series forecasting models usually assume the exis-
tence of a degree of correlation between successive values
of the series. A form of modelling this correlation consists
of using the previous values of the series as predictors of the
future value(s), in a procedure known as time delay embed-
ding [39]. This process allows the use of standard regression
tools on time series forecasting tasks. However, specific time
series modelling tools also exist, such as the ARIMA mod-
els [8].

In this work, we focus on imbalanced time series, where
certain ranges of values of the target variable Y are more
important to the end-user, but severely under-represented in
the training data. As training data, we assume a set of cases
built using a time delay embedding strategy, i.e. where the
target variable is the value of Y in the next time step (yt+1)
and the predictors are the k recent values of the time series,
i.e. yt , yt−1, . . . , yt−k .

To formalise our prediction task, namely in terms of cri-
teria for evaluating the results of modelling approaches, we
need to specify what we mean by “more important” values of
the target variable. We resort to the work of Ribeiro [36] that
proposes the use of a relevance function to map the domain
of continuous variables into a [0, 1] scale of relevance, i.e.
φ(Y ) : Y → [0, 1]. Normally, this function is given by
the users, attributing levels of importance to ranges of the
target variable specific to their interest, taking into consid-
eration the domain of the data. In our work, due to the lack
of expert knowledge concerning the domains, we employ an
automatic approach to define the relevance function using
box plot statistics, detailed in Ribeiro [36], which automati-
cally assigns more relevance/importance to the rare extreme
low and high values of the target variable. This automatic
approach uses a piecewise cubic Hermite interpolation poly-
nomials [12] (pchip) algorithm to interpolate a set of points
describing the distribution of the target variable. These points
are given by box plot statistics. The outlier values according
to box plot statistics (either extreme high or low) are given a
maximum relevance of 1 and the median value of the distribu-
tion is given a relevance of 0. The relevance of the remaining
values is then interpolated using the pchip algorithm.

Based on the concept of relevance, Ribeiro [36] has
also proposed an evaluation framework that allows us to
assert the quality of numeric predictions considering the user
bias. We use this evaluation framework to ascertain the pre-
dictive accuracy when using imbalanced time series data,
by combining standard learning algorithms and resampling
strategies.

The hypotheses tested in our experimental evaluation are:

Hypothesis 1 The use of resampling strategies significantly

improves the predictive accuracy of forecasting models on

imbalanced time series in comparison with the standard use

of out-of-the-box regression tools.

Hypothesis 2 The use of bias in case selection of resampling

strategies significantly improves the predictive accuracy of

forecasting models on imbalanced time series in comparison

with non-biased strategies.

Hypothesis 3 The use of resampling strategies significantly

improves the predictive accuracy of forecasting models on

imbalanced time series in comparison with the use of time

series-specific models.

From a practical point of view, only time series forecasting
tasks with rare important cases may benefit from the proposed
approach. Our target applications are forecasting tasks where
the user has a preference bias towards the rare values which
also motivates the use of specific performance assessment
measures that are able to capture what is important to the user.
Also the hypotheses tested are only meaningful in the context
of time series with imbalanced distributions where the user
is more interested in obtaining more accurate predictions on
the least represented cases. This means that our proposed
approach is not suitable for forecasting tasks whose goal is
accurate predictions across the entire domain irrespective of
the errors location.

3 Resampling strategies

Resampling strategies are pre-processing approaches that
change the original data distribution in order to meet some
user-given criteria. Among the advantages of pre-processing
strategies is the ability of using any standard learning tool.
However, to match a change in the data distribution with the
user preferences is not a trivial task. The proposed resampling
strategies aim at pre-processing the data for obtaining an
increased predictive performance in cases that are scarce and
simultaneously important to the user. As mentioned before,
this importance is described by a relevance function φ(Y ).
Being domain-dependent information, it is the user respon-
sibility to specify the relevance function. Nonetheless, when
lacking expert knowledge, it is possible to automatically gen-
erate the relevance function. Being a continuous function on
the scale [0, 1], we require the user to specify a relevance
threshold, tR , that establishes the minimum relevance score
for a certain value of the target variable to be considered rel-
evant. This threshold is only required because the proposed
resampling strategies need to be able to decide which values
are the most relevant when the distribution changes.

Figure 2 shows an example of an automatically generated
relevance function, with a 0.9 relevance threshold, defined
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Fig. 1 Sample of temperature time series from the bike sharing data
source [14]
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Fig. 2 Relevance function φ(Y ) with a relevance threshold of 0.9
(dashed line) for the time series is shown in Fig. 1

for the temperature time series (Fig. 1) obtained from the
Bike Sharing data source [14] using observations between
22 March and 1 May 2011. In this example, we assign more
importance to the highest and lowest values of Y .

Our resampling strategies proposals for imbalanced time
series data are based on the concept of relevance bins. These
are successive observations of the time series where the
observed value is either relevant or irrelevant, for the user.
Algorithm 1 describes how these bins are created from the
original time series. The algorithm uses time stamp informa-
tion and the relevance of the values from the original time
series, to cluster the observations into bins that have the fol-
lowing properties:

1. Each bin contains observations whose target variable
value has a relevance score that is either all above or
all below the relevance threshold tR ; and

2. Observations in a given bin are always consecutive cases
in terms of the time stamp.

Algorithm 1 Algorithm for the construction of Bins.
1: function BinsConstructor(D, y, φ(y), tR)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6:
7: p ← 1
8: for i ← 1 to nrow(D) do // Collect examples into the bins based on

φ()

9: Binsp ← Binsp

⋃
{〈xi, yi 〉 ∈ D}

10: if φ(yi ) ≤ tR < φ(yi+1) ∨ φ(yi ) > tR ≥ φ(yi+1) then

11: p ← p + 1
12: end if

13: end for

14: return Bins
15: end function

Figure 3 shows the bins obtained in the temperature time
series displayed in Fig. 1. The six dashed rectangles represent
the bins containing consecutive observations with relevant
value of the target variable, while the non-dashed regions
correspond to consecutive observations with common values
with a lower relevance to the user, based on the automatically
generated relevance function (Fig. 2). This means that, for the
example under consideration, we have 13 bins: 6 bins with
relevant values, and 7 bins with common values (non-dashed
areas).

Our first proposals are an adaption to the time series con-
text of the random undersampling, random oversampling and
SmoteR strategies proposed by Torgo et al. [46] and Branco
et al. [4] for tackling imbalanced regression tasks. The main
change applied in both algorithms is the way the sampling
is carried out. Instead of pure random selection as in the
original algorithms, here we carry out sampling within each
individual bin.

The random undersampling (U_B) strategy is described
in Algorithm 2. This approach has the default behaviour of
balancing the number of normal and rare values by randomly
removing examples from the bins with normal cases, i.e. bins
with low relevance examples. In this case, the number of
examples removed is automatically calculated to ensure that:
(1) each undersampled bin gets the same number of normal
cases; and (2) the total number of normal and rare cases are
balanced. The algorithm also allows the specification of a
particular undersampling percentage through the parameter
u. When the user sets this percentage, the number of cases
removed is calculated for each bin with normal values. The
percentage u < 1 defines the number of examples that are
maintained in each bin.

Our second proposal is the random oversampling (O_B)
approach that is described in Algorithm 3. In this strategy, the
default behaviour is to balance the number of normal and rare
cases with the introduction of replicas of the most relevant
and rare cases in the bins containing examples with high
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Fig. 3 Bins generated for time series of Fig. 1 with relevance function (φ()) provided in Fig. 2 using a relevance threshold of 0.9 (dashed ranges

represent bins with important cases)

Algorithm 2 The Random Undersampling algorithm (U_B).
1: function RandUnder(D, y, φ(y), tR, u)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // u - (optional parameter) Percentage of undersampling

7:
8: Bins ← BinsConstructor(D, y, tR)

9: BinsU ← {Binsi : ∀(x, y) ∈ Binsi φ(y) < tR} // Bins where

undersampling will be applied

10: newData ← Bins\BinsU

11: for each B ∈ BinsU do

12: if u then

13: T gt Nr ← |B| × u

14: else

15: tgt Nr ←
Nr. examples in Bins\BinsU

Nr of BinsU
16: end if

17: sel NormCases ← sample(tgt Nr, B) // randomly select a

number of normal cases from bin B

18: newData ← c(newData, sel NormCases) // add the normal

cases to the new data set

19: end for

20: return newData

21: end function

relevance. The number of copies included is automatically
determined to ensure: (1) balance between rare and normal
cases and (2) the same frequency in the oversampled bins.
An optional parameter o allows the user to select a specific
percentage of oversampling to apply in each bin with relevant
values.

The third strategy (SM_B) is an adaptation of the SmoteR
algorithm to the time series context. The SmoteR algorithm
combines random undersampling with oversampling through

Algorithm 3 The Random Oversampling algorithm (O_B).
1: function RandOver(D, y, φ(y), tR, o)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // o - (optional parameter) Percentage of oversampling

7:
8: Bins ← BinsConstructor(D, y, tR)

9: BinsO ← {Binsi : ∀(x, y) ∈ Binsi φ(y) ≥ tR} // Bins where

oversampling will be applied

10: newData ← Bins

11: for each B ∈ BinsO do

12: if o then

13: tgt Nr ← |B| × o

14: else

15: tgt Nr ←
Nr. examples in Bins\BinsO

Nr of BinsO
// Target nr of elements in

each BinsO

16: end if

17: sel RareCases ← sample(tgt Nr, B) // randomly select a num-

ber of rare cases from bin B

18: newData ← c(newData, sel RareCases) // add the rare cases

replicas to the new data set

19: end for

20: return newData

21: end function

the generation of synthetic cases. The default behaviour of
this strategy is to automatically balance the number of exam-
ples in the bins. The random undersampling part is carried out
through the process described in Algorithm 2. The oversam-
pling strategy generates new synthetic cases by interpolating
a seed example with one of its k-nearest neighbours from the
respective bin of rare examples. The main difference between
SM_B and the original SmoteR algorithm is on the process
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used to select the cases for both under- and oversampling.
SM_B works with time series data, and thus it must take the
time ordering of the cases into account, which we have done
by defining the relevance bins that are formed by subsets of
cases that are adjacent in terms of time.

Algorithm 4 shows the process for generating synthetic
examples, and Algorithm 5 describes the SM_B algo-
rithm. This algorithm by default balances the cases in the
bins. Alternatively, the user may set the percentages of
under/oversampling to be applied in the bins using param-
eters u and o. These are optional parameters that allow the
user to completely control the percentages applied.

Algorithm 4 Generating synthetic cases.
1: function genSynthCases(D, ng, k)
2: // D - A data set

3: // ng - Number of synthetic cases to generate for each existing case

4: // k - The number of neighbours used in case generation

5: newCases ← {}

6: for all case ∈ D do

7: if |D \{case}| < k then // Less examples than number of neighbours

required

8: nns ← kNN(|D \ {case}|, case, D \ {case})

9: else

10: nns ← kNN(k, case, D \ {case}) // k-Nearest Neighbours of

case

11: end if

12: for i ← 1 to ng do

13: x ← randomly choose one of the nns

14: for all a ∈ attributes do // Generate attribute values

15: di f f ← case[a] − x[a]

16: new[a] ← case[a] + random(0, 1) × di f f

17: end for

18: d1 ← dist(new, case) // Decide the target value

19: d2 ← dist(new, x)

20: new[T arget] ←
d2×case[T arget]+d1×x[T arget]

d1+d2

21: newCases ← newCases
⋃

{new}

22: end for

23: end for

24: return newCases

25: end function

3.1 Resampling with temporal bias

Concept drift is one of the main challenges in time series fore-
casting. This is particularly true for our target applications
where the preference bias of the user concerns rare values
of the series. In effect, this rarity makes it even more impor-
tant to understand and anticipate when these shifts of regime
occur.

A first step in the identification of these different regimes
according to user preferences is implemented by the previ-
ously described creation of relevance bins using Algorithm 1
(c.f. Fig. 3). Still, within each bin the cases are not equally
relevant. We claim that the most recent cases within each

Algorithm 5 The main SmoteR algorithm (SM_B).
1: function SmoteR(D, y, φ(y), tR, k, o, u)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // k - The number of neighbours used in case generation

7: // o, u - (optional parameters) Percentages of over and undersampling

8:
9: Bins ← BinsConstructor(D, y, tR)

10: BinsU ← {Binsi : ∀(x, y) ∈ Binsi φ(y) ≤ tR} // Bins where

undersampling will be applied

11: BinsO ← {Binsi : ∀(x, y) ∈ Binsi φ(y) ≥ tR} // Bins where

oversampling will be applied

12: newData ← {}

13: for each B ∈ BinsU do // Apply undersampling

14: if u then

15: T gt Nr ← |B| × u

16: else

17: tgt Nr ←
Nr of examples in D

Nr of Bins
18: end if

19: sel NormCases ← sample(tgt Nr, B)

20: newData ← newData
⋃

sel NormCases

21: end for

22: for each B ∈ BinsO do // Generate synthetic examples

23: if o then

24: T gt Nr ← |B| × o

25: else

26: tgt Nr ←
Nr of examples in D

Nr of Bins
27: end if

28: synthCases ← genSynthCases(B, tgt Nr − |B|, k)

29: newData ← newData
⋃

synthCases
⋃

B

30: end for

31: return newData

32: end function

bin may potentially contain important information for under-
standing these changes in regime. In this context, we propose
three new algorithms (Undersampling, Oversampling and
SmoteR with Temporal Bias) that favour the selection of
training cases that are in the vicinity of transitions between
bins. This resembles the adaptive learning notion of gradual
forgetting, where the older cases have a higher likelihood of
being excluded from the learning data. However, this concept
is applied to the full extent of the data and in our proposal of
temporal bias it is applied in each bin of normal cases.

The Undersampling with Temporal Bias (U_T) proposal
is based on Algorithm 2. The main difference is the process of
selecting examples to undersample within each bin of normal
cases. Instead of randomly selecting cases, we use a biased
undersampling procedure. In U_T, for each bin where under-
sampling is applied, the older the example is, the lower the
probability of being selected for the new training set. This
provides a modified distribution which is balanced in terms of
normal and rare cases with a probabilistic preference towards
the most recent cases, i.e. those in the vicinity of bin tran-
sitions. The integration of the temporal bias is performed as
follows:
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– order the cases in each bin B of normal cases by increas-
ing time in a new bin Ord B;

– assign the preference of i × 1
|Ord B| for selecting exi in

Ord B, where i ∈ (1, . . . , |Ord B|);
– select a sample from Ord B based on the former prefer-

ences.

This corresponds to substituting line 17 in Algorithm 2 by
the lines 11, 12 and 13 previously presented in Algorithm 6.

Algorithm 6 The Undersampling with Temporal Bias algo-
rithm (U_T).
1: function UnderT(D, y, φ(y), tR, u)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // u - (optional parameter) Percentage of undersampling

7: · · ·

11: Ord B ← order B by increasing time
12: pre f s ← c( 1

|Ord B| ,
2

|Ord B| , · · · , 1) // Define higher preferences for

most recent cases

13: sel NormCases ← sample(tgt Nr, Ord B, pre f s) // sample

normal cases from bin B based on pre f s

· · ·

14: end function

Algorithm 7 The oversampling with Temporal Bias algo-
rithm (O_T).
1: function OverT(D, y, φ(y), tR, o)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // o - (optional parameter) Percentage of oversampling

7: · · ·

11: Ord B ← order B by increasing time
12: pre f s ← c( 1

|Ord B| ,
2

|Ord B| , · · · , 1) // Define higher preferences for

most recent rare cases

13: sel RareCases ← sample(tgt Nr, Ord B, pre f s) // sample rare

cases from bin B based on pre f s

· · ·

14: end function

Our second proposed strategy, oversampling with tem-
poral bias (O_T), is based on Algorithm 3. This strategy
performs oversampling giving an higher preference to the
most recent examples. This way, the strategy incorporates
a bias towards the newer cases in the replicas selected for
inclusion. The integration of the temporal bias is achieved as
follows:

– order the cases in each bin B of rare cases by increasing
time in a new bin Ord B;

– assign the preference of i × 1
|Ord B| for selecting exi in

Ord B, where i ∈ (1, . . . , |Ord B|);
– select a sample from Ord B based on the former prefer-

ences.

This corresponds to replacing line 17 in Algorithm 3 by
the lines 11, 12 and 13 presented in Algorithm 7.

Our third proposed strategy is SmoteR with Temporal
Bias (SM_T). This approach combines undersampling with
temporal bias in the bins containing normal cases, with
an oversampling mechanism that also integrates a temporal
component. The undersampling with temporal bias strategy
is the same as described in Algorithm 6. Regarding the over-
sampling strategy, we included in the SmoteR generation of
synthetic examples a preference for the most recent exam-
ples. This means that when generating a new synthetic case,
after evaluating the k-nearest neighbours of the seed exam-
ple, the neighbour selected for the interpolation process is the
most recent case. This includes, in the synthetic cases gener-
ation, a time bias towards the most recent examples instead
of randomly selecting cases. Algorithm 8 shows the lines
that were changed in Algorithm 5. To include the temporal
bias, we have replaced line 19 in Algorithm 5 referring to the
undersampling step, by lines 12, 13 and 14 in Algorithm 8.
Also, concerning the oversampling step, we replaced line 28
in Algorithm 5 by line 28 in Algorithm 8.

Regarding the function for generating synthetic examples,
Algorithm 9 describes what was necessary to change in Algo-
rithm 4 for including the temporal bias. In this case, only
line 13 of Algorithm 4 was changed, in order to consider the
time factor, so that the nearest neighbour is not randomly
selected.

Algorithm 8 The SmoteR with temporal bias algorithm
(SM_T).
1: function SmoteRT(D, y, φ(y), tR, k, o, u)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // k - The number of neighbours used in case generation

7: // o, u - (optional parameters) Percentages of over and undersampling

8: · · ·

12: Ord B ← order B by increasing time
13: pre f s ← c( 1

|Ord B| ,
2

|Ord B| , · · · , 1)

14: sel NormCases ← sample(tgt Nr, Ord B, pre f s)

· · ·

15: synthCases ← genSynthCasesT(B, tgt Nr, k)

· · ·

16: end function
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Algorithm 9 Generating synthetic cases with temporal bias.
1: function genSynthCasesT(D, ng, k)
2: // D - A data set

3: // ng - Number of synthetic cases to generate for each existing case

4: // k - The number of neighbours used in case generation

· · ·

13: x ← choose the nns most recent in time
· · ·

14: end function

3.2 Resampling with temporal and relevance bias

This section describes our final proposals of resampling
strategies for imbalanced time series forecasting. The idea of
the three algorithms described in this section is to also include
the relevance scores in the sampling bias. The motivation is
that while we assume that the most recent cases within each
bin are important as they precede regime changes, we con-
sider that older cases that are highly relevant should not be
completely disregarded given the user preferences. To com-
bine the temporal and relevance bias, we propose three new
algorithms: undersampling (Algorithm 10), oversampling
(Algorithm 11) and SmoteR with temporal and relevance
bias (Algorithm 12).

The integration of temporal and relevance bias in under-
sampling (U_TPhi) is performed as follows:

– order examples in each bin B of normal cases by increas-
ing time in a new bin Ord B;

– for each example exi in Ord B use i
|Ord B| × φ(exi [y])

as the preference of selecting example exi ;
– sample a number of examples from Ord B assuming the

previously determined preferences.

This process corresponds to replacing the line 17 in Algo-
rithm 2 by the lines 11, 12 and 13 in Algorithm 10.

Algorithm 10 The Undersampling with Temporal and Rel-
evance Bias algorithm (U_TPhi).
1: function UnderTPhi(D, y, φ(y), tR, u)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // u - (optional parameter) Percentage of undersampling

7: · · ·

11: Ord B ← order B by increasing time
12: pre f s ← c( 1

|Ord B| ×φ(y1),
2

|Ord B| ×φ(y2), · · · , φ(y|Ord B|))

// Preferences based on time and relevance

13: sel NormCases ← sample(tgt Nr, Ord B, pre f s) // sample

normal cases from bin B based on pre f s

· · ·

14: end function

In order to incorporate a temporal and relevance bias in
the oversampling algorithm (O_TPhi), the following steps
were necessary:

– order examples in each bin B of rare cases by increasing
time in a new bin Ord B;

– for each example exi in Ord B use i
|Ord B| × φ(exi [y])

as the preference of selecting example exi ;
– sample a number of examples from Ord B assuming the

above preferences.

This corresponds to replacing line 17 in Algorithm 3 by
lines 11, 12 and 13 in Algorithm 11. These changes allow to
bias oversampling procedures towards recent cases of high
relevance.

Algorithm 11 The oversampling with Temporal and Rele-
vance Bias algorithm (O_TPhi).
1: function OverTPhi(D, y, φ(y), tR, o)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // o - (optional parameter) Percentage of oversampling

7: · · ·

11: Ord B ← order B by increasing time
12: pre f s ← c( 1

|Ord B| ×φ(y1),
2

|Ord B| ×φ(y2), · · · , φ(y|Ord B|))

// Preferences based on time and relevance

13: sel RareCases ← sample(tgt Nr, Ord B, pre f s) // sample rare

cases from bin B based on pre f s

· · ·

14: end function

The same integration of time and relevance bias is also
done in the SmoteR algorithm. In this case, we altered both
the undersampling and oversampling steps of SmoteR algo-
rithm. Algorithm 12 shows what was changed in Algorithm 5
to accomplish this. Lines 19 and 28 of Algorithm 5 were
replaced by lines 12, 13 and 14, and by line 15 in Algo-
rithm 12, respectively. These changes correspond to biasing
the undersampling process to consider time and relevance
of the examples in each bin, as previously described: the
most recent examples with higher relevance are preferred
to others for staying in the changed data set. Regarding the
oversampling strategy, the generation of synthetic examples
also assumes this tendency, i.e. the new examples are built
using the function GenSynthCasesTPhi(), by prioritising
the selection of highly relevant and recent examples. Algo-
rithm 13 shows the changes made in Algorithm 4 (line 13 in
Algorithm 4 was replaced by lines 13, 14 and 15). The bias
towards more recent and high relevance examples is achieved
in the selection of a nearest neighbour for the interpolation,
as follows:
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– calculate the relevance of the k-nearest neighbours;
– calculate the time position of k-nearest neighbours by

ascending order and normalized to [0, 1];
– select the nearest neighbour with the highest value of the

product of relevance by time position.

These changes bias the undersampling and the generation
of new cases of SmoteR algorithm towards the most recent
and relevant cases.

Algorithm 12 The SmoteR with temporal and relevance bias
algorithm (SM_TPhi).
1: function SmoteRTPhi(D, y, φ(y), tR, k, o, u)
2: // D - A data set

3: // y - The target variable

4: // φ(y) - User specified relevance function

5: // tR - The threshold for relevance on y values

6: // k - The number of neighbours used in case generation

7: // o, u - (optional parameters) Percentages of over and undersampling

8: · · ·

12: Ord B ← order B by increasing time
13: pre f s ← c( 1

|Ord B| ×φ(y1),
2

|Ord B| ×φ(y2), · · · , φ(y|Ord B|))

14: sel NormCases ← sample(tgt Nr, Ord B, pre f s)

· · ·

15: synthCases ← genSynthCasesTPhi(B, tgt Nr, k, φ(y))

· · ·

16: end function

Algorithm 13 Generating synthetic cases with temporal and
relevance bias.
1: function genSynthCasesTPhi(D, ng, k, φ(y))
2: // D - A data set

3: // ng - Number of synthetic cases to generate for each existing case

4: // k - The number of neighbours used in case generation

5: // φ(y) - User specified relevance function

· · ·

13: y.rel ← φ(nns[T arget]) // relevance value of nns

14: y.time ← time position of nns sorted by ascending order nor-
malized to [0, 1]

15: x ← argmax
neig∈nns

y.rel(neig) × y.time(neig)

· · ·

16: end function

In summary, for each of the three resampling strategies
considered (random undersampling, random oversampling
and SmoteR), we have proposed three new variants that try
to incorporate some form of sampling bias that we hypothe-
size as being advantageous in terms of forecasting accuracy
on imbalanced time series tasks where the user favours the
performance on rare values of the series. The first variants
(U_B, O_B and SM_B) carry out sampling within relevance
bins that are obtained with the goal of including successive
cases with similar relevance according to the user prefer-
ence. The second variants (U_T, O_T and SM_T) add to the

first variant a preference towards the most recent cases within
each bin as these are the cases that precede regime transitions.
Finally, the third variants (U_TPhi, O_TPhi and SM_TPhi)
add a third preference to the sampling procedures, to also
include the relevance scores of the cases and avoid discard-
ing cases that may not be the most recent, but are the most
relevant for the user.

4 Materials and methods

4.1 Data

The experiments described in this paper use data from 6
different sources, totalling 24 time series from diverse real-
world domains. For the purposes of evaluation, we assumed
that each time series is independent from others of the same
source (i.e. we did not use the temperature time series data in
the Bike Sharing source to predict the count of bike rentals).
All proposed resampling strategies, in combination with each
of the regression tools, are tested on these 24 time series
which are detailed in Table 1. All of the time series were
pre-processed to overcome some well-known issues with
this type of data, as is non-available (NA) observations. To
resolve issues of this type, we resorted to the imputation of
values using the R function knnImputation of the package
DMwR [42]. For each of these time series, we applied the
previously described approach of the time delay coordinate
embedding. It requires an essential parameter: how many val-
ues to include as recent values, i.e. the size of the embed, k.
This is not a trivial task as it requires to try different values
of embed size in order to decide on an acceptable value. In
our experiments, we have used k = 10. Experiments with
a few other values have not shown significant differences in
results. The outcome of the application of this embedding
approach produces the data sets used as learning data.

For each of these data sets, we need to decide which are the
relevant ranges of the time series values. To this purpose, we
use a relevance function. As previously mentioned, due to the
lack of expert knowledge concerning the used domains, we
resort to an automatic approach to define the relevance func-
tion, detailed in Ribeiro [36]. This approach uses box plot
statistics to derive a relevance function that assigns higher
relevance scores to values that are unusually high or low, i.e.
extreme and rare values. We use this process to obtain the
relevance functions for all our time series. An example of
the application of this approach, where only high extreme
values exist (from a data set on water consumption in the
area of Rotunda AEP in the city of Porto), is depicted in
Fig. 4, while in Fig. 2 a case with both type of extremes is
shown. Having defined the relevance functions, we still need
to set a threshold on the relevance scores above which a value
is considered important, i.e. the relevance threshold tR . The
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Table 1 Description of the data sets used

ID Time series Data source Granularity Characteristics % Rare

DS1 Temperature Bike Sharing [14] Daily From 01/01/2011 to 31/12/2012
(731 values)

9.9%

DS2 Humidity 9.3%

DS3 Windspeed 7.8%

DS4 Count of bike rentals 13.3%

DS5 Temperature Hourly From 01/01/2011 to 31/12/2012
(7379 values)

3.5%

DS6 Humidity 4.8%

DS7 Windspeed 12.5%

DS8 Count of bike rentals 17.6%

DS9 Flow of vatnsdalsa river Icelandic River [41] Daily From 01/01/1972 to 31/12/1974
(1095 values)

21.1%

DS10 Minimum temperature Porto weather1 Daily From 01/01/2010 to 28/12/2013
(1457 values)

4.8%

DS11 Maximum temperature 13.3%

DS12 Maximum steady wind 11%

DS13 Maximum wind gust 11.1%

DS14 SP Istanbul stock exchange [1] Daily From 05/01/2009 to 22/02/2011
(536 values)

16.3%

DS15 DAX 11.4%

DS16 FTSE 9.7%

DS17 NIKKEI 11.6%

DS18 BOVESPA 10.1%

DS19 EU 8.2%

DS20 Emerging markets 6.8%

DS21 Total demand Australian electricity load [23] Half-hourly From 01/01/1999 to 01/09/2012
(239602 values)

1.8%

DS22 Recommended retail price 10.2%

DS23 Pedrouços Water consumption of oporto2 Half-hourly From 06/02/2013 to 11/01/2016
(51208 values)

0.08%

DS24 Rotunda AEP 3.4%

1 Source: Freemeteo http://freemeteo.com.pt/
2 Source: Águas do Douro e Paiva http://addp.pt/

definition of this parameter is domain dependent. Still, we
have used a relevance threshold tR of 0.9, which generally
leads to a small percentage of the values to be considered
important. In Table 1 we added an indication concerning the
proportion of rare cases (both very high and low values) for
each used data set.

4.2 Regression algorithms

To test our hypotheses, we selected a diverse set of standard
regression tools. Our goal is to verify that our conclusions
are not biased by a particular tool.

Table 2 shows the regression methods used in our exper-
iments. To ensure that our work is easily replicable we used
the implementations of these tools available in the free and

open source R environment. Concerning the parameter set-
tings for each of these regression methods, we carried out a
preliminary test to search for the optimal parameterization
(i.e. the setting that obtains the best possible results within
a certain set of values of the parameters). The search for
optimal parameters was carried out for each combination
regression method—dataset and the results are detailed in
“Annex 1”. In addition to these standard regression tools, we
also include two time series-specific forecasting approaches:
(i) the ARIMA model [8] and (ii) a bagging approach
proposed by Oliveira and Torgo [34]. Regarding the first,
ARIMA models require a significant tuning effort in terms
of parameters. To tackle this issue, we used the auto.arima

function available in the R package forecast [17], which
implements an automatic search method for the optimal
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Fig. 4 Relevance function φ() with high extreme values and box plot
of Y distribution

Table 2 Regression algorithms and respective R packages

ID Method R package

LM Multiple linear
regression

stats [35]

SVM Support vector
machines

e1071 [31]

MARS Multivariate adaptive
regression splines

earth [32]

RF Random forests randomForest [27]

RPART Regression trees rpart [40]

parameter settings. The second describes a bagging approach
for time series forecasting tasks using bagged regression
trees, proposed by Oliveira and Torgo [34]. The authors dis-
cuss the difficulties in optimizing the size of the embed (w.r.t.
time delay embedding [39]) and propose the use of ensem-
bles with models using different values for embed size. The
authors report best results using ensembles where a third
of the models use the maximum embed kmax , another third
uses an embed of kmax/2 and the last third uses kmax/4.
Additionally, all models within the ensemble use the mean
and variance of the respective embed as extra features. This
approach will be henceforth referred to as BDES.

4.3 Evaluation metrics

When the interest of the user is predictive performance at a
small proportion of cases (i.e. rare cases), the use of standard
performance metrics will lead to biased conclusions [36].

In effect, standard metrics focus on the “average” behaviour
of the prediction models and for the tasks addressed in this
paper, the user goal is a small proportion of cases. Although
most of the previous studies on this type of issues are focused
on classification tasks, Torgo and Ribeiro [36,44] have shown
that the same problems arise on numeric prediction tasks
when using standard metrics, such as mean squared error.

In this context, we will base our evaluation on the utility-
based regression framework proposed in the work by Torgo
and Ribeiro [36,44] which also assumes the existence of a
relevance function φ, as the one previously described. Using
this approach and the user-provided relevance threshold, the
authors defined a series of metrics that focus the evaluation
of models on the cases that the user is interested. In our
experiments, we used the value 0.9 as relevance threshold.

In our evaluation process, we mainly rely on the utility-
based regression metric F1-Score, denoted as F1φ . It inte-
grates the precision and recall measures proposed by the
mentioned framework of Ribeiro [36] and extended by
Branco et al. [3]. In this context, precision, recall and F1-
Score are defined as:

precφ =

∑
φ(ŷi )>tR

(1 + u(ŷi , yi ))
∑

φ(ŷi )>tR
(1 + φ(ŷi ))

(1)

recφ =

∑
φ(yi )>tR

(1 + u(ŷi , yi ))
∑

φ(yi )>tR
(1 + φ(yi ))

(2)

F1φ = 2 ×
precφ × recφ

precφ + recφ

(3)

where φ(yi ) is the relevance associated with the true value yi ,
φ(ŷi ) is the relevance of the predicted value ŷi , tR is the user-
defined threshold signalling the cases that are relevant for the
user, and u(ŷi , yi ) is the utility of making the prediction ŷi

for the true value yi , normalized to [−1, 1].
Utility is commonly referred to as being a function com-

bining positive benefits and negative benefits (costs). In
this paper, we use the approach for utility surfaces by
Ribeiro [36]. Differently from classification tasks, utility is
interpreted as a continuous version of the benefit matrix pro-
posed by Elkan [13]. Coarsely, utility U is defined as the
difference between benefits B and costs C , U = B − C . To
calculate utility, two factors are taken into consideration: (i) if
the true and predicted values and their respective relevance
belong to similar relevance bins (e.g. both values are high
extremes and highly relevant); and (ii) that the prediction is
reasonably accurate, given a factor of maximum admissible
loss, defined by the author. Figures 5 and 6 illustrate the util-
ity surfaces given by the approach of Ribeiro [36] for the
relevance functions presented in Figures 2 and 4, where the
former has both high and low extreme values, and the latter
only has high extreme values.
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In Fig. 5, we observe that, for the accurate predictions (on
the diagonal), the utility values range between 0 and 1. The
higher utility values are given to both extremes (low and high)
of the target variable. Outside the diagonal, we have an error
that must also be taken into account. Predictions reasonably
close to the true values have a positive utility. However, as
the predicted and true values increase its distance, also the
utility becomes negative, tending to −1. Figure 6 shows a
similar setting with only one type of extremes: extreme high
values.

5 Experimental evaluation

This section presents the results of our experimental eval-
uation on three sets of experiments concerning forecasting
tasks with imbalanced time series data sets. Each of these

experiments was designed with the objective of testing the
hypothesis set forth in Sect. 2. In the first set, we evaluate the
predictive accuracy of standard regression tools in combina-
tion with the proposed resampling strategies. In the second
set of experiments, the evaluation is focused on the task
of inferring the possibility of the biased resampling strate-
gies over-performing the non-biased strategies. Finally, in
the third set, we evaluate the hypothesis of enabling a better
predictive performance of models using standard regression
tools with resampling strategies over time series-specific
forecasting approaches such as ARIMA and BDES models.
These models and all of the proposed resampling strategies
combined with each of the standard regression tools were
tested on 24 real-world time series data sets, obtained from
six different data sources described in Table 1. In every appli-
cation of the proposed resampling strategies, an inference
method is applied in order to set the parameters concerning
the amount of undersampling and oversampling. The objec-
tive of this method is to balance the number of normal and
relevant cases in order to have an equal number of both in
the training data.

The evaluation process is based on the evaluation metric
F1φ , as described by the referred utility-based regression
framework (see Sect. 4.3). Concerning the testing of our
hypothesis, we resort to paired comparisons using Wilcoxon
signed rank tests in order to infer the statistical significance
(with p value <0.05) of the paired differences in the outcome
of the approaches.

Concerning evaluation algorithms, caution is required in
the decision on how to obtain reliable estimates of the evalu-
ation metrics. Since time series data are temporally ordered,
we must ensure that the original order of the cases is main-
tained as to guarantee that prediction models are trained with
past data and tested with future data, thus avoiding over-
fitting and over-estimated scores. As such, we rely on Monte
Carlo estimates as the chosen experimental methodology for
our evaluation. This methodology selects a set of random
points in the data. For each of these points, a past window
is selected as training data (Tr) and a subsequent window as
test data (Ts). This methodology guarantees that each method
used in our forecasting task is evaluated using the same train-
ing and test sets, thus ensuring a fair pairwise comparison of
the estimates obtained. In our evaluation 50 repetitions of
the Monte Carlo estimation process are carried out for each
data set with 50% of the cases used as training set and the
subsequent 25% used as test set. Exceptionally, due to their
size, in the case of the data sets DS21 and DS22 we used 10%
of the cases as training set and the following 5% as test set,
and 20% of the cases as training set and the following 10%
as test set for data sets DS23 and DS24. This process is car-
ried out using the infrastructure provided by the R package
performanceEstimation [43].
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Fig. 7 Evaluation of regression algorithms and resampling strategies, with the mean utility-based regression metric F1φ

In order to clarify the nomenclature associated with the
standard regression tools used in this evaluation process,
the experiments include results given by multiple linear
regression (LM), support vector machine (SVM), multi-
variate adaptive regression splines (MARS), random forest
(RF) and regression trees (RPART) models. As for the
resampling strategies, we use random undersampling (U_B),
random oversampling (O_B), SmoteR (SM_B), undersam-
pling (U_T), oversampling (O_T) and SmoteR (SM_T) with
temporal bias, and undersampling (U_TPhi), oversampling
(O_TPhi) and SmoteR (SM_TPhi) with temporal and rele-
vance bias. The overall results given by the F1φ evaluation
metric proposed by Ribeiro [36], obtained with Monte Carlo
estimates, concerning all 24 time series data sets are pre-
sented in Fig. 7.

From the obtained results, we observe that the application
of resampling strategies shows great potential in terms of
boosting the performance of forecasting tasks using imbal-
anced time series data. This is observed within each of the
standard regression tools used (vertical analysis), but also
regarding the data sets used (horizontal analysis), where it
is clear that the approaches employing resampling strategies
obtain the best results overall, according to the averaged F1φ

evaluation metric. We should note that the results obtained
by the baseline SVM models with the optimal parameter
search method employed are very competitive and provide a
better result than the resampled approaches in several occa-
sions. We should also note that although an optimal parameter
search method was employed for the baseline regression
algorithms, and such parameters were used in the resampled
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alternatives, a similar approach was not employed concerning
the optimal parameters for under and oversampling percent-
ages. This is intended, as our objective is to assert the impact
of these resampling strategies in a default setting, i.e. balanc-
ing the number of normal and rare cases.

5.1 Hypothesis 1

The first hypothesis brought forth in our work proposes that
the use of resampling strategies significantly improves the
predictive accuracy of imbalanced time series forecasting
tasks in comparison with the use of standard regression tools.
Although results presented in Fig. 7 point to the empirical
confirmation of this hypothesis, it still remains unclear the
degree of statistical significance concerning the difference in
evaluation between the use or non-use of resampling strate-
gies combined with standard regression tools.

Table 3 presents the paired comparisons of the applica-
tion of random undersampling (U_B), random oversampling
(O_B) and SmoteR (SM_B), and the standard regression
tools with the application of the optimal parameter search
method and without any applied resampling strategy. The
information in the columns represents the number of wins
and losses for each approach against the baseline. In this
case, the baseline represents the optimized models from the
regression tools, without the application of resampling strate-
gies.

We can observe that the use of resampling strategies adds
a significant boost in terms of forecasting relevant cases in
imbalanced time series data, when compared to its non-use,

in all standard regression tools employed in the experiment,
except for the SVM models. Although not in a considerable
magnitude, these models collected more significant wins.
Nonetheless, these experiments still provide sufficient over-
all empirical evidence to confirm our first hypothesis.

Given the results on F1φ measure, a natural question
arises: Are these results a reflection of a good performance
in only one of the two metrics from which F1φ depends? To
assess this, we observed the results of both recφ and precφ on
all alternative approaches tested. These figures are available
at http://tinyurl.com/z4xlup5. Generally, the results obtained
with resampling strategies for precφ measure present higher
gains than those obtained with recφ . Still, we do not observe
a performance decrease with recφ metric in the time series
data used. This means that higher F1φ results are obtained
mostly due to higher precφ values.

5.2 Hypothesis 2

The second hypothesis states that the use of a temporal
and/or relevance bias in resampling strategies significantly
improves the predictive accuracy of time series forecast-
ing tasks in comparison with the baseline versions of each
respective strategy. In order to empirically prove this hypoth-
esis, results in Table 4 presents the paired comparisons of
the application of the resampling strategies U_T, U_TPhi,
O_T, O_TPhi, SM_T and SM_TPhi, against the respective
resampling strategies U_B, O_B and SM_B, for each stan-
dard regression tool. For this experiment set, the baseline is
defined as being the application of random undersampling,

Table 3 Paired comparisons results of each Regression Algorithm Baseline with the application of Resampling Strategies, in the format Number
of Wins (Statistically Significant Wins) / Number of Losses (Statistically Significant Losses)

LM SVM MARS RF RPART

U_B 19 (18) / 5 (4) 8 (6) / 16 (8) 15 (12) / 9 (7) 18 (17) / 6 (2) 12 (8) / 12 (3)

O_B 18 (17) / 6 (3) 7 (6) / 17 (10) 17 (17) / 7 (4) 20 (15) / 4 (1) 11 (9) / 13 (8)

SM_B 19 (18) / 5 (3) 7 (6) / 17 (10) 18 (17) / 6 (4) 20 (20) / 4 (1) 10 (10) / 14 (7)

Table 4 Paired comparisons
results of each Regression
algorithm with Baseline
Resampling Strategies and the
application of Biased
Resampling Strategies, in the
format Number of Wins
(Statistically Significant Wins) /
Number of Losses (Statistically
Significant Losses)

LM.U_B SVM.U_B MARS.U_B RF.U_B RPART.U_B

U_T 14 (2) / 10 (0) 10 (0) / 14 (0) 11 (0) / 13 (2) 12(1) / 12 (2) 14 (4) / 10 (0)

U_TPhi 15 (10) / 9 (3) 11 (5) / 13 (4) 17 (6) / 7 (1) 16 (6) / 8 (3) 16 (7) / 8 (5)

LM.O_B SVM.O_B MARS.O_B RF.O_B RPART.O_B

O_T 14 (8) / 10 (9) 12 (5) / 12 (6) 11 (3) / 13 (4) 8 (4) / 16 (4) 12 (3) / 12 (2)

O_TPhi 14 (9) / 10 (7) 12 (4) / 12 (7) 11 (3) / 13 (2) 8 (2) / 16 (5) 14 (3) / 10 (2)

LM.SM_B SVM.SM_B MARS.SM_B RF.SM_B RPART.SM_B

SM_T 6 (5) / 18 (13) 10 (5) / 14 (10) 9 (6) / 15 (10) 9 (3) / 15 (10) 8 (1) / 15 (11)

SM_TPhi 6 (4) / 18 (11) 9 (6) / 15 (12) 12 (4) / 12 (6) 12 (5) / 12 (10) 6 (4) / 17 (9)
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random oversampling and SmoteR in their initial adaptation
to imbalanced time series.

Results show an overall advantage of the use of tempo-
ral and/or relevance bias in the case selection process of
the resampling strategies used in our experiments for ran-
dom undersampling and random oversampling. In the case
of SmoteR, results show that the use of temporal and/or rel-
evance bias did not improve results, given the experimental
design used. In the case of random undersampling, results
show that the use of temporal bias does not provide any clear
advantage to the baseline version of the resampling strategy.
However, when applying both temporal and relevance bias,
results show significant ability for improvement. As to ran-
dom oversampling, both proposals (temporal and temporal
and relevance bias) show that in many cases it is possible
to obtain a significant advantage result-wise, but there is no
clear advantage for either one. As such, the application of
temporal or temporal and relevance bias does provide empir-
ical evidence that confirm our second hypothesis, in the case
of under and oversampling.

5.3 Hypothesis 3

The third hypothesis proposed in our work is that the use
of resampling strategies significantly improves the predic-
tive accuracy of time series forecasting tasks in comparison
with the use of ARIMA and BDES models. These models
are approaches design specifically for time series forecast-
ing. In this context, we want to check if our proposals based
on resampling are able to significantly improve the predic-
tive performance of these models. We remind that in this
evaluation we employed a version of ARIMA models that
automatically searches for the optimal number of past val-
ues to build the embed, while the standard regression tools
are used with an optimal parameter setting for their base-
line regression algorithm and enhanced through the proposed
resampling strategies. The results from the paired compar-
isons of all the approaches employing resampling strategies
and the ARIMA and BDES models (considered the baseline)
are presented in Table 5.

Results show that independently of the regression tool
used, the application of resampling strategies provides a
highly significant improvement over the results obtained by
the ARIMA and BDES models. This goes to show the valid-
ity of our third and final hypothesis.

6 Discussion

The results presented in the experimental evaluation although
proving to some extent the hypothesis set forth in our work,
they may not provide the strongest evidence given the exper-
imental settings. The main reason for this is related to the

Table 5 Paired comparisons results of ARIMA and BDES models and
the application of Resampling Strategies in each Regression algorithm,
in the format Number of Wins (Statistically Significant Wins) / Number
of Losses (Statistically Significant Losses)

Algorithm Strategy ARIMA BDES

LM U_B 18 (18) / 6 (3) 22 (22) / 2 (2)

U_T 18 (18) / 6 (3) 22 (22) / 2 (2)

U_TPhi 18 (18) / 6 (5) 22 (22) / 2 (2)

O_B 21 (18) / 3 (2) 22 (22) / 2 (2)

O_T 18 (18) / 6 (3) 22 (22) / 2 (2)

O_TPhi 18 (18) / 6 (3) 22 (22) / 2 (2)

SM_B 20 (18) / 4 (3) 22 (22) / 2 (2)

SM_T 18 (17) / 6 (5) 22 (20) / 2 (2)

SM_TPhi 18 (18) / 6 (5) 22 (20) / 2 (2)

SVM U_B 21 (21) / 3 (3) 22 (22) / 2 (1)

U_T 21 (21) / 3 (3) 22 (22) / 2 (1)

U_TPhi 20 (20) / 4 (4) 22 (22) / 2 (2)

O_B 21 (21) / 3 (1) 22 (22) / 2 (2)

O_T 21 (21) / 3 (3) 22 (22) / 2 (2)

O_TPhi 21 (21) / 3 (3) 22 (22) / 2 (2)

SM_B 19 (19) / 5 (1) 22 (22) / 2 (2)

SM_T 20 (20) / 4 (3) 20 (20) / 4 (2)

SM_TPhi 19 (19) / 5 (4) 22 (20) / 2 (2)

MARS U_B 23 (18) / 1 (1) 21 (20) / 3 (3)

U_T 20 (18) / 4 (2) 21 (19) / 3 (2)

U_TPhi 22 (19) / 2 (2) 21 (21) / 3 (3)

O_B 19 (18) / 5 (1) 22 (22) / 2 (2)

O_T 18 (18) / 6 (2) 22 (22) / 2 (2)

O_TPhi 18 (18) / 6 (2) 22 (22) / 2 (2)

SM_B 19 (19) / 5 (1) 22 (22) / 2 (2)

SM_T 19 (19) / 5 (4) 22 (22) / 2 (2)

SM_TPhi 19 (19) / 5 (4) 22 (22) / 2 (2)

RF U_B 19 (18) / 5 (1) 19 (18) / 5 (2)

U_T 21 (18) / 3 (2) 19 (18) / 5 (2)

U_TPhi 21 (17) / 3 (2) 18 (18) / 6 (2)

O_B 20 (17) / 4 (2) 18 (16) / 6 (2)

O_T 19 (17) / 5 (2) 15 (15) / 9 (3)

O_TPhi 19 (16) / 5 (2) 15 (15) / 9 (3)

SM_B 22 (22) / 2 (1) 22 (22) / 2 (2)

SM_T 20 (20) / 4 (2) 22 (22) / 2 (2)

SM_TPhi 20 (20) / 4 (2) 22 (22) / 2 (2)

RPART U_B 22 (20) / 2 (2) 22 (22) / 2 (1)

U_T 22 (20) / 2 (2) 22 (22) / 2 (1)

U_TPhi 20 (18) / 4 (1) 23 (22) / 1 (1)

O_B 20 (20) / 4 (1) 22 (22) / 2 (2)

O_T 20 (20) / 4 (1) 22 (22) / 2 (2)

O_TPhi 21 (20) / 3 (1) 22 (22) / 2 (2)

SM_B 22 (18) / 2 (1) 22 (22) / 2 (1)

SM_T 17 (17) / 7 (4) 22 (22) / 2 (2)

SM_TPhi 19 (18) / 5 (3) 22 (22) / 2 (2)
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optimal parameter search method applied to the regression
algorithms.

This method derives multiple models using diverse param-
eter settings in order to find the best option for each pair
of regression algorithm and dataset. These optimal param-
eter settings are also used in the models where resampling
strategies are applied. This option was intended to ensure any
observed differences are being caused only by the usage of
the resampling strategies. Nonetheless, there is no underly-
ing evidence or intuition that the best parameter settings for
the baseline regression algorithms should be the best setting
for the models when resampling strategies are applied.

This raises a problem as to uncovering the real potential
of the application of resampling strategies when optimized
by a similar optimal parameter search method, by testing
additional parameters concerning such strategies (i.e. the per-
centage of cases to remove and/or add). However, this may
come at a great computational cost. For example, when using
the search method as described in “Annex 1” with an addi-
tional five possible values for under sampling percentage and
four values for oversampling, the amount of models produced
for deciding the optimal parameter settings could amount to
about 600 for a single pair of regression algorithm—data set.

Despite these issues, it is important to assert the per-
formance of models when applying the proposed resam-
pling strategies with optimized parameters. Therefore, we
proceeded with a smaller experimental setting, where all
components of each approach are optimized. This small
subset includes data sets 4, 10 and 12 and the regression
algorithm SVM. This decision is based on the analysis of
previous results, where SVM models provided better eval-
uation results than the models where resampling strategies
were applied, in several occasions. As such, we focus on
this regression model, and on three data sets where the
results of the baseline regression algorithm models provided
better results than any other resampled alternative. The opti-
mal parameterization efforts and results are described in
“Annex 2”, and the results of repeating the same experimen-
tal evaluation described in the previous section considering
only the SVM models, and the three mentioned datasets are
presented in Table 6.

Results show that by optimizing the parameters of both
the regression algorithms and the resampling strategies, the
results obtained by the latter significantly improve the results
over the baseline models of the former. Additionally, it further
shows the potential positive impact in terms of evaluation,
when using the temporal or temporal and relevance bias.

The relations between data characteristics and the perfor-
mance of methods for addressing imbalanced domains have
been explored in other studies [30]. To assess if some time
series characteristics are related with our results, we observed
the F1φ , recφ and precφ metrics on the data sets sorted
according to the following criteria:

Table 6 Evaluation of SVM models and resampling strategies, with
parameter optimization for three datasets, using the mean utility-based
regression metric F1φ

DS4 DS10 DS12

svm 0.584 0.638 0.554

U_B 0.668 0.652 0.610

U_T 0.659 0.643 0.614

U_TPhi 0.651 0.647 0.630

O_B 0.653 0.651 0.611

O_T 0.650 0.652 0.615

O_TPhi 0.651 0.652 0.611

SM_B 0.662 0.675 0.609

SM_T 0.656 0.698 0.600

SM_TPhi 0.649 0.721 0.620

Bold values represent the best results for each of the resampling strate-
gies, in each of the data sets presented

– by ascending order of imbalance (i.e. increasing percent-
age of rare cases);

– by increasing number of total values in the data series;
and

– by increasing number of rare cases, i.e. ascending total
number of rare cases in the time series.

Figure 8 shows the results of F1φ on the data sets sorted
by ascending number of rare cases. The remaining results
are available in http://tinyurl.com/z4xlup5. We observe that
the characteristic that has most impact in our results is the
total number of rare cases. In fact, time series with a low
percentage of rare cases having a large number of values
are not as problematic as time series with fewer values and a
higher percentage of rare cases. This is related with the small
sample problem and is in accordance with other works (e.g.
[20,21]) where it is observed that when the data set is large
enough the learners can more easily detect rare cases.

Notwithstanding the predictive evaluation results pre-
sented, the impact of our proposed resampling strategies in
terms of computation requirements has not been addressed
so far. Considering that changing the data set may have a
computational impact in building the models and forecasting
future values, this issue should be studied and discussed. As
such, in Fig. 9 we present a comparative evaluation of the
average computational time necessary to build models using
each of the regression algorithms with application of resam-
pling strategies, for all datasets, in the same experimental
setting defined for the experimental evaluation described in
Sect. 5. The results report to the proportion of computational
time required to train each model using resampling strategies
in comparison with the non-resampled versions (i.e. baseline
regression algorithms). The environment for these tests was
an 8-core AMD Opteron 6300 processor with 2.5 GHz and 32
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Fig. 8 Evaluation of regression algorithms and resampling strategies, with the mean utility-based regression metric F1φ with data sets sorted by
increasing number of rare cases

GBytes of main memory, running Ubuntu 14.04 with kernel
3.16.0-30-generic.

By analysing the results shown by the computational time
comparative evaluation, we are able to reach strong con-
clusions. First, that the use of resampling strategies have a
different impact concerning computational time: (i) under
sampling considerably improves the computational time
required to train the models; (ii) oversampling requires a
much longer computational time to train the models; and
(iii) the SmoteR resampling strategy shows a similar com-
putational time to train the models in comparison with the
baseline regression algorithms. Results also show that these
conclusions are applicable across all of the regression algo-
rithms used in the evaluation. Secondly, results show that the
use of temporal or temporal and relevance bias does not show

a significant advantage or disadvantage in comparison with
the computational time required to train the models by the
baseline version of the resampling strategies.

7 Related work

Typically the problem of imbalanced domains is tackled
either by pre-processing methods, special-purpose learning
methods or post-processing methods [5]. In the specific con-
text of forecasting tasks with imbalanced time series data, we
did not find any previous work that proposes the use of resam-
pling strategies. However, we found different approaches
related to the scope of our endeavour, in the problems of rare
event forecasting and anomaly detection, which we describe
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below. Most of this work is focused in specific problems for
which special-purpose learners are developed. These pro-
posals tend to be very effective in the context for which they
were developed for. However, these methods performance
is severely affected when their use is extrapolated to other
problems. This means that they cannot be used as general
methods for imbalanced time series, as opposed to resam-
pling strategies.

A genetic-base machine learning system, timeweaver, was
proposed by Weiss and Hirsh [50], designed to address
rare event prediction problems with categorical features, by
identifying predictive temporal and sequential patterns. The
genetic algorithm used is responsible for updating a set of
prediction patterns, where each individual should perform
well at classifying a subset of the target events and which
collectively should cover most of those events.

Vilalta and Ma [47] proposed an algorithm to address pre-
diction of rare events in imbalanced time series. The authors
proposed to resolve the class-imbalance by transforming the
event prediction problem into a search for all frequent event
sets (patterns) preceding target events, focused solely on the
minority class. These patterns are then combined into a rule-
based model for prediction. Both the work of Weiss and
Hirsh [50] and of Vilalta and Ma [47] assume that events
are characterized by categorical features and display uneven
inter-arrival times. However, this is not assumed in classical
time series analysis.

A new algorithm, ContrastMiner, is proposed by Wei
et al. [49] for detection of sophisticated online banking fraud.
This algorithm distinguishes between fraudulent and legiti-
mate behaviours through contrast patterns. Then, a pattern
selection and risk scoring are performed by combining dif-
ferent models predictions.

Temporal sequence associations are used by Chen et al. [11]
for predicting rare events. The authors propose a heuris-
tic for searching interesting patterns associated with rare
events in large temporal event sequences. The authors com-
bine association and sequential pattern discovery with a
epidemiology-based measure of risk in order to assess the
relevance of the discovered patterns.

Another interesting direction was pursued by Cao et. al. [7]
with the development of new algorithms for discovering rare
impact-targeted activities.

In anomaly detection [15] problems, applications for
several domains have been proposed using diverse tech-
niques. In the Medical and Public Health Domain, Lin et
al. [28] use nearest neighbour-based techniques to detect
these rare cases. These same techniques are used by Basu
and Meckesheimer [2], and parametric statistical modelling
is used by Keogh et al. [22] in the domain of mechanical
units fault detection. Finally, Scott [37] and Ihler et al. [18]
propose Poisson-based analysis techniques for the respec-
tive domains of intrusion detection in telephone networks
and Web Click data.
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Concerning our proposal of temporal and temporal and
relevance bias in imbalanced time series forecasting tasks, it
is somewhat related to the seminal work of Japkowicz [19]
in classification tasks. The author proposes the concept of
focused resampling, for both under and oversampling. The
former reduces the number of cases further away from the
boundaries between the positive class (i.e. rare cases) and
the negative class. The latter increases the number of cases
closest to this boundary. Several other proposals of informed
resampling have been presented since then (e.g. [25,29]).

8 Conclusions

In this work, we study the application of resampling strategies
with imbalanced time series data. Our overall objective is to
enhance the predictive accuracy on rare and relevant cases
as this is the goal in several application domains. This fact
increases the interest in finding ways to significantly improve
the predictive accuracy of prediction models in these tasks.

In this context, we have proposed the extension of existing
resampling methods to time series forecasting tasks. Resam-
pling methods can be used to change the distribution of the
available learning sets with the goal of biasing learning algo-
rithms to the cases that are more relevant to the users. Our
proposals build upon prior work on resampling methods for
numeric prediction tasks. Besides the extension of existing
resampling strategies, we propose new resampling strategies
with the goal of adapting them to the specific characteristics
of time series data. Specifically, we have proposed sampling
strategies that introduce a temporal bias that we claim to
be useful when facing non-stationary time series that are
frequently subjected to concept drift. We also propose a rel-
evance bias that makes more relevant cases have a higher
preference of being selected for the final training sets.

An extensive set of experiments was carried out to ascer-
tain the advantages of applying resampling strategies to such
problems. Results from the experimental evaluation show
a significant improvement in the predictive accuracy of the
models, focusing on rare and relevant cases of imbalanced
time series data. This is confirmed by all tested evaluation
metrics. Results show that: (1) the application of resampling
strategies in combination with standard regression tools can
significantly improve the ability to predict rare and relevant
cases in comparison with not applying these strategies; (2)
the use of a temporal and/or relevance bias can improve the
results in relation to the non-biased resampling approaches;
and (3) the combination of resampling approaches with
standard regression tools provides a significant advantage
in comparison with models (ARIMA and BDES) specifi-
cally developed for time series forecasting. Additionally, by
studying the computational time associated to learning pre-
diction models with and without resampling strategies, we

observe that undersampling allows for a significant reduction
of this required computation time, that oversampling greatly
increases the required time and that SmoteR presents a sim-
ilar computational time in relation to the baseline regression
tools.

Concerning future work, we plan to further evaluate these
proposals concerning the effect of additional parameters val-
ues such as the relevance threshold or the k number of nearest
neighbours in SmoteR, and study ways of automatically
adapting these parameters to the distribution. We also plan to
generalize the concept of bias in resampling strategies as to
study the possibility of its use not only in time series prob-
lems, but also in classification and regression tasks using
various types of dependency-oriented data, such as discrete
sequences, spatial and spatiotemporal data.

For the sake of reproducible science, all code and data nec-
essary to replicate the results shown in this paper are available
in the Web page http://tinyurl.com/zr9s6tz. All code is writ-
ten in the free and open source R software environment.
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Appendices

Annex 1

The following list describes the parameters tested in each of
the regression algorithms used in the experimental evaluation
(Sect. 5).

– svm: cost ∈ {10, 150, 300}, gamma ∈ {0.01, 0.001};
– mars: nk ∈ {10, 17}, degree ∈ {1, 2}, thresh ∈

{0.01, 0.001};
– rf : mtry ∈ {5, 7}, ntree ∈ {500, 750, 1500};
– rpart: minspli t ∈ {10, 20, 30}, cp ∈ {0.1, 0.01, 0.001}

To find the optimal combination of parameters for each
of the standard regression algorithms, an experimental eval-
uation was carried out. We applied the same experimental
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Table 7 Optimal parameterization for each standard regression algo-
rithm in each data set used for the experimental evaluation

SVM MARS RF RPART

cost gamma nk degree thr mtry ntree minsplit cp

DS1 300 0.01 17 1 0.001 5 1500 10 0.01

DS2 300 0.01 17 2 0.001 7 750 10 0.001

DS3 300 0.01 17 1 0.001 7 500 10 0.001

DS4 150 0.01 10 1 0.001 7 750 10 0.1

DS5 300 0.001 10 2 0.001 7 750 20 0.001

DS6 300 0.01 17 2 0.001 5 500 10 0.001

DS7 300 0.01 10 1 0.001 7 750 30 0.001

DS8 300 0.01 17 2 0.001 7 750 30 0.001

DS9 10 0.01 10 2 0.001 5 750 30 0.001

DS10 300 0.01 17 2 0.001 7 500 10 0.001

DS11 10 0.01 17 1 0.001 7 500 20 0.001

DS12 300 0.01 17 1 0.001 7 750 10 0.001

DS13 150 0.01 17 2 0.001 7 750 10 0.001

DS14 150 0.01 17 2 0.001 7 1500 10 0.001

DS15 300 0.01 17 2 0.001 5 1500 10 0.001

DS16 300 0.01 17 2 0.001 7 750 10 0.001

DS17 300 0.01 17 2 0.001 7 500 10 0.001

DS18 300 0.01 17 2 0.001 5 500 10 0.001

DS19 150 0.01 17 1 0.01 5 500 10 0.001

DS20 300 0.01 17 2 0.001 7 500 10 0.001

DS21 150 0.001 17 2 0.001 7 500 10 0.001

DS22 150 0.001 10 2 0.001 7 500 10 0.001

DS23 10 0.001 10 1 0.001 5 500 10 0.001

DS24 150 0.01 17 1 0.001 7 750 10 0.001

methodology as described in Sect. 5. The combination of
parameters for each regression algorithm, in each data set
used, is detailed in Table 7.

Annex 2

To optimize SVM models and the resampling strategies
applied the following parameters were tested: cost ∈

{10, 150, 300}, gamma ∈ {0.01, 0.001}, over ∈ {2, 3, 5, 10},
under ∈ {0.1, 0.2, 0.4, 0.6, 0.8}.

To find the optimal combination of parameters for each
of the standard regression algorithms, an experimental eval-
uation was carried out. We applied the same experimental
methodology as described in Sect. 5, using 10 repetitions of
the Monte Carlo simulations. The combination of parame-
ters in the three data sets used (4, 10 and 12) is detailed in
Table 8.

Table 8 Optimal parameterization for SVM regression algorithm with
the application of resampling strategies in three data sets

UNDER OVER SmoteR

c g u c g o c g u o

DS4

B 10 0.01 0.4 10 0.001 5 150 0.001 0.8 2

T 10 0.01 0.4 150 0.001 2 150 0.001 0.6 2

TPhi 10 0.01 0.8 150 0.01 2 10 0.001 0.8 2

DS10

B 10 0.001 0.1 10 0.001 2 10 0.001 0.8 10

T 150 0.001 0.1 150 0.001 2 10 0.001 0.6 5

TPhi 300 0.001 0.1 150 0.001 2 300 0.001 0.6 3

DS12

B 150 0.001 0.2 10 0.001 10 10 0.001 0.2 3

T 300 0.001 0.2 150 0.001 3 10 0.001 0.8 5

TPhi 150 0.001 0.2 150 0.001 3 150 0.001 0.4 2

Parameters optimized include cost (c), gamma (g), percentage of under-
sampling (u) and oversampling (o)
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