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The dynamics of evaporation of wetting droplets is investigated experimentally in an extended range
of drop sizes to provide trends relevant for a theoretical analysis. A model is proposed, which generalizes
Tanner’s law in the presence of evaporation. A qualitative agreement is obtained, which represents a first
step toward the solution of a very old, complex problem.

1. Introduction

For practical reasons, the evaporation of drops, either
free in aerosols1,2 or deposited on fibers3-5 or flat
substrates6-13 has been extensively studied in the past
and is still the subject of many investigations.14-19 While
the most recent studies deal with the structure of deposits
from evaporating colloidal dispersions,20-22 the mere
problem of the dynamics of evaporation of pure liquid drops
on flat, smooth, and horizontal substrates is not yet fully
understood. The main difficulty is encountered in the
complete wetting case, where the contact line moves freely
on the substrate, either advancing or receding on it.23-25

From the theoretical point of view, two singularities have
to be coped simultaneously, with one associated with the

well-known problem of a moving contact line and the
second associated with the specific behavior of the
evaporation flux at the edge of the drop. From the
experimental point of view, the dynamics reveals to be
rather sensitive to the surface energy, which is usually
not the case in complete wetting. Actually, for nonvolatile
wetting liquids, the dynamic properties depend only
logarithmically on the spreading parameter.25

The present paper brings a new piece toward a better
understanding of the dynamics of evaporation of com-
pletely wetting drops of pure liquids on smooth substrates.

Summary of Our Previous Findings.17-19 To address
the basic questions without too much interference of
complex physicochemical behavior, we chose to study
alkane drops evaporating on oxidized silicon wafers under
normal atmosphere. When properly cleaned, the amor-
phous silica surface is hydrophilic, ensuring complete
wetting, and the underlying silicon provides the high
optical contrast required for interferometric measure-
ments. A proper choice of alkanes, from hexane to nonane,
allows us to vary the evaporation rate by a factor of 35
while retaining the assumption of a diffusion-controlled,
quasistationary evaporation process, at least for the main
part of the drop’s life.21 A consequence is that the laplacian
∆c of the concentration c of the evaporating compound in
the atmosphere is ∆c ) 0.26

This assumption is well-obeyed in aerosols and leads to
simple laws for the radius (or the area) of the evaporating
spheres: if t0 is the time where the drop disappears, then
the radius scales with time t as xt0-t.27-28 The square-
root dependence basically results from ∆c ) 0 and is
therefore quite robust. For sessile wetting drops, the
presence of a third phase and a contact line obviously
makes the situation more complex. However, during the
receding motion, the radius of the wetted spot is found
experimentally to scale as (t0 - t)y, where y is close to 0.5,
more precisely between 0.44 for nonane and 0.48 for
hexane. The quality of the fit is excellent over the whole
retraction.

Therefore, the dynamics of the radius is essentially
defined by general trends, and the laws for sessile drops
differ only by higher order terms from the “diffusive
dynamics” of spherical ones.
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In contrast, the contact angle is very sensitive to all of
the parameters involved: the volatility of the liquid, the
surface energy of the substrate, and more insidiously, the
thermal conductivity of the phases and the velocity of the
moving contact line. For nonvolatile wetting liquids, the
advancing dynamic contact angle depends on the contact
line velocity and the receding one is 0, with a thin film
being left on the substrate. In the present case, the receding
contact angle does not vanish but typical values are
small.17-19 The experiments show that, in the main part
of the retraction, the contact angle decreases slowly and
scales acceptably as (t0 - t)x, where x is positive and small.
When the assumption of a diffusion-controlled, quasi-
stationary evaporation process and the assumption that
the drop is a spherical cap are combined, one may predict
that x and y are linked by 2y + x ) 1, which is actually
well-obeyed. Without surprise, x depends upon the dif-
ference between y and the value 0.5 of the dynamics of
free drops.

However, no prediction is available still for the precise
value of y (or x) and for the dependence of the contact
angle with liquid volatility and substrate energy. More-
over, the behavior of the contact angle, either at the
beginning of the retraction or at the very end of the drop
life,19 differs significantly from the slow decrease men-
tioned above. Therefore, further experiments are required
to guide the theoretical analysis. From this point of view,
sensitive parameters as contact angle and drop profiles
are precious indicators, although difficult to work with.

2. New Experiments

Two types of experiments have been performed. In the
first one, the experimental setup is the same as in the
previous papers.17-19 The dynamics of wetting drops of
volatile alkanes is followed under a microscope, in normal
atmosphere, with protections against air draft. The radius
and contact angle are recorded versus the elapsed time
both during spreading (advancing motion) and retraction
(receding motion). The data are conveniently plotted
versus t0 - t, where t0 is the time where the drop
disappears. In contrast to the previous studies, the volume
of the drop is varied significantly and the crossover
between spreading and retraction is investigated.

The study of the crossover has to be done carefully. The
magnification needed for measuring the angle from equal-
thickness interference fringes prevents us frommeasuring
the radius simultaneously without manipulation of the
objectives, which is out of question because it is enough
to change the contact angle significantly. The radius is
calculated from the visible part of the contact line, and
the result is checked against an experimental curve
(maximum radius versus initial volume of the drop),
obtained independently and used as a “standard” (Figure
1).

The aim of the second setup is rather to spot behaviors
that are not consistent with the various assumptions used
in the analyses. A parallel monochromatic beam is sent
normal to the drop. The silicon wafer is a plane mirror,
and the reflected light is analyzed (Figure 2). (i) Part 1
of the beam does not meet the drop. We shall not discuss
it further. (ii) Part 2 is reflected by the drop surface. (iii)
Part 3 passes through the drop, is reflected on the silicon,
then goes back. Therefore, the drop acts as both a mirror
(2) and a lens, which is crossed twice (3). The contact angle
is small, a few degrees at most. The two beams are received
on a screen, directly or through a lens. It is possible to
insert masks on the incident beam to illuminate a fraction
of the drop, either at the center or in the vicinity of the

edge. From the points of convergence of the beam (3) and
from the size of the various spots on the screen, information
on the curvature of the drop, then the radius, and the
contact angle is obtained.

If the drop is a spherical cap, the results are the same
with or without masks and the point of convergence of the
beam (3) on the axis is well-defined (see Figure 2).

If the drop is not a spherical cap, because of gravity or
any surface tension gradient, the results are different. If
the drop is flatter, the lens with the mask on the center
has a shorter focal length and conversely.

With the mask on the center, the convergence of the
beam (3) is well-defined and allows us to deduce R/θ in
the vicinity of the contact line. In contrast, with a hole of
radius F ) 2 mm, the light is distributed on a small segment
of the optical axis. The shortest length of convergence
corresponds to the part of the drop located approximately
at a distance F from the center and allows us to calculate
F/θ(r)F). The longest length corresponds to the curvature
at the center, but the difference is less than 10% and will
be ignored in the following.

The experiment provides a useful global picture of the
behavior of the evaporating drop and information on the
shape, which is quite important. As a matter of fact, the
complete profile can be obtained from interference fringes
only at the very end of the drop life.

Summary of the Results. First, the radius R of drops
of nonane (Figure 3a), octane (Figure 3b), heptane (Figure

Figure 1. (A) Linear plot of maximum radii versus initial
volume for different alkanes. (B) Log-log representation of A.
The lines with slope ∼0.4 are guides for the eyes.
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Figure 2. Schematic view of the optical setup (not to scale, the angles are in fact very small). (A) Definition of the emerging beams:
C is the geometrical center of the drop when it is a spherical cap, located at R/q from the substrate. The emerging beam (2) is reflected
on the drop surface and seems to come from point D, located at R/2q. The beam (3) has crossed the drop twice and converges at
point F on the axis. (B) Geometry of the setup.

Figure 3. Log-log plot of the radius R versus time (t0 - t) for different initial volumes of alkane droplets. The line D passes by
maximum radii for each volume. (a) Nonane: the measured slope of D is 0.64. (b) Octane: the measured slope of D is 0.64. (c)
Heptane: the measured slope of D is 0.63. (d) Hexane: the measured slope of D is 0.63.
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3c), and hexane (3d) are plotted versus the time interval
t0 - t for different values of the initial drop volume, both
in the advancing and receding motion. The range of
volumes investigated is much larger than in the previous
studies;17-19 therefore, it becomes clear that the receding
part of the various curves do not superimpose exactly,
contrary to our previous conclusions. The locus of the
extrema in the log-log plot is a straight line with slope
∼0.64, the same for the four alkanes investigated.

In the second series of figures, the contact angles θ
measured under a microscope are plotted versus the time
interval for two different volumes of heptane drops. As
previously explained, measuring the contact angle of an
evaporating drop is difficult. Moreover, the noise on the
data is accentuated by the log-log representation (Figure
4a), because the angles are close to 0. The oscillations in
the vicinity of the maximum extension of the drop are
very reproducible and not because of any air draft; they
are more visible on the linear plot (Figure 4b). As
previously mentioned, there is a steep decrease of the
contact angle during the spreading and the beginning of
the retraction, then at a range where the contact angle
is almost constant, and where the relation 2y + x ) 1 is
obeyed. Finally, there is again a fast decrease at the end
of the drop. The log-log curves for the two volumes are
shifted in the main part and tend to merge at the end.

The second setup allows us to compare the results
obtained with the different masks (Figure 5). The straight
lines on parts a and b of Figure 5 have the slope y - x,
which is expected for the ratio R/θ if the drop is a spherical
cap.

The drop shape can be distorted by (i) gravity and (ii)
surface-tension gradients. (i) As far as gravity is concerned,
the maximum radius of the biggest drops is larger than
the capillary length a ) xγ / Fg (a ≈ 1.8 mm), which
means that these drops will be flatter than spherical. Let
us give an estimate of the flattening of the drop. In the
lubrication approximation, the static, three-dimensional
drop profile is given by the equation

Here, γ is the surface tension; F is the density; g is the
acceleration of gravity; h is the local thickness; and KE is
the curvature at the contact line, which is simply 2θ/R for
spherical caps. For flattened drops, the two radius of
curvatures are the same at the center (r ) 0) but no longer
at the edge (r ) R). The present experiment measures R/θ

at the edge and (-d2h/dr2)r)0
-1 ) lim(r f 0) r(dh/dr)rf0

-1

at the center.
Solving eq 1 for a given contact angle allows us to

calculate the various parameters as a function of the ratio
a/R and to compare them with the ones of a spherical cap
with the same contact angle and radius. The value of the
contact angle is chosen to be θ ) 0.012 rad, which is typical
of octane. Then, eq 1 is solved with KE ) 2θ/R.

On Figure 6, the ratios of the curvatures, the drop
heights, and the drop volumes have been plotted as a

Figure 4. Log-log plot of the contact angle θ versus time (t0
- t) for different initial volumes of heptane droplets: ([) 3 µL
and (9) 10 µL. (Inset) Linear representation of the contact angle
versus time (3 µL).

-(d2h
dr2

+ 1
r

dh
dr) ) KE - Fg

γ
h (1)

Figure 5. Log-log plot of the radius of curvature (cm) versus
t0 - t (s) for a drop of octane with a maximum radius of 5 mm
and two different initial volumes: 4 µL (a) and 7 µL (b). ([) R/θ,
which is on the radius of curvature at the contact line. (9) (-d2h/
dr2)r)0

-1, which is the radius of curvature at the center. The
slope of the straight line in the two cases is y - x ≈ 0.4.

Figure 6. Comparison between the parameters of the flattened
drop and the flattened drops of a spherical cap with the same
radius and contact angle θ ) 0.012 rad, as a function of x ) a/R.
(+) Ratio of the volumes. (O) Ratio of the heights. (0) Ratio of
the curvatures in a plane of symmetry of the drop: (-d2h/
dr2)r)0

-1 (curvature at the center) and θ/R (curvature at the
edge).
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function of a/R for θ ) 0.012 rad. The curvature is the
most sensitive parameter, and the calculations are in good
agreement with the measurements on Figure 5. The fact
that the lines with slope y - x fit the data at the contact
line even for flattened drops means that the volume of
these drops is not yet significantly different from the ones
of spherical caps with the same R and θ, as can be seen
also in the figure. It would no longer be the case for larger
drops.

(ii) Surface-tension gradients can be induced by evapo-
ration. They are directed outward if the edge of the drop
is colder, which is the case during spreading29-30 and then
flatten the drop. They fade out when the drop has reached
its maximum extension and stays some time there at a
constant radius, while the contact angle decreases with
oscillations superimposed. No evidence of gradients during
retraction can be inferred from the drop profile, because
the mere gravity is enough to account for the observed
shape.

The conclusion is that, for the alkanes considered, small
drops, i.e., with radius of the order of the capillary length
or less, are spherical caps, while larger ones are flatter.
Including gravity allows us to account for the observations,
without introducing any surface-tension gradient (which
does not mean that there is no gradient, only that they
play as higher order terms). Moreover, the incidence of
gravity on the dynamics seems to be weak, in the range
of drop sizes investigated.

One must be aware that evaporation takes place during
spreading as well and that the volume of the drop when
it starts to recede is much smaller than the initial volume.
From the measured contact angle and radius, we can
estimate the volume of the drop at the beginning of
retraction, a value which is slightly overestimated if the
drop is flatter than spherical, because we use the contact
angle measured with the microscope. The volume of the
drop at the maximum extension is approximately 35% of
the initial volume for nonane, 30% for octane, 25% for
heptane, and 15% for hexane. Therefore, we refrain to
propose models for the curves on Figure 1.

3. Theoretical Analysis: Rescaling
The starting point for the evolution of the drop is the

local conservation equation

Here, h is the local thickness; r is the distance to the drop
axis; η is the viscosity of the alkane; and U is the velocity
averaged over the thickness.

J(r) is the evaporation rate per unit area of the substrate,
and Π(h) is the disjoining pressure. When surface-tension
gradients are ignored, which is supported by the previous
discussion, one gets

where a ) xγ / Fg is the capillary length.

With the assumption of a diffusion-controlled, quasis-
tationary evaporation process and considering that the
contact angles are very small, the evaporation rate can be
written as14,20-21

where R is again the radius of the drop. Equation 5 is
deduced from an electrostatic analogy with a flat disk
kept at constant potential. In a macroscopic description,
the electric field (or the evaporation rate) diverges at the
edge of the drop. A specific discussion at the proper scale
will be needed when the behavior of the contact line is
explicitly discussed.

Equation 2 is conveniently rescaled using characteristic
lengths and times. A characteristic length should be some
radius, which from the experimental study can be chosen
as the maximum radius of the drop R0. A characteristic
thickness in the lubrication approximation is R0θ0, where
θ0 is logically the angle corresponding to R0 taken at the
beginning of the retraction. The characteristic time is then
R0

2θ0/j0.
Let us now proceed with the equation. Rescaling

introduces several dimensionless quantities

The influence of the gravity is contained in the Bond
number

The disjoining pressure will play at the edge of the drop.
Let us assume pure van der Waals interaction, and let H
be the absolute value of the Hamaker constant. The
disjoining pressure is positive in complete wetting and
can be written as

The second dimensionless quantity is a “van der Waals”
number

The equation becomes, keeping the same symbols for the
dimensionless variables

A is very small, but C and R are of the order 1. For example,
C ) 0.16 and R ) 4 for a 3 µL drop of heptane, where R0
) 3.6 mm. The same orders of magnitude are obtained
with the other alkanes.

Rescaling: Check against Experiments. The rel-
evance of the rescaling can be checked easily on the
experimental log-log plots, because it corresponds to a
mere translation such that the curves coincide at the
maximum extension.

For a given alkane, the curves for the radius merge
very well if they are translated parallel to the line with

(29) Redon, C.; Brochard-Wyart, F.; Rondelez, F. J. Phys. II 1992,
2, 580.

(30) Bénichou, O.; Cachile, M.; Cazabat, A. M.; Poulard, C.; Valignat,
M. P.; Vandenbrouck, F.; van Effenterre, D. Adv. Colloid Interface Sci.
2003, 100-102, 381.

∂h
∂t

+ ∇(hU) ) -J(r) (2)

U(h,t) ) h2

3η
∇(γ∆h - Fgh + Π(h)) + h

2η
∇γ (3)

U(h,t) ) h2γ
3η

∇(∆h - h
a2

+
Π(h)

γ ) (4)

J(r) )
j0

Rx1 - ( r
R)2

(5)

C ) 3ηj0/γR0θ0
4 is a capillary number

R )
R0

2

a2

Π(h) ) H
6πh3

A ) H
6πγR0

2θ0
4

∂h
∂t

+ 1
C

∇(h3∇(∆h - Rh + A
h3)) ) - 1

Rx1 - ( r
R)2

(6)
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slope 0.64. A true rescaling has been done for heptane,
where precise measurements of the angle are available,
and works very well (see Figure 7).

For the angle, the rescaling works also, except at the
very end of the drop, where the decrease of the angle is
faster (see Figure 8).

Note that R0 and θ0 are not independent quantities.
From direct measurements in heptane, the trend is that
θ0 ∝ R0

z, with z ≈ -0.4. The shifts needed to superimpose
the curves for the radius in the log-log plot gives the best
estimate. Here, the vertical shift is log R0; the horizontal
one is log θ0R0

2; and the slope is -0.63, which gives z )
-0.45 (see Figure 3).

In conclusion, the rescaling works well, except at the
very end of the drop. It is clear from Figure 4 that, in that
range, the curves for the contact angle have a tendency
to merge before scaling but not after, which deserves
further discussion.

One obvious explanation for the faster decrease of the
angle at the end of the drop is that the velocity becomes
large there, which in a receding motion reduces the angle.
This is true, but this effect is already taken into account
in the hydrodynamic term and therefore properly rescaled.

On the other hand, one must be aware that the rescaling
in time depends directly on the structure of the evaporation
term, i.e.

which means that the rate of change of the volume V of
a dropwithsmall contact angle is proportional to theradius
R

If the drop is a spherical cap and if power laws for the
radius and angle versus t0 - t are still observed, the
corresponding exponents y and x have to be linked by 2y
+ x ) 1.

Experiments show that the drops keep a perfect
spherical cap shape until the very end.19 In that range,
the fit with a power law is excellent for the radius with
no appreciable change in y (y ∼ 0.5). The uncertainty is
larger for the angle (Figure 4); however, the data are
acceptably fitted by a power law, where x ∼ 0.4-0.5, in
sharp disagreement with the relation 2y + x ) 1. This
suggests that eq 7 is not valid at the end of the drop life.

The change in evaporation rate suggests that the
assumption of a diffusion-controlled, quasistationary
evaporation process does not hold at the end of the drop.

This can be due to the large interface velocity, which
could induce convection in the gas phase.18

Another explanation would be that eq 5 is no longer
valid for drops of microscopic thickness. Because the fast
decrease of the angle is already visible for relatively thick
drops (1 µm), the experiment suggests that convection is
the most plausible explanation.

Whatever the cause of the change in the evaporation
rate, the rescaling has to be done accordingly. This could
possibly explain why the contact angle seems to depend
only weakly on the drop volume at the very end of the
drop’s life.

We shall restrict the discussion to the range where eq
7 is valid.

4. Theoretical Analysis: Regularization

To address the dynamics of the moving contact line, the
evaporation rate at the edge of the drop needs to be
discussed at the proper, i.e., microscopic scale, where the
flux is finite.

Two approaches may be proposed. First, the assumption
of a diffusion-controlled, quasistationary evaporation
process could be reconsidered at the edge. A generalized
boundary condition at the liquid/gas interface has been
derived in ref 33. A possible regularization is then to make
the evaporation flux saturate at a distance l ) D/vth from
the periphery of the drop (D is the diffusivity of the vapor
in air, and vth is a typical thermal velocity).

Second, the rate of evaporation of thin wetting films
depends on the film thickness and tends to 0 with it (from
that point of view, eq 6 is not correct, because the disjoining
pressure should also appear in the right-hand side).
Therefore, the evaporation rate will saturate at some
distance l from the edge of the drop, where the film becomes
thin and the disjoining pressure comes into play.

Let us develop the approach based on the specific
properties of thin films. Let x ) R - r be the (rescaled)
distance from the edge (x > 0). In the frame of the contact
line, which moves with velocity dR/dt and for x , 1, the
eq 6 can be written as

(31) de Gennes, P. G.; Hervet, H. Dynamique du mouillage: Films
précurseurs sur solide sec. C. R. Acad. Sci. Paris 1984, 299, 499.

(32) Jackson, J. D. Classical Electrodynamics, 2nd ed.; Wiley: New
York, 1975.

(33) Sultan, E.; Boudaoud, A.; Ben Amar, M. Evaporation of a thin
film: Diffusion of the vapour and Marangoni instabilities. J. Fluid Mech.
2005, manuscript submitted.

Figure 7. Log-log plot of the rescaled radius versus the
rescaled time for different initial volumes of heptane droplets.

Figure 8. Log-log plot of the rescaled contact angle versus
the rescaled time for different initial volumes of heptane
droplets: ([) 3 µL, (2) 5 µL, and (9) 10 µL.

J(r) ∝
j0

R
(7)

dV
dt

∝ R (8)
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We first look for a power-law form for the profile of the
drop near the edge. It appears that the most divergent
terms come from capillarity and van der Waals forces so
that advection and evaporation are negligible near the
contact line. The profile at the edge is given by

This is the same result as the one obtained by de Gennes
and Hervet31 for the edge of the precursor film in complete
wetting. The crossover to the main drop (h ) θx) with
contact angle θ takes place over a distance l ≈ A1/2/θ2. This
distance l gives the macroscopic edge of the drop.

To find the macroscopic behavior of the drop, we come
back to eq 9. Then, van der Waals forces become sub-
dominant and can be neglected. All other terms should
match at the crossover distance l

up to numerical factors of the order 1. This equation is a
generalization of Tanner’s law34 accounting for evapora-
tion.

In the range where the drops are spherical caps, volume
conservation yields

This closed system (eqs 10 and 11) for the radius and the
contact can be solved numerically (see the next section).

One obvious limitation of the derivation of the mobility
law for the contact line is that it is valid as long as l ,
R, a condition which is broken at the end of the drop life.

Note that if one makes the evaporation flux saturate at
a distance l ) D/vth from the periphery of the drop, one
gets a slightly different mobility law

Check Against Experiments. The relevance of the
regularization procedure can be indirectly checked on eq
10. At the maximum extension, the rescaled R and θ are
equal to 1 and the velocity dR/dt ) 0. Therefore

Coming back to the usual variables, one finds a relation
between θ0 and R0

The orders of magnitude are correct, but the relation
between the angle and radius at the maximum differs
significantly from the experimental power law θ0 ∝ R0

-0.45.
This could be expected, because the regularization has
been done using an oversimplified procedure. However,
the mere fact to be able to find a relation between

maximum radius and angle is already a significant step
toward the complete description of the evaporating wedge.

The coupled eqs 10 and 11 can be solved numerically,
taking the maximum extension as the initial condition,
with R ) 1, θ ) 1, and dR/dt ) 0, which implies that eq
13 is valid. Therefore, the only free parameter is C. When
the experimental value C ) 0.16 is used, one obtains the
curves plotted on Figure 9. The agreement is qualitatively
excellent. Quantitatively, the results are very sensitive
to the value of C, which is not fully plausible. Moreover,
the angle vanishes before the radius and diverges toward
-∞. This behavior is reminiscent of the inadequacy of the
wedge model in partial wetting at large receding veloci-
ties.35 Because eq 10 is no longer valid at small R (R ≈ l),
how to define t0 precisely is not obvious. An extrapolation
of the data at R . l has been used, allowing us to obtain
the log-log plots reported on Figure 10.

A numerical solution of the system (eqs 11 and 12) has
also been calculated. The results are quite similar, except
for a slight shift in the values of the parameter C.

5. Conclusion

It is clear that the present theory picks up a large part
of the physics of the problem and represents a significant
step toward its complete understanding. It accounts well
for the experimental power laws obtained for the radius
of receding, evaporating drops. It also provides the first
attempt to predict the value of the contact angle in a
dynamic situation and a generalization of Tanner’s law
in the case of evaporating liquids. It has to be improved

(34) Tanner, L. H. J. Phys. D 1979, 12, 1478. (35) Cox, R. G. J. Fluid Mech. 1986, 168, 169.
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Figure 9. Calculated rescaled contact angle θ (9) and radius
R ([) versus the rescaled time t.

Figure 10. Log-log plot of the rescaled contact angle θ and
radius R versus the rescaled time (t0 - t).
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at some places. Noticeably, the sensitivity of the solution
to the value of C, i.e., to the hydrodynamic term, has to
be smoothed out, which means that a real profile has to
be introduced in the equations and not only the slope at
the edge. However, it provides the first complete and
plausible description of the very old problem of evaporation
of drops on solid substrates.
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