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Resampling Strategy in Sequential Monte Carlo

for Constrained Sampling Problems

Chencheng Cai, Rong Chen and Ming Lin

Temple University, Rutgers University and Xiamen University

Abstract: Monte Carlo sample paths of a dynamic system are useful for studying the underlying system

and making statistical inferences related to the system. In many applications the dynamic system

under study involves various types of constraints or observable features that need to be incorporated.

In this paper we investigate efficient methods for generating sample paths (with importance weights) of

dynamic systems with rare and strong constraints, under a sequential Monte Carlo (SMC) framework.

Specifically, we present a general formulation of the constrained sampling problem. Under such a

formulation, we propose a flexible resampling strategy based on a potentially time-varying lookahead

timescale and identify the corresponding optimal resampling priority scores based on an ensemble of

forward or backward pilots. Several examples are used to illustrate the performance of the proposed

methods.

Key words and phrases: Constrained sampling, Pilot, Priority score, Resampling, Sequential Monte

Carlo
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1 INTRODUCTION

1. Introduction

Stochastic dynamic systems are used in a wide range of applications in physics, finance,

engineering and other fields. One of the important tools of studying complex dynamic

system is to obtain Monte Carlo sample paths of the underlying stochastic process. Such

samples can be used for statistical inferences under the Monte Carlo framework, as well as for

providing better understanding of the behavior of the system. The sequential Monte Carlo

(SMC) method is a class of efficient sampling methods that utilize the sequential nature of

the underlying dynamic process. It has been used in a wide range of applications (Gordon

et al., 1993; Kong et al., 1994; Avitzour, 1995; Liu and Chen, 1995; Kitagawa, 1996; Kim

et al., 1998; Pitt and Shephard, 1999; Chen et al., 2000; Godsill et al., 2004; Doucet and

Johansen, 2011). Although SMC is often used to estimate the marginal distribution of the

underlying state at each time point (either filtering or smoothing), it also naturally provides

sample paths (with importance weights) of the joint distribution of the entire state sequence.

In this paper we focus on the problem of efficiently generating such sample paths under the

SMC framework.

In practice, a stochastic system often comes with external observable information, includ-

ing direct/indirect measurements, constraints and others. For example, in many physics and

financial applications, one is interested in the distribution of all possible paths of a diffusion

process with fixed starting and ending points (a diffusion bridge) (Pedersen, 1995; Durham

and Gallant, 2002; Lin et al., 2010). In RNA and protein structure studies, the properties of
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1 INTRODUCTION

self-loops (a single strand of RNA or protein that forms a loop in space by an internal chem-

ical bond) are often studied through samples from the distribution of self-avoiding walks on

a lattice with the same starting and ending points (Zhang et al., 2009; Lin et al., 2008). In

computing long-run marginal expected shortfall in financial risk management, sample paths

of a bivariate GARCH process need to be generated, under a crisis constraint enforced on

one of the processes (the one representing the market) to end below a threshold, say, 40%

loss (Acharya et al., 2012).

In this article, we provide a general formulation that includes many constrained path

simulation problems. The formulation allows the discussion of a general guidance for design-

ing efficient SMC implementations for such problems. Since the standard SMC approach

encounters difficulties in dealing with the constrained systems, we propose a flexible resam-

pling strategy and identify the optimal resampling priority scores. Two efficient approaches

for estimating the optimal priority scores are developed, using forward pilots and backward

pilots correspondingly.

The rest of this paper is organized as follows. In Section 2, the constrained sampling

problem is formally stated. A general framework of SMC with constraints (SMCc) method

is proposed, with a flexible resampling strategy and optimal resampling priority scores.

Section 3 presents two efficient pilot methods to estimate the optimal priority scores. Three

examples with different types of constraints are used to demonstrate performance of the

proposed methods in Section 4. Section 5 concludes.
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2 SMC WITH CONSTRAINTS

2. SMC with Constraints

2.1 Stochastic Dynamic System with Constraints

The class of stochastic dynamic system we consider contains a sequence of latent random

states variables x0:T = {x0, x1, · · · , xT} defined on a probability space (Ω,F ,P). The dy-

namics of the system are governed by an initial state distribution p(x0) and a known forward

propagation distribution p(xt |x0:t−1), where p(·) denotes the density function/probability.

In addition, there are external constraints imposed on the latent states. Here we consider

the new constraints available at time t as an event It. Let Ct = I0 ∩ I1 ∩ · · · ∩ It be the

cumulative constraint event up to time t. Then, C0 ⊃ C1 ⊃ · · · ⊃ CT forms a sequence of

monotonically non-increasing events. When there is no additional constraint at time t, we

have It = Ω and Ct = Ct−1.

We focus on effective SMC method under the importance sampling framework to obtain

properly weighted samples of the entire path x0:T given the full constraint set CT . The target

posterior distribution of x0:T is

p(x0:T |CT ) ∝ p(x0:T , CT ) = p(x0, C0)
T∏
t=1

p(xt, Ct |x0:t−1, Ct−1), (2.1)

where p(x0, C0) and p(xt, Ct |x0:t−1, Ct−1) = p(xt |x0:t−1, Ct−1)p(Ct |x0:t, Ct−1), t = 1, · · · , T ,

are often specified by the system.

Many dynamic systems can be reformulated as a constrained sampling problem, including

state space models. We provide five examples in Appendix A, showing the setting includes

several classical problems as well as several new classes of problems.
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2 SMC WITH CONSTRAINTS

We can measure the strength of a constraint through the difference between the joint

distributions of the latent states with and without such a constraint. Specifically, we define

the strength of It, the constraint imposed at time t, as the following χ2-divergence:

G(t) := χ2
(
p(x0:t |Ct−1) ∥ p(x0:t |Ct)

)
=Varp(x0:t |Ct−1)

[
p(x0:t |Ct)

p(x0:t |Ct−1)

]
. (2.2)

It is closely related to importance sampling, as it is the variance of the importance weight

w(x0:t) = p(x0:t |Ct)/p(x0:t |Ct−1) when one generates samples from the proposal distribution

p(x0:t |Ct−1) to make inference with respect to the target distribution p(x0:t |Ct). A “strong”

constraint would alter the distribution of underlying states significantly.

2.2 Intermediate Distributions under Constraints

In this paper, we consider generating a properly weighted sample set {(x0:T , w
(i)
T )}i=1,··· ,n with

respect to p(x0:T |CT ) under a general SMC framework, which satisfies∑n
i=1w

(i)
T h(x

(i)
0:T )∑n

i=1w
(i)
T

a.s.−→ Ep(x0:T |CT )

[
h(x0:T )

]
, (2.3)

as n→∞ for any function h(·) with finite expectation under p(x0:T |CT ).

The SMC method has been extensively studied in the literature, for example, Liu and

Chen (1998); Doucet and Johansen (2011) and the references therein. We will use the fol-

lowing notations for clarity. Consider a sequence of forward intermediate target propagation

distributions with densities π0(x0), π1(x0:1), · · · , πT (x0:T ). The SMC approach proposes

to generate samples x
(i)
0:T = (x

(i)
0 , x

(i)
1 , · · · , x(i)

T ), i = 1, · · · , n, sequentially from a series of

proposal conditional distributions q(xt |x0:t−1), t = 0, 1, · · · , and update the corresponding

5

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2 SMC WITH CONSTRAINTS

importance weights by

w
(i)
t =

πt(x
(i)
0:t)

q(x
(i)
0 )

∏t
s=1 q(x

(i)
s |x(i)

0:s−1)
= w

(i)
t−1

πt(x
(i)
0:t)

πt−1(x
(i)
0:t−1)q(x

(i)
t |x

(i)
0:t−1)

,

with w
(i)
0 = π0(x

(i)
0 )/q(x

(i)
0 ). The distribution q(x0)

∏T
s=1 q(xs | x0:s−1), from which the

samples x
(i)
0:T , i = 1, · · · , n, are generated, is called the sampling distribution or proposal

distribution. At each time t, if the intermediate target distribution πt(x0:t) is absolutely

continuous with respect to the proposal distribution q(x0)
∏t

s=1 q(xs |x0:s−1), the sample set

{(x(i)
0:t, w

(i)
t )}i=1,··· ,n is properly weighted with respect to πt(x0:t).

If we set πT (x0:T ) to be the joint posterior distribution p(x0:T |CT ) in (2.1), then at

the end, the weighted sample set {(x(i)
0:T , w

(i)
T )}i=1,··· ,n can be used for statistical inferences

of p(x0:T |CT ) as in (2.3). We consider the following three distributions as the potential

intermediate target distributions πt(x0:t): for t = 0, 1, . . . , T ,

p̄t(x0:t) := p(x0:t |CT ), (2.4)

p+t (x0:t) := p(x0:t |Ct+), (2.5)

p̃t(x0:t) := p(x0:t|Ct), (2.6)

where t+ ⩾ t is the next time when a “strong” constraint is imposed after time t.

The marginal posterior distribution p̄t(x0:t) in (2.4) is naturally induced by the joint

posterior distribution p(x0:T |CT ), but it is usually infeasible to use as the intermediate

target distribution πt(x0:t) since it involves the high dimensional integral

p(x0:t | CT ) ∝
∫
· · ·

∫ T∏
s=1

p(xs, Cs |x0:s−1, Cs−1) dxt+1 · · · dxT . (2.7)
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2 SMC WITH CONSTRAINTS

Conventional SMC approaches (Gordon et al., 1993; Liu and Chen, 1998) use the forward

propagation distributions p̃t(x0:t) in (2.6), using only the information up to time t. Most of

the time it is not efficient, especially when future constraints have a strong impact on the

distribution of the current state. To overcome this drawback, we propose to use p+t (x0:t)

in (2.5) as πt(x0:t). It uses part of the future events and constraints to correct the Monte

Carlo samples proactively. Recall that t+ ⩾ t is the next time when a strong constraint is

imposed after time t. This is essentially a partial lookahead scheme with a variable lookahead

timescale.

The distribution p+t (x0:t) = p(x0:t |Ct+) in (2.5) is a compromise between p̄t(x0:t) =

p(x0:t |CT ) in (2.4) and p̃t(x0:t) = p(x0:t |Ct) in (2.6), where the former considers the whole

constraint set and the latter ignores all future constraints. At time t, the distribution p+t (x0:t)

seeks the next available strong constraint for guidance, but not the entire future constraint

set as p̄t(x0:t) would require. In most cases, the next available strong constraint plays an

important role in shaping the path distribution. The compromised distribution p+t (x0:t)

balances the use of future constraints and the computational efficiency.

To use p+t (x1:t) in (2.5) as the intermediate target distribution πt(x1:t), the “optimal”

proposal distribution is q(xt |x0:t−1) = p+t (xt |x0:t−1) = p(xt |x0:t−1, Ct+) that incorporate

the cumulative constraints up to time t+, as suggested by Kong et al. (1994) and Liu and

Chen (1998). However, it is difficult in many cases, especially when t+ is far away from t,

since it involves a high dimensional integral similar to that in (2.7). On the other hand,

p̃t(·) in (2.6) is often easy to work with, using the proposal distributions equal or close
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2 SMC WITH CONSTRAINTS

to p̃t(xt |x0:t−1) = p(xt |x0:t−1, Ct). Specifically, we propose to generate samples under the

distribution p̃t(·), but use a resampling step so that the resulting samples (before weighting)

follow p+t (·).

2.3 Optimal Resampling Scores under Constraints

An important component of SMC implementation is the resampling step, in which each

sample x
(i)
0:t is assigned with a priority score β

(i)
t > 0 that reflects the algorithm’s preference

on this sample, then a new set of samples {x∗(i)
0:t }i=1,··· ,n are drawn from the current set of

samples {x(i)
0:t}i=1,··· ,n with replacement, with probabilities proportional to the priority scores.

The sample weights are then adjusted to w
∗(i)
t = w

(i)
t /β

(i)
t . The resampling step tends to

remove the samples with low priority scores and duplicate those with high priority scores.

The resulting weighted sample set {(x∗(i)
0:t , w

∗(i)
t )}i=1,··· ,n remains to be properly weighted with

respect to πt(x0:t) (Douc et al. (2014) Chapter 10.3 and Tsay and Chen (2019), Lemma 8.7).

In conventional SMC approaches, the resampling priority scores are often chosen as the

sample weights, i.e., β
(i)
t = w

(i)
t , so that the samples will have equal weights after resampling

and hence can be viewed as samples of the intermediate target distribution πt(x0:t) (Gordon

et al., 1993; Kong et al., 1994; Liu and Chen, 1998). This is a natural choice for filtering

problems. However, it is not necessarily a good choice if we focus on the final target distri-

bution πT (x0:T ). There is a great flexibility in the selection of the priority scores, as long as

it does not assign a zero score to any of the samples. With a careful construction it may

improve sampling efficiency significantly (Pitt and Shephard, 1999; Zhang et al., 2007). Its
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2 SMC WITH CONSTRAINTS

design is the key in developing efficient SMC for the constrained systems in this paper.

In the constraint problem with intermediate target distribution p+t (x0:t), we notice that

p+t (x0:t) ∝ p̃t(x0:t)p(Ct+|x0:t, Ct).

A convenient way to draw samples from the distribution p+t (·) utilizing this fact is to conduct

a resampling step of the samples generated from p̃t(·). Specifically, we propose to track the

exact weight w
(i)
t under the distribution p̃t(·), but use a resampling step with the priority

score

β
(i)
t := w

(i)
t

p+t (x
(i)
0:t)

p̃t(x
(i)
0:t)
∝ w

(i)
t p(Ct+ |x

(i)
0:t, Ct) (2.8)

so that the resulting samples {x∗(i)
0:t }i=1,··· ,n follow p+t (·). We call β

(i)
t = w

(i)
t p(Ct+ |x

(i)
0:t, Ct) as

the optimal priority score with respect to the constraint set Ct+ .

We choose to use the resampling approach to incorporate information of future constraints

since it is easy to conduct. We refer to this method as the sequential Monte Carlo with

constraints (SMCc) method. The exact value of p(Ct+ |x
(i)
0:t, Ct) is often difficult to obtain.

We can use an approximated value, p̂(Ct+ |x
(i)
0:t, Ct), to construct β

(i)
t in (2.8). The method is

presented in Algorithm 1. We will discuss how to approximate p(Ct+ |x
(i)
0:t, Ct) in Section 3.

We point out that, in the SMCc algorithm in Algorithm 1, the sample set {(x(i)
0:t, w

(i)
t )}

i=1,··· ,n obtained at each time t < T is properly weighted with respect to p̃t(x0:t) = p(x0:t |Ct),

not p+t (x0:t). However, we are only interested in the entire sample path x0:T , which follows

the desired distribution p̃T (x0:T ) = p+t (x0:T ) = p(x0:T |CT ) at time T .

The simple random sampling with replacement in Algorithm 1 is not the most efficient
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2 SMC WITH CONSTRAINTS

Algorithm 1 : Sequential Monte Carlo with Constraints (SMCc)

• At times t = 0, 1, · · · , T :

– Propagation: For i = 1, · · · , n,

∗ Draw x
(i)
t from distribution q(xt|x(i)

0:t−1) and let x
(i)
0:t = (x

(i)
0:t−1, x

(i)
t ).

∗ Update weights by setting

w
(i)
t ← w

(i)
t−1 ·

p(x
(i)
0:t, |Ct)

p(x
(i)
0:t−1, |Ct−1)q(x

(i)
t |x

(i)
0:t−1)

∝ w
(i)
t−1 ·

p(x
(i)
t , Ct |x(i)

0:t−1, Ct−1)

q(x
(i)
t |x

(i)
0:t−1)

.

– Set priority scores β
(i)
t = w

(i)
t p̂(Ct+ |x

(i)
0:t, Ct), i = 1, · · · , n.

– Resampling:

∗ Draw samples {J1, . . . , Jn} from the set {1, . . . , n} with replacement, with

probabilities proportional to {β(i)
t }i=1,...,n.

∗ Let x
∗(i)
0:t = x

(Ji)
0:t and w

∗(i)
t = w

(Ji)
t /β

(Ji)
t for i = 1, · · · , n.

∗ Return the new set {(x(i)
0:t, w

(i)
t )}i=1,...,n ← {(x∗(i)

0:t , w
∗(i)
t )}i=1,...,n.

• Return the weighted sample set {(x(i)
0:T , w

(i)
T )}i=1,...,n.

method for resampling. Some improved resampling schemes, such as the residual resampling

method (Liu and Chen, 1998) and the systematic resampling method (Carpenter et al.,

1999), are developed to reduce variation introduced by the resampling step.

10

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2 SMC WITH CONSTRAINTS

2.4 Some Discussions

Determination of t+: In practice, the selection of t+ depends on specific problems and

can be user-defined. For example, in the rare and strong constraint cases such as the one

in the diffusion bridge sampling problem (Lin et al., 2010), one may use t+ = T , the end

constraint. In frequent and weak constraints case such as in the state space model where the

observation yt serves as a weak constraint, we may use t+ = min{t+d, T}, taking into account

the information of the next d observations yt+1, . . . , yt+d as in Lin et al. (2013). This is a

fixed lookahead approach. We can also use the constraint strength measure G(t) defined in

(2.2) as a general guidance to determine t+. For example, we may set t+ = mins>t{G(s) > c}

for some threshold value c. In practice, the exact value of G(t) may not be easy to compute,

but can be estimated using a trial run of SMC with a small sample size, since G(t) can be

estimated by the variance of the importance weights of the target distribution p(x0:t |Ct) to

the proposal distribution p(x0:t |Ct−1). Specifically, using q(xt |x(i)
0:t−1) = p(xt |x(i)

0:t−1, Ct−1) as

the proposal distribution and resampling with the importance weights as the priority score

at every step, G(t) can be estimated by Ĝ(t) = v̂ar(wt)/w
2
t , where wt and v̂ar(wt) are the

sample mean and sample variance of the weights {w(i)
t }i=1,··· ,n, respectively. Then the time t

is identified as a time point with a strong constraint when Ĝ(t) exceeds a certain threshold

value, or equivalently, when the effective sample size, which is defined as n/
[
1+ Ĝ(t)

]
in the

SMC literature (Kong et al., 1994), is less than a certain value. The procedure only needs

to be carried out once to identify all strong constraints.
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

Relation to other particle filters: The idea of using future constraints to estimate the

current state under the framework of SMC has been studied in Pitt and Shephard (1999);

Doucet et al. (2006); Lin et al. (2013); Whiteley and Lee (2014) and others. The auxiliary

particle filter (Pitt and Shephard, 1999) suggests first conducting resampling according to

the priority score βt = wtp(Ct+∆ |x0:t, Ct) for a certain number of lookahead steps ∆ > 0 at

time t (usually ∆ = 1), then drawing samples of xt+1 from q(xt+1 |x0:t) = p(xt+1 |x0:t, Ct+∆).

The twisted particle filter in Whiteley and Lee (2014) introduces a special sample to incor-

porate information of future constraints in SMC implementation. Whiteley and Lee (2014)

showed the theoretical properties of using such a procedure. The block sampling method in

Doucet et al. (2006) also proposes to use future constraints to update xt. All these meth-

ods involve evaluation of p(Ct+∆ |x0:t, Ct). When p(Ct+∆ |x0:t, Ct) does not have a closed

form, the extended Kalman filter is often used to find an approximation (Jazwinski, 1970).

This approximation often requires high computational costs and can be poor when ∆ is

large. In Section 3, we focus on developing computationally efficient methods to approxi-

mate p(Ct+ |x0:t, Ct) in the optimal priority score βt = wtp(Ct+ |x0:t, Ct).

3. Approximation of the Optimal Priority Score Using Pilots

We consider the evaluation of the term p(Ct+ |x0:t, Ct) in the optimal priority score (2.8),

which is

p(Ct+ |x0:t, Ct) =

∫
· · ·

∫ t+∏
s=t+1

p(xs, Cs |x0:s−1, Cs−1)dxt+1 · · · dxt+ . (3.9)
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

The integrand is often well-defined by the system, but the integral does not have a closed-

form solution in most cases.

In some cases one may assume a parametric form for p(Ct+|x0:t, Ct), based on some

prior knowledge. Zhang et al. (2007) and Lin et al. (2008) used the SMCc approach with

t+ = T to generate protein conformation samples satisfying certain distance constraints

between molecules of the conformation. The parametric functions they used to approximate

p(CT |x0:t, Ct) are based on distance of the current location xt and the final destination xT .

The particle efficient importance sampling (PEIS) method of Scharth and Kohn (2016) uses

t+ = T and approximates the optimal conditional proposal distributions p(xt |x0:t−1, CT )

and resampling priority scores βt = wt p(CT |x0:t, Ct) within some parametric families. The

method tunes the parameters in the functions by an iterative local optimization routine.

However, the performance of these parametric approximation methods greatly depends on

the choice of the parametric family.

Here we propose two ensemble pilot approaches to estimate p(Ct+ | x
(j)
0:t , Ct) nonparamet-

rically. Compared with the “individual” pilot approaches in the existing literature (Wang

et al., 2002; Zhang and Liu, 2002; Lin et al., 2013), the proposed “ensemble” pilot approaches

pool all pilot samples together and use nonparametric smoothing technique to improve esti-

mation accuracy and reduce computational costs.

For ease of presentation, we consider the case of approximating p(Ct+ | x
(j)
0:t , Ct) for all

t between two predetermined time points t1 < t2, both with strong constraints. Under this

setting, we have t+ = t2 for every t1 < t ≤ t2.
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

3.1 Approximation based on Forward Pilots

Suppose there exists a low dimensional statistic S(x0:t) that summarizes x0:t such that

p(xt+1:t+d, Ct+d |x0:t, Ct) = p(xt+1:t+d, Ct+d |S(x0:t), Ct) (3.10)

for all t and d = 0, 1, · · · . Under this assumption, p(Ct+ |x0:t, Ct) = p(Ct+ |S(x0:t), Ct)

is a function of S(x0:t). We further assume that there exists a function ϕ(·) such that

S(x0:t+1) = ϕ
(
S(x0:t), xt+1

)
. When the system is Markovian, then S(x0:t) = xt.

In the forward pilot approach, we apply SMC to generate pilot samples sequentially from

time t1 to t2 using a proposal distribution that encourages the pilot samples to satisfy the

constraints Ct2 . The pilots and their corresponding weights would bear the information

of Ct2 and can be used to estimate p(Ct+ | x
(j)
0:t , Ct) for t1 < t < t2 = t+. The detailed

implementation is presented in Algorithm 2. Note that for U
(j)
t =

∏t2
s=t+1 ũ

(j)
s defined in

Algorithm 2, we have

E(U (j)
t |S

(j)
t = S) = p(Ct+ |S(x0:t) = S,Ct)

for all t1 < t < t2. Therefore, we can use
{
(U

(j)
t , S

(j)
t )

}
j=1,··· ,m to estimate p

(
Ct+ |S(x0:t), Ct

)
by the nonparametric histogram function (3.11) in Algorithm 2. We choose not to use

the kernel smoothing method here in order to control the computational cost, because

p̂(Ct+|S(x0:t), Ct) needs to be evaluated for all x
(j)
0:t , j = 1, . . . , n, and at each time t.

The pilot sample idea has been proposed by Wang et al. (2002) and Zhang and Liu

(2002), and is used for delayed estimation in Lin et al. (2013). They considered individual
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

pilot algorithm in the sense that the pilot samples are generated for each sample path x
(i)
0:t

in Algorithm 1, and are only used for computing β
(i)
t of that particular sample path. The

computational cost of such an individual pilot algorithm is very high since it requires the

generation of pilot samples for every x
(i)
0:t, i = 1, · · · , n, at each time t.

Instead, in the ensemble pilot approaches, we use all pilot samples x̃
(j)
0:t , j = 1, · · · ,m,

with S̃
(j)
t = S(x̃

(j)
0:t) close to S(x

(i)
0:t) for estimating p(Ct+ |x

(i)
0:t, Ct). Since this is a global op-

eration, we can afford to use a large number of pilots hence can obtain accurate estimates

of p̂(Ct+ |x
(i)
0:t, Ct) = p̂

(
Ct+ |S(x

(i)
0:t), Ct

)
. Additionally, this algorithm only needs to be con-

ducted once to obtain p̂
(
Ct+ |S(x0:t), Ct

)
for all t1 < t < t2, with significant reduction of

computational cost.

The accuracy of p̂
(
Ct+ |S(x0:t), Ct

)
depends on the choice of the proposal distribution

φ(xs |S(x(i)
0:s−1) in Algorithm 2 to generate the pilots. Since there is a strong constraint It2 at

time t2, it is important to incorporate It2 in the proposal distribution φ(·) when generating

pilot samples from t1 to t2. This ensures that the pilot samples will have a reasonable large

probability to satisfy the constraint at time t+.

3.2 Approximation Based on Backward Pilots

Assume that the stochastic dynamic system is Markovian, that is,

p(xt, It |x0:t−1, Ct−1) = p(xt, It |xt−1)
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

Algorithm 2 : Forward Pilot Algorithm

• Initialization: For j = 1, · · · ,m, draw samples S̃
(j)
t1 from a proposal distribution φ(S)

that covers the support of S(x0:t1).

• For t = t1 + 1, · · · , t2, draw pilot samples forwardly as follows.

– Generate samples x̃
(j)
t from a proposal distribution φ(x̃t | S̃(j)

t−1), and calculate

S̃
(j)
t = ϕ(S̃

(j)
t−1, x̃

(j)
t ) for j = 1, · · · ,m.

– Calculate the incremental weights

ũ
(j)
t =

p(x̃
(j)
t , Ct |S(x̃(j)

0:t−1) = S̃
(j)
t−1, Ct−1)

φ(x̃
(j)
t | S̃

(j)
t−1)

, j = 1, · · · ,m.

• For t = t2 − 1, t2 − 2, · · · , t1 + 1:

– Compute U
(j)
t =

∏t2
s=t+1 ũ

(j)
s for j = 1, · · · ,m.

– Let S1∪· · ·∪SD be a partition of the support of S(x0:t). Estimate p(Ct+ |x0:t, Ct) =

p(Ct+|S(x0:t), Ct) by

ft(S(x0:t)) =
D∑

d=1

γt,dI
(
S(x0:t) ∈ Sd

)
(3.11)

with γt,d =
∑m

j=1 U
(j)
t I

(
S̃
(j)
t ∈Sd

)
∑m

j=1 I
(
S̃
(j)
t ∈Sd

) . where I(·) is the indicator function.

• Return the estimated functions
{
p̂(Ct+ |x0:t, Ct) = ft(S(x0:t))

}
t=t1+1,··· ,t2−1

to compute

the priority scores to be used in Algorithm 1.
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

for all t. Then, p(Ct+ |x0:t, Ct) = p(It+1:t+ |xt) is a function of xt and does not depend on

the past constraints before time t. Here It+1:t+ denotes the cumulative constraints imposed

between time t + 1 and t+ (inclusive). For such a Markovian system, we can extend the

backward pilot sampling method proposed in Lin et al. (2010) to a more general SMCc

setting. In this approach, the pilot samples are generated in the reverse time direction,

starting from t = t+, the time point with a strong constraint, and propagating backward.

The method is presented in Algorithm 3.

In Algorithm 3, the weight for the backward pilot x̃t:t+ is

w̃t =
p(x̃t+1:t+ , It+1:t+ | x̃t)

r(x̃t:t+)
,

where r(x̃t:t+) is the proposal distribution to generate the backward pilots. Taking expecta-

tion conditional on x̃t, we have

E(w̃t | x̃t) =

∫
· · ·

∫
p(x̃t+1:t+ , It+1:t+ | x̃t)

r(x̃t, x̃t+1:t+)
r(x̃t+1:t+ | x̃t) dx̃t+1:t+

= p(It+1:t+|x̃t)/r(x̃t),

where r(x̃t+1:t+ | x̃t) and r(x̃t) are the conditional distribution and the marginal distribution

induced from r(x̃t:t+), respectively. Therefore,

p(Ct+ | x̃0:t, Ct) = p(It+1:t+|x̃t) = r(x̃t)E(w̃t | x̃t).

Again, we use the pilot samples
{
(x̃

(j)
t , w̃

(j)
t )

}
j=1,··· ,m to estimate r(x̃t) and E(w̃t | x̃t) by
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

nonparametric smoothing. A histogram estimator is

p̂(It+1:t+|xt) = r̂(xt)Ê(w̃t |xt)

=
D∑

d=1

∑m
j=1 I

(
x̃
(j)
t ∈ Xd

)
m|Xd|

I
(
xt ∈ Xd

)
·

D∑
d=1

∑m
j=1 w̃

(j)
t I

(
x̃
(j)
t ∈ Xd

)∑m
j=1 I

(
x̃
(j)
t ∈ Xd

) I
(
xt ∈ Xd

)
=

D∑
d=1

∑m
j=1 w̃

(j)
t I

(
x̃
(j)
t ∈ Xd

)
m|Xd|

I
(
xt ∈ Xd

)
,

where I(·) is the indicator function, X1∪X2∪ · · · ∪XD is a partition of the support of xt and

|Xd| denotes the volume of Xd.

Compared with the forward pilot method in Algorithm 2, the backward pilots here are

generated backward, starting from the constrained time point t+. The strong constraint It+

is automatically incorporated in the proposal distribution to generate x̃t+ at the beginning.

Hence it is often expected to have a more accurate estimate of p(Ct+ |x0:t, Ct) = p(It+1:t+ |xt).

However, it requires the system to be Markovian to apply this method.

This algorithm extends the backward pilot algorithm in Lin et al. (2010) for generating

samples of diffusion bridges. This extension allows for more general constraint problems,

including the cases that frequent (but weak) constraints exist between two rare and strong

constraints. It also allows for more flexible constraints, instead of only the fixed point

constraints considered in Lin et al. (2010).
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3 APPROXIMATION OF THE OPTIMAL PRIORITY SCORE USING PILOTS

Algorithm 3 : Backward Pilot Algorithm

• Initialization: For j = 1, · · · ,m, draw samples x̃
(j)
t2 from a proposal distribution r(xt2)

approximately proportional to p(It2 |xt2) and set w̃
(j)
t2 = 1/r(x̃

(j)
t2 ).

• For t = t2 − 1, · · · , t1 + 1, draw pilot samples backward as follows.

– Generate samples x̃
(j)
t , j = 1, · · · ,m, from a proposal distribution r(x̃t | x̃(j)

t+1).

– Update weights by

w̃
(j)
t = w̃

(j)
t+1

p(x̃
(j)
t+1, It+1 | x̃(j)

t )

r(x̃
(j)
t | x̃

(j)
t+1)

, j = 1, · · · ,m.

– Let X1 ∪ · · · ∪ XD be a partition of the support of xt. Estimate p(Ct+ |x0:t, Ct) =

p(It+1:t+ |xt) by

ft(xt) =
D∑

d=1

ηt,dI
(
xt ∈ Xd

)
, (3.12)

where ηt,d =
1

m|Xd|
∑m

j=1 w̃
(j)
t I(x̃(j)

t ∈ Xd), and |Xd| denotes the volume of the subset

Xd.

• Return the estimated functions
{
p̂(Ct+ |x0:t, Ct) = ft(xt)

}
t=t1+1,··· ,t2−1

to compute the

priority scores to be used in Algorithm 1.
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4. Examples

In this section, we apply SMCc to several problems with different types of constraints in

Appendix A. The first example (expected shortfall) belongs to the rare and strong constraint

case with a strong constraint at the end; the second example (discretized diffusion process)

belongs to the intermediate constraint case; and the last example (robotic control) is a

stopping time problem.

For each problem, we compare feasible SMCc approaches with other SMC algorithms

without using the proposed special design of priority scores. The acceptance-rejection sam-

pling is abbreviated as Rejection. Conventional SMC algorithm with a manipulated drift is

denoted as SMC-drift. We also abbreviate the SMCc approach using parametric function, the

forward pilots or the backward pilots to approximate p(Ct+ |x0:t, Ct) by SMCc-PA, SMCc-FP

or SMCc-BP, correspondingly. The system in the first example is not Markovian hence only

SMCc-FP is used. For the other examples, it is more convenient to use SMCc-BP, since it is

difficult to construct an effective proposal distribution for generating forward pilots to meet

the end-point constraints, while the backward pilot generation is relatively easy to do. We

will provide the details of specific implementations which may differ in different examples.

4.1 Long-Run Marginal Expected Shortfall

Measuring the systemic risk of a firm is important for risk management. Acharya et al.

(2012) proposed to use the long-run marginal expected shortfall (LRMES) as a systemic risk
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index, which is defined as the expected capital shortfall of a firm during a financial crisis.

Particularly, a financial crisis is defined when the market index falls by 40% in the next six

months (126 trading days). Let xm,t and xf,t be the daily logarithmic prices of the market

and the firm at time t, respectively. The LRMES of the firm is defined as (with T = 126)

LRMES = E
(
1− exf,T−xf,0 | exm,T−xm,0 < 60%

)
Following Brownlees and Engle (2012) and Duan and Zhang (2016), we assume that

the bivariate process (xm,t, xf,t) follows a GJR-GARCH model as in Glosten et al. (1993).

Particularly, the (xm,t, xf,t) process followsxm,t

xf,t

 =

xm,t−1

xf,t−1

+

 σ2
m,t ρtσm,tσf,t

ρtσm,tσf,t σ2
f,t


1/2 εm,t

εf,t

 , (4.13)

where [·]1/2 stands for matrix square root, εm,t and εf,t are independent N(0, 1) innova-

tions. The evolution law of the time varying covariance matrix in (4.13) is given in detail in

Appendix B, along with the coefficient used in the simulation.

Without loss of generality, we set xm,0 = xf,0 = 0. In the following, we will use p(·) to

denote the distribution law under model (4.13) with the parameters outlined in Appendix B.

If we draw the sample paths {(x(i)
m,0:T , x

(i)
f,0:T , w

(i)
T )}i=1,··· ,n properly weighted with respect to

the distribution p(xm,1:T , xf,1:T |xm,0 = 0, xf,0 = 0, xm,T < c) with c = log 0.6, then the
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LRMES can be estimated by
∑n

i=1 w
(i)
T (1− ex

(i)
f,T )/

∑n
i=1 w

(i)
T . Notice that

p(xm,1:T , xf,1:T |xm,0, xf,0, xm,T < c)

∝ I(xm,T < c)p(xm,1:T , xf,1:T |xm,0, xf,0)

= I(xm,T < c)
T∏
t=1

p(xm,t |xm,0:t−1)
T∏
t=1

p(xf,t |xm,0:t, xf,0:t−1).

Once we obtain a set of sample paths {(x(i)
m,0:T , w

(i)
T )}i=1,··· ,n properly weighted with respect

to the distribution p(xm,1:T , |xm,0, xm,T < c) ∝ I(xm,T < c)
∏T

t=1 p(xm,t |xm,0:t−1), the sample

paths {x(i)
f,1:T}i=1,...,n can be easily drawn from p(xf,1:T |xm,0, x

(i)
m,1:T , xf,0) =

∏T
t=1 p(xf,t |xm,0:t,

xf,0:t−1) using (4.13). Hence, here we focus on sampling xm,0:T . We use Rejection, SMC-drift,

SMCc-PA, and SMCc-FP to generate samples from the distribution p(xm,1:T , xf,1:T |xm,0,

xm,T < c). Their performances in estimating LRMES are compared. The implementation

details are listed in Appendix B.

For fair comparison, the numbers of Monte Carlo samples in different methods are ad-

justed so that each method takes approximately the same CPU time. More specifically, we

set the accepted sample sizes to n = 5 for the Rejection method, as the acceptance rate is

about 0.0001. We use n = 15, 000, 12, 000 and 10, 000 for SMC-drift, SMCc-PA and SMCc-

FP, respectively. SMCc-FP uses m = 1, 000 forward pilots. In SMCc-PA and SMCc-FP, we

perform resampling every 5 steps. Once {(x(i)
m,0:T , w

(i)
T )}i=1,··· ,n is obtained, x

(i)
f,1:T is sampled

accordingly and the corresponding LRMES is estimated. The boxplots of 100 independent

estimates of LRMES using different methods are reported in Figure 1. The horizontal line

is the “true” LRMES estimated using 100,000 accepted samples generated by the rejection
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method. It shows that SMCc-FP performs the best under a fixed computational cost. Fig-

ure 2 plots 50 sample paths of xm,0:T generated using different methods (without weight

adjustment). Note that the sample paths generated by Rejection exactly follow the true

target distribution. The figures show that SMCc-FP can generate samples close to the true

target distribution, with much less computational cost. The samples generated by SMC-drift

and SMC-PA tend to have less diversity and move more aggressively towards the constraint

region.

Figure 1: Boxplots of 100 independent estimates of LRMES using different methods. The

horizontal line is the “true” LRMES estimated using 100,000 accepted samples generated by

the rejection method.

4.2 A Diffusion System with Intermediate Noisy Observations

In this section, we conduct a simulation study with a system with periodic and intermediate

constraints, corresponding to Case 3 in Appendix A. Consider a discretized diffusion process
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Figure 2: Sample paths of Xm,0:T generated by different methods before weight adjustment.

The horizontal line denotes a 40% price drop.

xt governed by

xt = xt−1 + δ sin(xt−1 − π) + εt, (4.14)

where εt ∼ N(0, δ), used in Beskos et al. (2006). It is a discretized version of the diffusion

process dXλ = sin(Xλ − π)dλ + dWλ, where Wλ is a standard Brownian motion, with step

size δ. We take δ = 0.1 in this example.

In this simulation study, two noisy observations of xt are made at real times T = 30 and

T = 60 (indices for xt are t = 30/δ = 300 and 60/δ = 600, respectively) with

Y30 ∼ N(x30/δ, σ
2) and Y60 ∼ N(x60/δ, σ

2).

We also fix the two endpoints at x0 = a and x90/δ = b. The discretized time points

T0 = 0, T1 = 30, T2 = 60 and T3 = 90 are considered to be strong constraints. The

SMCc-BP method is applied to generate sample paths of x0:T conditional on the con-

straints (x0, Y30, Y60, x90/δ). We take equation (4.14) as the proposal distribution in gen-

erating forward paths. The backward pilots are generated from the proposal distribution
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r(x̃t | x̃t+1) ∼ N
(
x̃t+1 − δ sin(x̃t+1 − π), δ

)
.

Note that this process shows a jump behavior among the stable levels at x = 2kπ, k =

0,±1,±2, . . . (Lin et al., 2010). In this experiment, we set x0 = 0, Y30 = 6.49, Y60 = −5.91

and x90/δ = −1.17, corresponding to the stable levels 0, 2π, −2π and 0, respectively. Since

Y30 and Y60 differ by a gap of two stable levels, this is a very rare event.

Three levels of measurement errors for the observations Y30 and Y60 are investigated:

σ = 0.01 for very accurate observations, σ = 1.0 for moderate accurate observations and

σ = 2.0 for noisy observations. Note that in this experiment we fix the observations Y30

and Y60 but change the underlying assumption of their distributions to reflect strength of

the constraints imposed by Y30 and Y60. In each setting, a total of 5, 000 sample paths are

generated, with 300 backward pilots to estimate the resampling priority scores. Figure 3

plots the generated sample paths before weight adjustment for each level of error. Figure

4 shows the histogram of the marginal samples of x60/δ before weight adjustment, which is

obtained from the generated sample set {x(i)
0:T}i=1,··· ,n without considering the weights. It

can be seen that when the observations are accurate (σ = 0.01), the two observations act

like fixed-point constraints that force all sample paths to pass through the observations.

When the observation error is large (σ = 2), a high proportion of sample paths remains

at the original stable level while only a small proportion of paths is drawn towards the

observations. The marginal distributions of x60/δ show clear differences in the above three

cases. Samples from all three levels of error retain the jumping nature of underlying process

and the SMCc-BP approach is capable of dealing with different levels of observational errors.

25

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



4 EXAMPLES

Figure 3: Sampled paths before weight adjustment for σ = 0.01 (top panel), σ = 1.0 (middle

panel) and σ = 2.0 (bottom panel) when x0 = 0, Y30 = 6.49, Y60 = −5.91 and x90/δ = −1.17.

Figure 4: Histogram of the marginal samples of x60/δ before weight adjustment for σ = 0.01

(top panel), σ = 1.0 (middle panel) and σ = 2.0 (bottom panel) when x0 = 0, Y30 = 6.49,

Y60 = −5.91 and x90/δ = −1.17.
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4.3 Robotic Control

In this example, we consider a robotic control problem in a well-known mechanical system

named “Acrobot” (Murray and Hauser, 1991), which consists of two arms of identical inertia

and mass as demonstrated in the left panel of Figure 5. The two arms are only allowed to

move in the vertical plane and its state is determined by a four dimensional vector θ =

(θ1, θ2, θ̇1, θ̇2), where θ1 and θ2 are the two angle positions as marked in Figure 5, and θ̇1, θ̇2

are their velocities, correspondingly. The system is controlled only through κ, the torque of

an actuator at the joint of the two arms.

A common control task in robotics is to find a control sequence κ0, κ1, · · · , following

which a system starting at state θ0 will reach the desired target state θ∗ as fast as possible

(Spong, 1995; Perez et al., 2012; Duan et al., 2016). In our experiment, we set the starting

state θ0 = (0, π/2, 0, 0) and the target state θ∗ = (0,−π/2, 0, 0), as shown in the middle

panel and right panel of Figure 5, respectively.

llc

θ1

θ2

κ

Figure 5: Acrobot with two arms (left panel), starting position θ0 at (0, π/2, 0, 0) (middle

panel), and target position θ∗ at (0,−π/2, 0, 0) (right panel) .
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The detailed four-dimensional system of the Acrobot and its discretization to differential

equations with a fixed time interval (δ = 0.02 seconds) are shown in Appendix C. If we

treat the control sequence κt as random innovations, then the problem of finding a sequence

of controls to move the system from an initial state θ0 to a fixed ending state θ∗ becomes

finding paths of a dynamic system with the end-point constraints. Here we assume that κt

is independent over time and follows a uniform[−5, 5] distribution. Note that κt can only

provide a one-dimensional nonlinear control and takes values in a limited range. It is often a

challenging problem to find the sequence of controls to reach the target state as the system

is nonlinear, especially when the target position has zero velocity.

Let x0 = θ0 and define the target region be Γ =
{
x : ∥x − θ∗∥∞ ≤ 0.01

}
, where ∥ · ∥∞

denotes the sup norm of a vector. The problem of finding a control sequence κ0, κ1, . . . that

moves the system from θ0 to θ∗ can be formulated to a constrained sampling problem as

outlined in Case 5 of Appendix A.

We propose to use the (modified) SMCc-BP method outlined in Appendix D, where

(C.19) is used for forward propagation and a resampling step is done with the priority scores

β
(i)
t in (D.22), which is estimated using backward pilots. The backward pilots {x̃(j)

1:T}mj=1 are

generated backward from x̃
(j)
T = θ∗, using

x̃
(j)
t−1 = x̃

(j)
t − ṽ(x̃

(j)
t , κ̃t)δ,

where κ̃t is drawn from a uniform[−5, 5] distribution, and the function ṽ(·) is similar to v(·)

in (C.20), but with δ replaced by −δ.
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In the simulation, we use n = 10, 000 forward samples and m = 5, 000 backward pilots for

the SMCc-BP method, with a = 0.1δ in (D.21) and the maximum duration T = 100. The

results are compared with the random search method using n = 15, 000 samples. The sample

trajectories from SMCc-BP and the random search method are plotted in Figure 6. The

SMCc-BP found an “optimal” path that reaches the target state θ∗ at t = 68, corresponding

to a total time of 1.36 seconds, shown by the black line in the left panel. On the other hand,

the random search method was not able to find any paths close to θ∗ before time T = 100.

Note that at t = 50, the “optimal” trajectory has a large velocity θ̇2 ≈ −2π (the black line in

the bottom figure in the left panel) to swing the second arm up to the target position. This

state is quite far away from the target position, but was found and guided by the backward

pilots. On the other hand, the simple random search does not have such information to use.

Figure 7 plots the minimum distance ∥x(j)
t − θ∗∥∞ of all the generated samples to the

target state against time, under the SMCc-BP method and the simple random search method,

respectively. We observed that the minimum distance at t = 50 obtained by the SMCc-BP

method is much larger than that of the random search method. However, it seems to be

necessary to allow the arms to gain velocity for θ2 to move to the target quickly. Guided by

the backward pilots, the SMCc-BP was able to find such a path. Then at t = 68, some of

the SMCc-BP samples reach the target state.
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Figure 6: Left panel: Sample paths generated by the SMCc-BP method (in gray), with the

“optimal” path (in black) that reaches the target state θ∗ at t = 68. The control sequence

for the “optimal” path is on the top panel. Right panel: Sample paths generated by the

random search method for t = 0, 1, · · · , 68.

Figure 7: The minimum distance of the samples generated by the SMCc-BP method or the

random search method (SMC) to the target state against time.
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5. Summary

In this article we focus on the problem of generating (weighted) sample paths of a dynamic

system with rare and strong constraints, under a SMC framework. There is a vast literature

on SMC implementations on various problems and some algorithms and approaches can be

used for constrained systems, though mostly on frequent and weak constraints such as the

delayed approaches and fixed-lag smoothing algorithms in state space models, including the

auxiliary particle filter (APF) of Pitt and Shephard (1999). We focus on generating the entire

sample path from the joint distribution x0:T , different from the typical filtering and smoothing

problems that often mainly concern the marginal distributions. We also consider the problem

that the objective is to reach a fixed target (constraint region) with a variable time duration

– the stopping time problem. A systematic formulation of the problem is proposed by

introducing a sequence of constraint events and their constraint strength measures. Under

the guidance of three closely related distributions (the target, the compromised, and the

propagation) induced under the system and a variable lookahead timescale, we introduce

a resampling operation with optimal priority scores (resampling probabilities) for efficient

operations. Two efficient approaches for approximating the needed optimal priority scores are

developed, based on nonparametric smoothing technique using ensemble of forward pilots

or backward pilots. The framework is general to encompass the earlier studies, and lays

the foundation of further development of more efficient implementations of SMC in dealing

with constrained dynamic systems. We show the effectiveness of the approach with several
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examples.

We note that our approach can be viewed as an extension of APF proposed in Pitt and

Shephard (1999), the lookahead strategy of Chen et al. (2000) and Lin et al. (2013) and the

iterated APF of Guarniero et al. (2016). These special SMC algorithms seek higher efficiency

by incorporating future events and constraints in generating samples. For example, APF

conducts resampling according to the priority score β
(i)
t = w

(i)
t p(yt+1 |x(i)

t ) (or its approxi-

mation). It corresponds to using t+ = t+ 1 under SMCc framework for state space models,

utilizing the observation yt+1. In this paper we focus on sampling problems with rare and

strong constraints.

The primary goal of the paper is on generating the entire sample path. It is essentially

a smoothing problem. Because of the sequential nature of SMC, the inherited degeneracy

problem cannot be avoided completely, especially as we rely on resampling scheme to deal

with the constraints. The procedures of approximating the optimal priority scores at the very

beginning of the sequential process help in improving the sample quality at the early stage,

since these samples are designed to follow an approximation of the target smoothing distri-

bution, instead of the filtering distribution. Experiments show that the SMCc approaches

developed alleviate the degeneracy problem much better than simple implementations of

SMC smoother.

The notation of conditional probability throughout the paper can be significantly sim-

plified if the underlying dynamic system is Markovian such that p(xt, Ct | x0:t−1, Ct−1) =

p(xt, Ct | xt−1, Ct−1). The proposed method in Section 3.1 also becomes simpler as the
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statistic S(x0:t) can simply be chosen as S(x0:t) = xt.
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Appendix A. Some examples of the constrained problems

Case 1: Frequent constraints: In this case new constraints are imposed frequently on

the system. For example, consider a state space model with state equation xt = f(xt−1, εt)

and observation equation yt = g(xt, ϵt), where εt and ϵt are random noises with known

distributions. The observations yt can be viewed as constraints imposed on the system.

In this case we have a constraint at each time t, in the form It = {g(xt, ϵt) = yt} and

the cumulative constraints Ct = {g(xs, ϵs) = ys, s = 0, · · · , t}. Using SMC to study state

space models has been extensively studied with a vast literature, including the cases with

small observation noises (ϵt with small variance), such as using the full information proposal

distribution (Liu and Chen, 1998), the auxiliary particle filter (Pitt and Shephard, 1999),

the independent particle filter (Lin et al., 2005) or certain short-range lookahead method

(Lin et al., 2013). In this paper we do not focus on this frequent constraints case.
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Case 2: Rare and strong constraints: In this case the constraints occur rarely, but with

strong effect. For example, in the problem of generating diffusion bridge paths that connect

two fixed endpoints x0 = a and xT = b, the cumulative constraint events are C0 = · · · =

CT−1 = {x0 = a} and CT = {x0 = a, xT = b}. Then p(x0:T |CT−1) = p(x0:T |x0 = a) and

p(x0:T |CT ) = δD(xT − b)p(x0:T |x0 = a)/p(xT = b |x0 = a), where δD(·) is the Dirac delta

function. Hence G(T ) = ∞, which indicates that IT = {xT = b} is a strong constraint. If

the constraint at T is not a fixed point, but a noisy measurement of xT , then the strength

of the constraint would depend on T and variance of the measurement error.

Case 3: Periodic and intermediate constraints: In certain systems we have noisy

measurements of the unobservable states x0:T periodically. For example, let yk be a sequence

of noisy measurements at time t1, . . . , tK . The intermediate observations split the whole

path into K segments as shown in Figure 8. Again, the constraints strength depend on how

frequent one observes the intermediate observations and how strong (or accurate) yk’s are.

x0 · · · xt1 · · · xt2 · · · xtK−1 · · · xtK

y1 y2 yK−1 yK

Segment 1 Segment 2 Segment K

Figure 8: Segmentation of a stochastic process with intermediate observations.

Case 4. Multilevel Constraints: In some applications, there may exist multiple levels

of constraints, including those with a hierarchical structure, such as one level of weak but

frequent constraints and another level of strong but rare constraints. A special case is a
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standard state space model with two fixed endpoint constraints. Specifically, suppose a

state space model is governed by the state dynamics xt = f(xt−1, εt) and the observation

equation yt = g(xt, ϵt). In addition, two fixed endpoint constraints are imposed on x0:T

with x0 = a and xT = b. The routine observations y1, · · · , yT−1 can be viewed as a layer

of weak constraints and the fixed point constraints are viewed as a layer of rare and strong

constraints. Although G(T ) is still infinity here, this case is “easier” than that without

the observations y1, . . . , yT−1, if the observation sequence is “faithful” in the sense that it

is based on one realization of the bridge x0 = a, x1, . . . , xT−1, xT = b (e.g. yt = xt + ϵt).

The observations y1, . . . , yT−1 provide general guidance for the system to meet the endpoint

constraint xT = b.

Case 5. Constraints in stopping time problems: In the stopping time problems, we

are often interested in generating sample paths that eventually reach a constrained set within

a maximum duration T . Let

τ = min
{
t ≥ 0 : xt ∈ Γ

}
(A.15)

be a stopping time, which is the first time that the process {x0, x1, · · · } reaches the con-

strained set Γ. The constraint of such problems is in the form of C = {x0:∞ : τ ≤ T}.

Note that C is a “global” constraint, which is different from the local constraints imposed

on specific times as we discussed before. In the optimal stopping time problems, one would

be interested in finding the “optimal path” that satisfies the constraint with the smallest

stopping time τ . We show such an application in Section 4.3.
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Appendix B. Detailed Information for the LRMES example in Section 4.1

The evolution of the covariance matrix in (4.13) follows two processes, one for the volatilities

(σ2
m,t, σ

2
f,t), and a different one for the correlation ρt. Specifically, given the initial values of

(σm,1, σf,1, ρ1), and a realization of the innovation process {(εm,t, εf,t)}t=1,...,T , the volatility

process (σ2
m,t, σ

2
f,t) used in (4.13) iteratively follows

σ2
m,t = ωm +

[
αm + γmI(εm,t−1 < 0)

]
(σm,t−1εm,t−1)

2 + βmσ
2
m,t−1,

σ2
f,t = ωf +

[
αf + γfI(εf,t−1 < 0)

]
(σf,t−1εf,t−1)

2 + βfσ
2
f,t−1, (B.16)

for t = 2, . . . , T . This is an asymmetric GARCH process taking into the account of the

difference in positive or negative innovations (or shocks).

The time-varying correlation coefficient series {ρt} follows a separate dynamic conditional

correlation (DCC) model. Specifically, let

Qt =

 σ∗2
m,t ρtσ

∗
m,tσ

∗
f,t

ρtσ
∗
m,tσ

∗
f,t σ∗2

f,t


be a sequence of 2×2 covariance matrices. Using the same initial values of σm,1, σf,1, ρ1, and

the same realization of the innovation process {(εm,t, εf,t)}t=1,...,T as above, we let

Q1 =

 σ2
m,1 ρ1σm,tσf,1

ρ1σm,1σf,1 σ2
f,1


and

Qt = (1− αC − βC)Q1 + αC

 σ∗
m,t−1εm,t−1

σ∗
f,t−1εf,t−1


 σ∗

m,t−1εm,t−1

σ∗
f,t−1εf,t−1


′

+ βCQt−1,
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for t = 2, · · · , T . Then we extract ρt from Qt and use it in (4.13). We note that σ∗
m,t and σ∗

f,t

in Qt are different from σm,t and σf,t in (B.16) for t > 1. The simulation of the process (4.13)

starts with setting the initial values and a realization of the innovations, then construct the

covariance process and the (xm.t, xf,t) process.

To set parameters in (4.13) for our simulation, we apply the model to S&P500 index and

the stock prices of Citigroup from January 2, 2012 to December 31, 2017. The maximum

likelihood estimates of the parameters are ωm = 3.35× 10−6, αm = 3.35× 10−6, γm = 0.152,

βm = 0.858, ωf = 4.22 × 10−6, αf = 0.0148, γf = 0.0542, βf = 0.935, αC = 0.0755,

βC = 0.862, σm,1 = 0.0113, σf,1 = 0.03, and ρ1 = 0.705.

The detailed implementations of the Monte Carlo methods compared in this example are

as follows:

[Rejection]: Samples are generated forward, following the distribution p(xm,1:T |xm,0) with-

out considering the constraint. At the end, a sample is accepted if xm,T < c.

[SMC-drift]: Samples are generated with a standard SMC implementation with a proposal

distribution that includes a drift term, similar to that proposed by Durham and Gallant

(2002). Specifically, the proposal distribution q(xm,t |xm,1:t−1) used follows

xm,t = xm,t−1 +
c

T
+ σm,tεm,t, (B.17)

and the same evolution law of σm,t, with εm,t ∼ N(0, 1) and t = 1, · · · , T − 1. Note that

c < 0, we included a negative drift term c
T

in the proposal distribution to force xm,t to-

wards the constraint region. At the end, the samples are weighted by w
(i)
T = I(x(i)

m,T <
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c)
∏T

t=1 p(x
(i)
m,t |x

(i)
m,0:t−1)/

∏T
t=1 q(x

(i)
m,t |x

(i)
m,1:t−1).

[SMCc-PA]: Samples are generated using the SMCc method in Algorithm 1, with a para-

metric priority score function, with t+ = T for all t. The propagation equation (4.13) is

used as the proposal distribution. The priority score used is β
(i)
t = w

(i)
t p̂(xm,T < c |x(i)

0:t) with

p̂(xm,T < c |x(i)
0:t) = Φ

(
c;x

(i)
t , (T − t)σ2

m

)
, where Φ(c;µ, σ2) is the CDF of N(µ, σ2) evaluated

at the value c and σ2
m is the long-term average of σ2

m,t.

[SMCc-FP] Samples are generated using the SMCc method with priority scores estimate

based on forward pilots. All settings are similar to SMCc-PA, except that p(CT |x(i)
m,0:t, Ct) =

p(xm,T < c |x(i)
m,0:t) is estimated by forward pilots. The model is not Markovian, but the

statistic S(xm,0:t) = (xm,t, σm,t+1) can be used and satisfies (3.10). Furthermore, since

p(xm,T < c |xm,t, σm,t+1) = p(xm,T − xm,t < c − xm,t |σm,t+1), we estimate the conditional

cumulative distribution function p(xm,T − xm,t < ∆ |σm,t+1), using a histogram estimator

with partition Sσ = ∪d{0.005(d− 1) < σm,t+1 ≤ 0.005d}.

In the above approaches (except Rejection), we force the samples to satisfy the constraint

xm,T < c in the last step, by letting x
(i)
m,T ∼ N(x

(i)
m,T−1, σ

2(i)
T ) truncated on (−∞, c), and

updated their importance weight accordingly.
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Appendix C. Dynamic system of Acrobot used in Section 4.3

The dynamics of Acrobot can be described by the following differential equation.

θ̇1

θ̇2

θ̈1

θ̈2


= ξ(θ, κ) :=



θ̇1

θ̇2

d22(u1−c1−g1)−d12(u2−c2−g2)
d11d22−d12d21

d11(u2−c2−g2)−d21(u1−c1−g1)
d11d22−d12d21


, (C.18)

with

d11 = I1 + I2 + 2m0l
2
c +m0l

2 + 2m0llc cos θ2,

d22 = I2 +m0l
2
c ,

d12 = d21 = I2 +m0l
2
c +m0llc cos θ2,

c1 = −m0llcθ̇
2
2 sin θ2 − 2m0llcθ̇1θ̇2 sin θ2,

c2 = m0llcθ̇
2
1 sin θ2,

g1 = m0(l + lc)g cos θ1 +m0lcg cos(θ1 + θ2),

g2 = m0lcg cos(θ1 + θ2),

u1 = −µθ̇1,

u2 = κ− µθ̇2,

where m0, l, lc are the mass, length and distance between the center of mass and pivot for

both arms correspondingly, I1 and I2 are their moments of inertia, µ is the friction coefficient,

and g is the acceleration of gravity. We set m0 = 1.0, l = 1.0, lc = 0.5, I1 = I2 = 1
12

and
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g = 9.8 as in the international standard of units.

We discretize the time with interval length δ = 0.02 seconds and let xt = θtδ =

(θtδ,1, θtδ,2, θ̇tδ,1, θ̇tδ,2). Using the fourth order Runge-Kutta method (DeVries and Wolf, 1994),

we approximate the equation (C.18) by a discrete-time model as follows.

xt = xt−1 + v(xt−1, κt−1)δ, (C.19)

where v(xt−1, κt−1) = (v(1) + 2v(2) + 2v(3) + v(4))/6 with

v(1) = ξ(xt−1, κt−1),

v(2) = ξ(xt−1 + v(1)δ/2, κt−1),

v(3) = ξ(xt−1 + v(2)δ/2, κt−1),

v(4) = ξ(xt−1 + v(3)δ, κt−1),

(C.20)

where ξ(·) is in (C.18) and κt is the torque imposed at time tδ.

Appendix D. Formulation of the Acrobot example as a constrained problem

The Acrobot problem is a typical example of Case 5 in Appendix A. As a stopping time prob-

lem, a standard rejection sampling procedure would generate x0, x1, · · · using the forward

propagation equation until the sample path reaches the target region Γ before the maximum

duration time T . This approach may not be efficient as the probability to reach Γ before T

could be extremely small. To find the shortest sample path to reach Γ, we consider SMCc

in Algorithm 1 with certain modification as follows. To find the shortest sample path to

reach Γ, we consider generating sample paths properly weighted with respect to the target
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distribution

πT (x0:T ) ∝ p(x0:T |C) e−aτ ∝ p(x0:T )I(τ ≤ T ) e−aτ , (D.21)

where τ is the stopping time defined in (A.15), C = {τ ≤ T} and I(·) is an indicator function.

Here an additional term e−aτ , a > 0, is added to the target distribution to encourage faster

stopping. Set the intermediate target distribution as

p̃t(x0:t) = p(x0:t), t < T,

and let p+t (x0:t) = πT (x0:T ). Similar to (2.8), to effectively generated properly weighted

samples with respect to πT (x0:T ), the optimal priority score in SMCc is

βt = wt
p+t (x0:t)

p̃t(x0:t)
∝ wt

∫
p(x0:T )I(τ ≤ T )e−aτ dxt+1:T

p(x0:t)

= wt E
[
I(τ ≤ T ) e−aτ |x0:t

]
In implementation, when a sample path x

(i)
0:t reaches the target region Γ, it is “accepted”

without further propagation.

Now we discuss how to approximate the term E
[
I(τ ≤ T ) e−aτ |x0:t

]
. Since the state

sequence is a homogeneous Markovian process, that is, p(xt |x0:t−1) = p(xt |xt−1) = p(x1 |x0),

βt can be estimated using the backward pilots as in Algorithm 3, with t1 = 0, t2 = T ,

IT = {xT ∈ Γ} and It = Ω for t < T . Particularly, we use

β
(i)
t = w

(i)
t ft(x

(i)
0:t) (D.22)
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with

ft(x0:t) =


e−τ , if τ(x0:t) ≤ t;∑D

d=1 ηt,dI
(
xt ∈ Xd

)
, if τ(x0:t) > t,

where

ηt,d =
T−1∑
s=t

[
1

m|Xd|

m∑
j=1

e−a(t+T−s)w̃(j)
s I(x̃(j)

s ∈ Xd)

]
.

Here 1
m|Xd|

∑m
j=1 e

−a(t+T−s)w̃
(j)
s I(x̃(j)

s ∈ Xd) is an approximation of E
[
I(τ = t+T−s) e−aτ |x0:t

]
if τ(x0:t) > t.
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