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Abstract 
Many manufacturing facilities generate and update production schedules, which are plans that 
state when certain controllable activities (e.g., processing of jobs by resources) should take place.  
Production schedules help managers and supervisors coordinate activities to increase 
productivity and reduce operating costs.  Because a manufacturing system is dynamic and 
unexpected events occur, rescheduling is necessary to update a production schedule when the 
state of the manufacturing system makes it infeasible.  Rescheduling updates an existing 
production schedule in response to disruptions or other changes.  Though many studies discuss 
rescheduling, there are no standard definitions or classification of the strategies, policies, and 
methods presented in the rescheduling literature.  This paper presents definitions appropriate for 
most applications of rescheduling manufacturing systems and describes a framework for 
understanding rescheduling strategies, policies, and methods.  This framework is based on a wide 
variety of experimental and practical approaches that have been described in the rescheduling 
literature.  The paper also discusses studies that show how rescheduling affects the performance 
of a manufacturing system, and it concludes with a discussion of how understanding 
rescheduling can bring closer some aspects of scheduling theory and practice. 
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1 Introduction 

Many manufacturing facilities generate and update production schedules, which are plans 

that state when certain controllable activities (e.g., processing of jobs by resources) should take 

place.  In dynamic, stochastic manufacturing environments, managers, production planners, and 

supervisors must not only generate high-quality schedules but also react quickly to unexpected 

events and revise schedules in a cost-effective manner.  These events, generally difficult to take 

into consideration while generating a schedule, disturb the system, generating considerable 

differences between the predetermined schedule and its actual realization on the shop floor.  

Rescheduling is then practically mandatory in order to minimize the effect of such disturbances 

in the performance of the system.  There are many types of disturbances that can upset the plan, 

including machine failures, processing time delays, rush orders, quality problems, and 

unavailable material.  As Bean et al. [1] state, rescheduling is a dynamic approach that responds 

to disruptions, yet it considers future information (by creating a plan for the future).   

In practice, rescheduling is done periodically to plan activities for the next time period 

based on the state of the system.  It is also done occasionally in response to significant 

disruptions.  Because time estimates are incorrect and unexpected events occur, precisely 

following a schedule becomes more difficult as time passes.  In some cases, the system may 

follow the sequence that the schedule specifies even though the planned start and end times are 

no longer feasible.  Eventually, however, a new schedule will be needed. 

A great deal of effort has been spent developing methods to generate optimal production 

schedules, and countless papers discussing this topic have appeared in scholarly journals.  

Typically, such papers formulate scheduling as a combinatorial optimization problem.   

Many studies of production scheduling problems have employed a standard three-field 

classification scheme [2].  This scheme represents a scheduling problem as a triple α|β|γ, where 

α represents the scheduling environment, β represents any distinctive characteristics of the jobs 

to be scheduled, and γ describes the objective function.  It has been used to describe concisely a 

wide variety of standard one-machine, parallel machine, and shop scheduling problems, and 

researchers have also employed it as notation for describing many other static scheduling 
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problems.  Many classifications of static scheduling problems have been done (see, for example, 

Herrmann, Lee, and Snowden [3]), but these do not consider the rescheduling context involved.  

Liu and MacCarthy [4] present a classification scheme for scheduling problems in flexible 

manufacturing systems.  This scheme includes a descriptor for aspects of the production 

management environment, including whether orders are handled periodically or continuously.  

Nof and Grant [5] present a framework for real-time control of automated manufacturing 

systems.  Their review covers a variety of schedule generation approaches, including artificial 

intelligence and knowledge-based approaches.  For a single machine operating in a dynamic, 

stochastic environment, Markowitz and Wein [6] classify scheduling problems based on three 

attributes: the presence of setups, the presence of due dates, and the type of products 

(standardized or customized).   

However, the scope of papers on rescheduling varies greatly, and there is no standard 

classification scheme.  In the literature on rescheduling, there are three primary types of studies: 

one, methods for repairing a schedule that has been disrupted; two, methods for creating a 

schedule that is robust with respect to disruptions; and three, studies of how rescheduling 

policies affect the performance of the dynamic manufacturing system.  To understand this work, 

this paper presents a framework for understanding rescheduling not only as a collection of 

techniques for generating and updating production schedules but also as a control strategy that 

has an impact on manufacturing system performance in a variety of environments.  The 

framework includes rescheduling environments, rescheduling strategies, rescheduling policies, 

and rescheduling methods.  The rescheduling environment identifies the set of jobs that need to 

be scheduled.  A rescheduling strategy describes whether or not production schedules are 

generated.  A rescheduling policy specifies when rescheduling should occur.  Rescheduling 

methods describe how schedules are generated and updated. 

This paper defines these concepts and reviews papers that describe specific approaches in 

each area.  Because of the lack of standardized definitions and classifications, this paper will also 

define common scheduling terms.  However, this paper is not a comprehensive survey of the 

numerous approaches used to generate or repair schedules. 
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Finally, the paper discusses studies that show how rescheduling affects the performance 

of a manufacturing system, and it concludes with a discussion of how understanding 

rescheduling can bring closer some aspects of scheduling theory and practice. 

The remainder of the paper is organized as follows. The next section describes 

rescheduling in general, along with the types of events that cause rescheduling.  Section 3 

defines scheduling terms, presents the rescheduling framework, and discusses rescheduling 

environments.  Section 4 discusses performance measures.  Section 5 describes rescheduling 

strategies and rescheduling policies.  Section 6 explains methods for generating robust schedules 

and methods for updating schedules.  Section 7 describes how rescheduling policies affect 

manufacturing system performance.  Section 8 discusses the gap between scheduling theory and 

practice.  Section 9 concludes the paper and presents some lessons learned from this effort. 

2 Rescheduling manufacturing systems  

Manufacturing facilities are complex, dynamic, stochastic systems.  From the beginning 

of organized manufacturing, workers, supervisors, engineers, and managers have developed 

many clever and practical methods for controlling production activities.  Although dispatching 

rules, kanban cards, and other decentralized production control policies are in use [7, 8, 9], many 

manufacturing facilities generate and update production schedules.  Such policies are usually 

quick but myopic because they do not use global information typically.   

In manufacturing systems with a wide variety of products, processes, and production 

levels, production schedules can enable better coordination to increase productivity and 

minimize operating costs.  A production schedule can identify resource conflicts, control the 

release of jobs to the shop, and ensure that required raw materials are ordered in time.  A 

production schedule can determine whether delivery promises can be met and identify time 

periods available for preventive maintenance.  A production schedule gives shop floor personnel 

an explicit statement of what should be done so that supervisors and managers can measure their 

performance. 

Note that, after a schedule is generated, manufacturing operations begin.  Managers and 

supervisors want the shop floor to follow the schedule.  In practice, operators may deviate from 
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the schedule.  Ideally, the schedule is followed as closely as possible.  Small deviations from 

scheduled start times and end times are expected and usually ignored.  (The definition of small 

depends on the facility in question.)  Larger deviations or changes to the sequence occur when 

unexpected events disrupt the initial schedule.  Even if the managers and supervisors do not 

explicitly update the schedule, schedule repair occurs as the operators react to the disruptions, 

delaying tasks or performing tasks out of order. 

Rescheduling is the process of updating an existing production schedule in response to 

disruptions or other changes.  This includes the arrival of new jobs, machine failures, and 

machine repairs.  Rescheduling studies have considered many types of manufacturing systems, 

including single machine systems [10, 11, 12], parallel machine systems [13, 14], flow 

shops [15], job shops [16, 17], and flexible manufacturing cells and systems [18, 19, 20, 21, 22, 

23, 24].  Many papers have addressed flexible manufacturing systems because they require tight 

synchronization between the shop floor and the planned procedures in order to reach the 

efficiency they are expected to have.  Basnet and Mize [25] review approaches for scheduling 

(but not rescheduling) and control of flexible manufacturing systems. 

Unexpected events (disruptions) can change the system status and affect performance.  If 

it will cause significant deterioration in performance, the event will trigger rescheduling to 

reduce the impact.  For this reason, these events are called rescheduling factors [23, 24].  The 

following are the most common factors identified in rescheduling studies: 

• Machine failure [18, 21, 22, 26, 28, 29, 30, 31, 32, 33] 

• Urgent (rush, or ‘hot’) job arrival [18, 26, 29, 30] 

• Job cancellation [18, 26, 30] 

• Due date change (delay or advance) [26, 31, 34] 

• Delay in the arrival or shortage of materials [26, 30, 34] 

• Change in job priority [18, 34] 
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• Rework or quality problems [26, 28] 

• Over- or underestimation of process time [26] 

• Operator absenteeism [28] 

The above events may trigger other actions (listed below) that, in turn, suggest 

rescheduling [26, 34]: 

• Overtime 

• In-process subcontracting 

• Process change or re-routing 

• Machine substitution 

• Limited manpower 

• Setup times 

• Equipment release  

3 Terminology and Framework 

In the literature on rescheduling, the inconsistent use of many terms makes understanding 

the field difficult.  This section defines some common terms and presents a rescheduling 

framework that helps define these terms and show their relationship.   

3.1 Definitions 

A manufacturing system organizes equipment, people, and information to fabricate and 

assemble finished goods that are shipped to a customer.  This system may be as large as a factory 

or as small as a manufacturing cell.  According to Black [35], a manufacturing system is “the 

collection of operations and processes used to produce a desired product.”  A manufacturing 
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system does not include finance, design engineering, research and development, production and 

inventory planning, purchasing, or distribution (although the last three items belong in more 

general manufacturing systems).  Note that it does include order release, shop floor control, and 

material handling. 

Order release controls a manufacturing system’s input by determining which orders 

(jobs) should be moved into production.  It may be known as job release, order review/release, 

input/output control, or just input control.   

Shop floor control determines which operation each person and piece of equipment 

should do and when they should do it.  In general this process controls all production and 

material handling resources.  Design decisions include order release policies (including WIP 

levels for pull systems), dispatching rules, batch sizes, and preventive maintenance policies.  

A production schedule specifies, for each resource required for production, the planned 

start time and end time of each job assigned to that resource. 

Scheduling is the process of creating a production schedule for a given set of jobs and 

resources. 

Rescheduling is the process of updating an existing production schedule in response to 

disruptions or other changes.  This includes the arrival of new jobs, machine failures, and 

machine repairs. 

The rescheduling environment identifies the set of jobs that the schedule should include.  

A rescheduling strategy describes whether or not production schedules are generated.  A 

rescheduling policy specifies when and how rescheduling is done.  The policy specifies the 

events that trigger rescheduling.  These events may be predictable (even regular) or 

unpredictable.  The policy specifies the method used to revise the existing schedule.  Note that 

the policy may specify different methods for different situations.  If these policies have any 

parameters (for instance, the length of the rescheduling period), the policy specifies these 

parameters.  Rescheduling methods generate and update production schedules. 
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3.2 A rescheduling framework 

The scope of rescheduling research varies widely.  Some studies discuss comprehensive 

strategies for rescheduling manufacturing systems, while others present specific techniques for 

resolving constraint violations that occur when an unexpected event happens.  This literature is 

thus unlike the literature that discusses static scheduling problems.  In the latter, the focus of 

each paper is generally on one (or more) well-defined scheduling problems, and each paper 

establishes the problem’s computational complexity, identifies properties of optimal schedules, 

proves the optimality of an exact solution approach, or compares the performance of heuristic 

solution approaches experimentally. 

Figure 1 presents a framework for understanding rescheduling research.  The framework 

includes rescheduling environments, rescheduling strategies, rescheduling policies, and 

rescheduling methods.  Either rescheduling strategy (dynamic scheduling or predictive-reactive 

scheduling) can be used in any rescheduling environment with uncertainty or variability.  

However, dynamic rescheduling environments are the ones most relevant to manufacturing 

systems, and the predictive-reactive rescheduling strategy is the approach most commonly used 

in practice.  Still, there are a great variety of rescheduling policies used in predictive-reactive 

scheduling.  Section 3.3 discusses rescheduling environments.  Section 5 describes the two 

rescheduling strategies and the rescheduling policies.  Rescheduling methods (described in 

Section 6) are procedures for generating and repairing schedules, which are necessary only for 

rescheduling policies used in predictive-reactive scheduling.  (Dynamic scheduling does not 

create or update schedules.)  

This paper will use this framework to explain the concepts of rescheduling.  Although 

this paper is not a comprehensive survey, this framework can also be used to understand the 

contributions of individual papers.  For example, Table 1 presents a short list of papers and, for 

each paper, describes the type of rescheduling approach it studies. 
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Rescheduling Environments

Static (finite set of jobs) Dynamic (infinite set of jobs)

Deterministic
(all information given)

Stochastic
(some information 

uncertain)

No arrival 
variability

(cyclic 
production)

Arrival 
variability

(flow shop)

Process flow 
variability
(job shop)

Rescheduling Strategies

Dynamic (no schedule) Predictive-reactive (generate and update)

Dispatching rules Control-theoretic

Periodic Event-driven Hybrid

Rescheduling Policies

Rescheduling Methods

Schedule generation Schedule repair

Nominal schedules Robust schedules Right-shift
rescheduling

Partial
rescheduling

Complete
regeneration

 
Figure 1.  Rescheduling framework. 
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Table 1.  Descriptions of selected papers using the rescheduling framework. 

Rescheduling Methods Reference Rescheduling 
Environment 

Rescheduling
Strategy 

Rescheduling
Policy Schedule 

Generation 
Schedule 
Repair 

Vieira et al. 
[10] 

Dynamic 
flow shop 

Predictive-
reactive 

Periodic, 
event-driven 

Nominal Right-shift 

Vieira et al., 
[13] 

Dynamic 
flow shop 

Predictive-
reactive 

Periodic, 
hybrid, 
event-driven,  

Nominal Complete 
regeneration 

Farn and 
Muhlemann 
[79] 

Dynamic 
flow shop 

Predictive-
reactive 

Periodic  Nominal Complete 
regeneration 

Muhlemann et 
al. [16] 

Dynamic 
job shop 

Predictive-
reactive 

Periodic  Nominal Complete 
regeneration 

Mehta and 
Uzsoy [46] 

Dynamic 
job shop 

Predictive-
reactive 

Periodic  Robust Right-shift 

Byeon et al. 
[75] 

Static, 
stochastic 

Predictive-
reactive 

Event-driven Robust Partial 
rescheduling 

Leon et al. 
[74] 

Static, 
stochastic 

Predictive-
reactive 

Event-driven Robust Right-shift 

Church and 
Uzsoy [28] 

Dynamic 
flow shop 

Predictive-
reactive 

Hybrid Nominal Complete 
regeneration 

Bierwirth and 
Mattfeld [67] 

Dynamic 
job shop 

Predictive-
reactive 

Event-driven Nominal Complete 
regeneration 

Wu and Li 
[27] 

Dynamic 
job shop 

Predictive-
reactive 

Event-driven Nominal Partial 
rescheduling 

Herrmann et 
al. [65] 

Dynamic 
job shop 

Predictive-
reactive 

Periodic Nominal Complete 
regeneration 

Kumar [54] Dynamic 
job shop 

Dynamic    

Akturk and 
Gorgulu [77] 

Static, 
stochastic 

Predictive-
reactive 

Event-driven Nominal Partial 
rescheduling 

3.3 Rescheduling environments 

The rescheduling environment, which identifies the set of jobs that need to be scheduled, 

is an important component of the rescheduling framework, as Figure 1 illustrates.  Static 

rescheduling environments have a finite set of jobs [36, 37].  Dynamic rescheduling 

environments have an infinite set of jobs (that is, jobs continue to arrive over an infinite time 

horizon) [28, 31]. 

Deterministic, static scheduling problems can be viewed as a special case of 

rescheduling, where there is a finite set of jobs and no uncertainty about the future.  The 

specified schedule can be followed without any modifications.  (In some cases, these problems 
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may be decomposed into subproblems as part of a solution technique, but this does not change 

the nature of the problem.)   

Stochastic, static rescheduling environments are an important special case of 

rescheduling.  Again, there is a finite set of jobs, but some variables are uncertain.  For instance, 

when task processing times are modeled as random variables, a solution may specify resource 

assignments and task sequences, but the actual task start times and completion times will not 

match the expected ones.  At the minimum, executing the schedule requires some rule or policy 

for reconciling the error in the schedule.  However, other policies exist.  One can modify the 

schedule at some point during execution to react to additional information, or one can construct a 

solution that only partially specifies the schedule, leaving details unspecified until the 

appropriate time comes [38].  There also exist problems in which the uncertainty is not modeled 

as a probability distribution.  In this case, worst-case performance is a key objective (see, for 

example, Daniels and Kouvelis [39], Herrmann [40]). 

A dynamic rescheduling environment has an infinite stream of jobs.  Each job requires 

scheduling before it can be processed.  Three important cases exist. 

First, if there is no uncertainty or variability in the arrival process, then the jobs to be 

processed are known in advance, and the production schedule is continuously repeated.  If the 

jobs can be grouped into a minimal part set that is continuously repeated, then a single 

scheduling decision is needed to create a sequence of operations that will be continuously 

repeated.  This yields a cyclic scheduling problem.  See, for example, Matsuo [41], Roundy [42], 

Kamoun and Sriskandarajah [43], Hall and Sriskandarajah [44], and Lee and Posner [45].  

Pinedo and Chao [36] describe the use of cyclic scheduling in flexible assembly systems.  If the 

lot sizes are not specified, then the production schedule is a cycle of production runs that must be 

determined by solving the economic lot scheduling problem (see, for example, Pinedo and Chao 

[36]).  

Second, there may exist some uncertainty in job arrivals, but all jobs follow the same 

route through the manufacturing system, and the arrival rate is steady.  When there exist 

significant setups between different classes of jobs or reentrant flow, scheduling is necessary to 

determine when a resource should switch from processing one type of job to another [6, 46]. 
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Third, there may exist process flow variability along with the variability in job arrivals.  

Job shops often have this characteristic, since there are many products, but a limited subset of 

them are being produced at any given time.  Thus, a specific product’s arrival process has great 

variability.  In some situations, no advance information is available about jobs before they arrive.  

Otherwise, some information about future arrivals may be known, but the information is subject 

to change as new jobs are added and existing jobs are delayed or deleted [28, 30]. 

Another aspect that characterizes rescheduling environments is the presence of potential 

additional capacity using subcontracting or overtime (see, for instance, Akkan [47], Arslan et al. 

[48]).  A facility that works 24 hours every day is not the same as a facility that work five eight-

hour shifts a week.  The presence of capacity buffers (in the form of potential overtime) affects 

the rescheduling environment, since it relaxes one set of constraints (capacity) but adds another 

set of costs (overtime). 

3.4 Other terms 

This section defines some other terms used to describe aspects of rescheduling policies: 

scheduling point (or rescheduling point), rescheduling period, rescheduling frequency, 

scheduling stability, scheduling robustness, and scheduling nervousness. 

A scheduling point (or rescheduling point) is the point in time when a scheduling 

decision is made [22].  That is, it is the point in time when a schedule is created or revised. 

The rescheduling period is the time between two consecutive scheduling points.  The 

rescheduling frequency, therefore, is the inverse of the rescheduling period and it measures how 

often rescheduling is performed. 

Scheduling stability measures the number of revisions or changes that a schedule 

undergoes during execution [28, 49].  Cowling and Johansson [50] describe a general approach 

for measuring schedule stability and present a specific stability measure that calculates the 

average absolute change of the start and completion times of two schedules.  Scheduling 

nervousness was originally mentioned in the context of material requirement planning (MRP) 

systems, where it was defined as “significant changes in MRP plans” or “instability” [51].  
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Because nervousness is constant change in the schedule (frequent rescheduling), it is the opposite 

of schedule stability.  A “nervous” system presents little predictability.  A rescheduling policy 

that yields fewer revisions increases schedule stability (and decreases schedule nervousness).   

Schedule robustness measures how much disruptions would degrade the performance of 

the system as it executes the schedule.  Stability and nervousness measure the changes to a 

schedule, but robustness measures the changes to system-level performance. 

4 Performance measures 

A variety of performance measures guide rescheduling.  These measures can be separated 

into three groups [18, 32, 49]: measures of schedule efficiency, measures of schedule stability, 

and cost.  

Measures of schedule efficiency are often used when generating a production schedule.  

They are generally time-based measures [32]: makespan [21, 22, 31, 46, 49, 51], mean tardiness 

[18, 20, 22, 29, 34], mean flow-time [10, 13, 18, 29], average resource utilization [18, 20, 34], 

and maximum lateness [28]. 

Schedule stability is not an issue in static, deterministic rescheduling environments since 

the schedule does not need updating.  However, in other rescheduling environments, stability, 

nervousness, and robustness are important measures.  Wu, Storer and Chang [49], for instance, 

have said that the impact of schedule change is a non-regular performance measure defined in 

two ways: (1) the starting time deviations between the new schedule and the original schedule, 

and (2) a measure of the sequence difference between the two schedules. Abumaizar and Svestka 

[30] proposed similar ideas saying that measures of stability deal with deviation from the initial 

schedule.  Watatani and Fujii [52] and Dhingra, Musser and Blankenship [23] also considered 

the deviation between the revised and initial schedules as performance measures, even though 

they did not call it schedule stability. 

The impact of machine failure seems to be the major concern when searching for more 

stable (less nervous) and robust schedules.  Shafaei and Brunn [33] have addressed the 

robustness of scheduling rules in a dynamic and stochastic environment.  They concluded that as 

the level of uncertainty increases, frequent rescheduling becomes more effective in improving 
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the robustness of the schedules.  Wu, Storer, and Chang [49] have studied rescheduling heuristics 

using schedule efficiency (makespan) and schedule stability as performance measure criteria.  

For the single-machine system they have considered, the heuristic used generated stable 

schedules while retaining near-optimal makespans. 

Time-based performance measures (measures to reach schedule efficiency) do not 

completely reflect the economic performance of the manufacturing system.  So, due to the lack 

of an overall, efficient, time-based performance measure, researchers have recognized that the 

scheduling decisions should also be evaluated by using an economic performance measure.  The 

objective then is to minimize the cost of starting jobs too early, work-in-process inventory, and 

tardiness.  Issues such as job profitability, total cost minimization, reduction in WIP, and the cost 

of missed due dates are more important for managers than the time-based measures mentioned 

above [32, 33].  Shafaei and Brunn [32, 33] have proposed the use of a total cost function in 

terms of job due date, completion time, number of jobs, number of operations, operation 

processing time, job raw material cost, processing cost of operations, job revenue, processing 

start times, job release time, job tardiness, holding cost rate, and tardiness cost rate. 

In general, rescheduling costs occur in three categories:  computational costs, setup costs, 

and transportation costs.  Computational costs include the computational burden on the computer 

running the scheduling system [22, 28], the non-recurring costs of investments in the necessary 

information systems (sensors, displays, communication networks, hardware, and software), and 

the recurring costs of administration, maintenance, and upgrades.  If rescheduling is done 

manually, then the computational cost includes the time that the planners, managers, and 

supervisors spend generating and updating schedules.  Setup costs occur when tooling and 

fixtures are created or allocated in advance according to the schedule.  Thus a change in the 

schedule will incur costs to reallocate pallets and replan the tools [53].  Transportation costs (also 

called material handling costs) are related to delivering materials earlier than required or 

additional material handling work to transport jobs from one scheduled machine to other points 

in the shop [53].  For instance, Bean et al. [1] use the number of jobs reassigned as a measure of 

solution cost that must be balanced against tardiness costs and computational effort.   
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In dynamic rescheduling environments, the relative values of the rescheduling period and 

the mean total processing time requirements of a job will affect the performance measures used 

in predictive-reactive rescheduling.  When the rescheduling period is relatively large, jobs can be 

started and completed between rescheduling events.  Scheduling objectives will typically focus 

on completing the available jobs within that time period.  When the rescheduling period is 

relatively small, the system will have, at each rescheduling point, some jobs that are available 

and waiting to start and many others that started during a previous period but still require more 

processing.  In a job shop environment, scheduling objectives are much more complex, since 

there is a need to balance available capacity among jobs at different stages in their processing.  

This is especially true in shops with re-entrant flow, like those found in semiconductor wafer 

fabrication plants [54, 55]. 

5 Rescheduling strategies 

This section describes two common strategies for controlling production in dynamic 

rescheduling environments that have uncertain job arrivals.  The two strategies are dynamic 

scheduling and predictive-reactive scheduling.  Predictive-reactive scheduling includes three 

types of rescheduling policies: periodic, event-driven, and hybrid.   

5.1 Dynamic Scheduling 

Dynamic scheduling does not create production schedules.  Instead, decentralized 

production control methods dispatch jobs when necessary and use information available at the 

moment of dispatching.  Such schemes use dispatching rules or other heuristics to prioritize jobs 

waiting for processing at a resource [28, 31, 56].  Some authors refer to dynamic scheduling 

schemes as on-line scheduling or reactive scheduling [22, 26, 53]. 

Dispatching rules and pull mechanisms are used to control production without a 

production schedule.  When a machine becomes available it chooses from among the jobs in its 

queue by using a dispatching rule that sorts the jobs by some criteria.  Common dispatching rules 

employ processing times and due dates in simple rules and complex combinations.  Some 

dispatching rules are extensions of policies that work well on simple machine scheduling 

problems (e.g. Shortest Processing Time and Earliest Due Date).  The computational effort of 
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dispatching rules is low when simple rules (like SPT or EDD) are used.  However, some 

dispatching rules require a large amount of information, and the job priorities must be 

recalculated at every dispatching decision.   

Panwalkar and Iskander [7] provide an extensive list of dispatching rules.  They 

categorize these rules into five classes: simple dispatching rules, combinations of simple rules, 

weighted priority indexes, heuristic scheduling rules, and other rules. 

Green and Appel [8] examine the problem of job shop scheduling by asking the following 

questions: What traditional dispatching rules do experienced schedulers select?  Would dispatch 

rule selection be influenced by urgency?  Would schedulers select a dispatch order based on 

organizational influence or peer pressure?  The authors asked schedulers in a number of plants to 

denote which of the following rules they used: due date, slack, operation due date, slack per 

operation, SPT, FCFS, COVERT, Program in Greatest Trouble (PGT), or friend needs a favor 

(FNF).  The authors report that influence systems affect scheduling.   The PGT rule (a coalition 

rule) was highly valued, but FNF (an individual rule) was rejected.  Traditional and theoretical 

rules were not highly valued. 

Pull mechanisms such as kanban cards and constant WIP (CONWIP) order release 

policies add production authorization cards to the system so that a resource can work only when 

both material and cards are available.  Hopp and Spearman [9] provide a good introduction to 

these topics.  Buzacott and Shanthikumar [57] analyze a generalized production authorization 

policy. 

Dynamic scheduling is closely related to real-time control, since decisions are made 

based on the current state of the manufacturing system.  Controlling a manufacturing system so 

that it maintains a desired inventory position (in work-in-process or finished goods) is a common 

strategy when there is steady demand for each product.  There may be multiple process flows 

(routes), but they are known, and each one has a steady throughput of jobs following that flow.  

This consistency makes base stock policies, hedging points, kanban, and other pull-based 

mechanisms feasible.  The system works to maintain a low level of work-in-process, but the 

consistent demand ensures that this inventory turns over regularly.  See, for example, Hopp and 

Spearman [9], Gershwin [58], and Bispo and Tayur [59].   
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Gershwin [58] reviews literature of control theoretic models of manufacturing systems.  

The models are used to develop rules for deciding which action to take and when to take it in 

response to random disruptions.  For instance, these control policies can be implemented as 

dispatching rules or hedging-point policies. 

In a number of papers, Kumar and others (e.g., Kumar [54]; Perkins and Kumar [56]; 

Chase and Ramadge [60]) have studied the control of dynamic manufacturing systems.  

Specifically, they have described classes of dispatching rules that identify which waiting job a 

resource should process next.  For machines without setup times, the proposed dispatching rules 

are a class of least slack policies that prioritize each job by the difference between its due date 

(or some surrogate) and the expected amount of time until the job is completed.  For resources 

with setup times, the proposed dispatching rules focus on completing all waiting jobs of one type 

before performing a setup and processing jobs of another type.  All of the rules studied keep a 

machine working if there are any jobs waiting for processing.  (That is, the machine cannot 

ignore waiting jobs.)  Kumar [54] summarizes the results of work on the stability and 

performance of these policies.  This important work demonstrates why certain classes of 

dispatching rules work well and provides guidance when selecting dispatching rules.  However, 

there exist dynamic manufacturing systems for which these types of dispatching rules are 

inappropriate or suboptimal.  For example, Chase and Ramadge [60] demonstrated that there 

exist idling policies that have superior performance.  For a single machine operating in a 

dynamic, stochastic environment, Markowitz and Wein [6] present dynamic cyclic policies that 

minimize the long-run expected average costs of earliness, tardiness, holding, and setups. 

5.2 Predictive-Reactive Scheduling 

Predictive-reactive scheduling is a common strategy to rescheduling dynamic 

manufacturing systems [11, 18, 23, 34, 46, 61, 62].  Predictive-reactive scheduling has two 

primary steps.  The first step generates a production schedule.  The second step updates the 

schedule in response to a disruption or other event to minimize its impact on system performance 

[21, 22, 28, 30].  Rescheduling can occur frequently in a dynamic rescheduling environment, or 

it can simply be a single revision of the schedule of a stochastic, static rescheduling environment.  
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Some studies have described approaches for generating robust schedules that will 

perform well even if disruptions occur.  Section 6.1 will describe these approaches in more 

detail.  Section 6.2 describes approaches used to update (repair) a schedule when a disruption 

occurs. 

Predictive-reactive scheduling is an iterative process.  Wu and Li [27] have described 

rescheduling as an iterative process of three steps: The evaluation step evaluates the impact that a 

disruption causes.  No further action is required if the impact is acceptably small.  (This might be 

the case if there is sufficient idle time in the system to absorb the negative impact of the 

disruption [22].)  The solution step determines the rescheduling solutions that can enhance the 

performance of the existing schedule.  However, determining the best rescheduling solution still 

remains an open research issue and, consequently, is the most difficult part of the rescheduling 

process.  The revision step updates the existing production schedule or generates a new one.  If 

the result is unacceptable, the solution step must be revisited. 

Yamamoto and Nof [21] have proposed a rescheduling approach following a general 

three-phase scheme.  The planning phase constructs an initial schedule just prior to the start of a 

new work period, based on all available production requirements.  It prepares the information 

necessary for the operations during a given period.  The control phase compares the actual 

progress of operations to the current schedule every time a new operation begins or finishes.  If 

the difference exceeds a specified limit the rescheduling phase should begin.  The rescheduling 

phase constructs a revised schedule considering the operational changes that have triggered the 

rescheduling.  For instance, if a new part mix is required, then a revised schedule is required.  

When a machine fails, the expected duration of the breakdown has to be considered.  The 

scheduling procedure itself is essentially the same as in the planning phase. 

A rescheduling policy is needed to implement a predictive-reactive scheduling strategy.  

Three types of rescheduling policies have been studied: periodic, event-driven, and hybrid.  The 

periodic and hybrid strategies have received special attention under the name of rolling time 

horizon approaches [28, 31].  When scheduling is performed on a rolling time horizon, the 

overall scheduling problem is decomposed into smaller and static scheduling problems. 
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A periodic policy reschedules the facility periodically and implements the schedules on a 

rolling time horizon basis [10, 12, 13, 14, 15, 16, 22, 28, 31, 63].  Church and Uzsoy [28] 

provide a good detailed explanation of this rescheduling policy.  In many industrial situations 

scheduling is done on a periodic basis, especially in environments where there is no on-line data 

acquisition from the shop floor to monitor the state of the plant in real-time.  In these 

environments, a scheduler will gather all available information from the shop floor and higher-

level control systems in order to develop schedules at regular intervals.  The schedule will then 

be implemented and not revised until the next period begins.  This periodic approach yields more 

schedule stability and less schedule nervousness than constant rescheduling.  Unfortunately, 

following an established schedule in the face of significant changes in the system status may 

compromise performance.  Determining the optimal rescheduling period is also a difficult task 

when using this type of policy.   

Prietula et al. [64] describe a rolling horizon scheduling system that creates a five-week 

schedule every week.  A human expert and the scheduling software (which uses a knowledge 

base and a search algorithm) collaborate to generate a schedule.  Kempf [54] describes a 

predictive-reactive scheduling approach for semiconductor wafer fabrications and an AI-based 

tool that generates a production schedule each shift.  Herrmann et al. [65] describe a periodic 

policy that uses a genetic algorithm to find good job shop schedules at the beginning of each 

shift in a semiconductor test facility.  The genetic algorithm finds solutions that minimize the 

number of tardy jobs.   

Short-interval scheduling seeks to monitor production multiple times each shift.  A 

production schedule specifies what each workstation will do during the shift.  After a few hours, 

the supervisor will check the schedule to determine if the workstation is meeting the schedule.  If 

not, the supervisor and the operators can decide on corrective actions.  This repeats at intervals 

less than a shift.  For a more complete description see, for instance, Koenig [66]. 

In an event-driven rescheduling policy, rescheduling can happen repeatedly in dynamic 

manufacturing systems or it can simply be a single event to revise a schedule in a static system.  

Most of the work in rescheduling uses this strategy in a static environment, generally to 

reschedule the system when machine failures occur [18, 21, 22, 26, 28, 29, 30, 31, 32, 33].  For 
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dynamic rescheduling environments, Vieira et al. [10, 13] studied event-driven rescheduling 

policies that trigger rescheduling when the total number of job arrivals reaches a threshold.  

Bierwirth and Mattfeld [67] study a rescheduling policy that creates a new schedule every time a 

new job arrives.  In OPIS [68, 69] the rescheduling triggers include time conflicts, capacity 

conflicts, and rescheduling opportunities that occur when external events create additional 

capacity.  

In the extreme, a new schedule is created (or revised) every time an event that alters 

system status occurs [28].  Clearly the time spent doing rescheduling can become excessive and, 

more than the other strategies, it will require a fast and reliable electronic data collection to 

quickly capture new events.  Unfortunately, in large facilities, with many events occurring in 

rapid succession, the system may be in a permanent state of rescheduling, with high nervousness 

(low stability) and excessive computational requirements. 

A hybrid rescheduling policy [10, 13, 28, 29, 31] reschedules the system periodically and 

also when special (or major) events take place.  Major events are usually machine breakdowns, 

but they can also be arrival of urgent jobs, job cancellation, or job priority changes.  Chacon [70] 

described a system being used at Sony Semiconductor that uses periodic scheduling with manual 

rescheduling in case an unscheduled event makes the schedule significantly obsolete.  Church 

and Uzsoy [28] discussed a hybrid policy that revises the schedule at the beginning of each time 

period and when significant disruptions occur.  Vieira et al. [13] studied a hybrid rescheduling 

policy that triggers rescheduling when a machine fails and when a repair is completed. 

6 Rescheduling methods 

This section describes methods used, as part of predictive-reactive scheduling, to create 

or update schedules.  Schedule generation methods include most of the literature in the area of 

scheduling and are beyond the scope of this paper.  Interested readers should see Pinedo and 

Chao [36], Pinedo [37], or similar introductory texts on production scheduling.  This section will 

concentrate on methods that generate robust schedules and methods that update schedules in 

response to a disruption, since these approaches are most closely related to rescheduling.  

Browne [71], Zweben and Fox [72], and Brown and Scherer [73] include works describing a 
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wide range of knowledge-based and artificial intelligence approaches for generating and 

updating production schedules.   

Also related are papers that describe approaches for static, stochastic rescheduling 

environments.  Typically, these approaches are used to generate an initial schedule that optimizes 

the expected performance.  The execution of such a schedule will require some technique for 

repair.  For an overview of stochastic scheduling problems, see, for example, Pinedo [37]. 

6.1 Generating robust schedules 

Rescheduling is a necessary reaction to disruptions.  Simple schedule adjustments (like 

right shifts, discussed in Section 6.2) require little effort and are easy to implement.  However, 

they may lead to poor system performance compared to more extensive schedule changes.  

Generating robust schedules is an attempt to maintain good system performance with simple 

schedule adjustments. 

A number of papers have proposed methods for creating schedules that are robust with 

respect to disruptions.  Leon et al. [74] analyze how a single disruption delays a job shop 

schedule and present surrogate measures for estimating that delay in more general cases.  They 

present a genetic algorithm to find robust schedules that minimize expected delay and expected 

makespan.  Byeon et al. [75] and Wu et al. [38] present approaches to create robust partial 

schedules for a job shop that is subject to disturbances.  Byeon et al. [75] decompose the job 

shop scheduling problem and solve a variant of the generalized assignment problem.  Wu et al. 

[38] use a branch-and-bound algorithm to process the corresponding disjunctive graph and form 

a partial schedule.  The incomplete portions of the schedule are resolved at the appropriate time, 

giving the shop some flexibility to handle disruptions.  Their results show that, in a range of 

situations, such a schedule leads to better system performance than dispatching rules.  However, 

as the amount of processing time variability increases, dispatching rules led to better 

performance.  Similarly, Mehta and Uzsoy [46] present an approach to create predictive 

schedules that include inserted idle time as a means to reduce the impact of disruptions.  The 

method uses the shifting bottleneck algorithm to form operation sequences and then inserts idle 

time using a construction heuristic.  Their studies indicated that schedules that are robust to 
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stochastic disturbances could be generated without much degradation of system performance.  

Their results however, did not consider the effects of finishing jobs too early (when breakdowns 

do not occur).   

When probability distributions are not available or appropriate (e.g., for a risk-averse 

decision-maker), worst-case performance is a key objective.  Daniels and Kouvelis [39] and 

Herrmann [40] develop approaches for optimizing worst-case performance of production 

schedules.  Daniels and Kouvelis [39] use an enumeration technique, while Herrmann [40] 

presents a genetic algorithm. 

O’Donovan et al. [76] describe methods, based on careful observation of scheduling 

practice, that generate schedules that are robust with respect to machine breakdowns.  The 

scheduling objective is to minimize the expected deviation in completion times (the difference 

between the planned completion times and the realized completion times) as well as to minimize 

expected tardiness on a one-machine scheduling problem with non-zero release dates.  The 

approach, similar to Mehta and Uzsoy [46], first uses a dispatching rule to generate a schedule 

and then a simple policy to insert idle time between jobs based on expected downtime.  The 

paper also describes a slightly different version of the method that, while generating a robust 

schedule, considers the impaired condition that the repaired machine will have after any failures.  

Experimental results show that these approaches improve schedule robustness with little impact 

on other performance measures. 

Shafaei and Brunn [33] investigated the robustness of a number of scheduling rules in a 

dynamic, stochastic job shop.  Schedules were created periodically using a non-delay scheduling 

algorithm and one of seven scheduling rules.  Their results indicated that as the level of 

uncertainty increases, frequent rescheduling becomes more effective in improving the robustness 

of the schedule. 

6.2 Repairing schedules 

After a schedule is generated, manufacturing operations begin.  Managers and 

supervisors want the shop floor to follow the schedule.  In practice, operators may deviate from 

the schedule.  Ideally, the schedule is followed as closely as possible.  Small deviations from 
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scheduled start times and end times are expected and usually ignored.  (The definition of small 

depends on the facility in question.)  Larger deviations or changes to the sequence occur when 

unexpected events disrupt the initial schedule.  Even if the managers and supervisors do not 

explicitly update the schedule, schedule repair occurs as the operators react to the disruptions, 

delaying tasks or performing tasks out of order. 

There are three common methods used to update (repair) a schedule that is no longer 

feasible due to a disruption: right shift rescheduling, regeneration, and partial rescheduling. 

Right shift rescheduling postpones each remaining operation (shifting it to the right on a 

Gantt chart) by the amount of time needed to make the schedule feasible [30].  For example, in 

the Gantt chart shown in Figure 2, if machine M2 fails while processing job 1 and the repair time 

requires r time units, then the completion time of Job 1 (on Machine M2) is delayed from t to 

t + r.  In addition, the completion times of the remaining tasks on M2, M3, and M4 are delayed 

by r time units.   

Partial rescheduling reschedules only the operations affected directly or indirectly by the 

disruption [26, 27, 53].  For this reason, it is also known as affected operations rescheduling [30].  

This method preserves the initial schedule as much as possible, tending to maintain schedule 

stability with little nervousness.  Most of the heuristics developed have considered rescheduling 

of affected operations only [18, 26, 30].  Right-shift rescheduling is a special case of this method.  

Match-up scheduling [1] is another type of partial rescheduling. 
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Figure 2.  Using right-shift rescheduling to update a schedule. 
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Abunaizar and Svestka [30] developed an algorithm for rescheduling the affected 

operations in a job shop with respect to efficiency and stability.  They compared the system 

performance under the proposed affected operations method to the total rescheduling and right-

shift rescheduling methods. 

Bean et al. [1] discuss a matchup scheduling procedure that repairs a production schedule 

when a disruption occurs.  This procedure uses heuristic ordering rules to resequence all jobs 

scheduled before a matchup point.  If the tardiness cost is too large, the matchup point is 

increased.  If the matchup point becomes too large, the method solves an integer program or uses 

priority rules to reassign jobs to different machines.  Their results show that matchup scheduling 

is an optimal approach when disruptions are infrequent enough to allow the system to get back 

on schedule before the next disruption.  Akturk and Gorgulu [77] present another matchup 

scheduling procedure that partially reschedules a modified flow shop when a machine 

breakdown occurs. 

In OPIS, Smith et al. [68, 69] uses a constraint-based schedule repair procedure to 

modify the operations in a partial schedule whose length is determined by the conflict duration.  

Miyashita and Sycara [78] describe a case-based approach for selecting a repair tactic within a 

constraint-based schedule repair procedure.  The repair tactics include adjusting start times, 

swapping operations, and switching to alternative resources. 

Regeneration reschedules the entire set of operations (jobs) not processed before the 

rescheduling point, including those not affected by the disruption [10, 13, 22, 27, 28, 49, 53].  

For this reason it is also known as total or complete rescheduling [30, 53].  Its main disadvantage 

is the excessive computational effort and unsatisfactory response time [27].  To overcome this 

problem, Bierwirth and Mattfeld [67] present a genetic algorithm that reuses the previous 

solution to solve a job shop scheduling problem every time a new job arrives.   

7 The Impact of Rescheduling Policies 

In addition to the great deal of effort spent on rescheduling methods (as described in 

Section 6), another important body of work studies the impact that other aspects of the 

rescheduling policy have on manufacturing system performance.  These other aspects include the 

Page 24 



type of events that trigger rescheduling and the rescheduling frequency.  Determining the impact 

of a rescheduling policy on a dynamic manufacturing system requires careful study, modeling, 

and analysis of the specific manufacturing system.   

Church and Uzsoy [28] developed a hybrid event-driven rescheduling policy for single- 

and parallel-machine models with dynamic job arrivals.  Their system reschedules the facility, 

periodically taking into account work that is already in the system.  Regular events occurring 

between routine rescheduling are ignored until the next rescheduling moment.  However, when 

an event is classified as an exception, immediate action should be taken, with the entire facility 

being rescheduled and resulting schedule implemented until the next schedule generation point.  

To create a schedule, the system uses the Earliest Due Date rule to minimize maximum lateness.  

The paper also presents analytical models to bound the maximum completion time.  The paper 

states that periodic rescheduling policies lead to near optimal performance (minimal maximum 

lateness) when order release is periodic.  In addition, rescheduling at the arrival of a “rush” job 

(one with a tight due date) is useful, but more frequent rescheduling does not improve system 

performance significantly.  Thus, if done carefully, good system performance can be maintained 

while reducing the rescheduling effort (the number of rescheduling events). 

Vieira et al. [10] have studied a single-machine system and developed analytical models 

to estimate system performance.  That work considered two rescheduling policies: periodic and 

event driven based on queue size.  Their results show that the analytical models can accurately 

predict the performance of a single-machine system operating under those rescheduling 

strategies.  Vieira et al. [13] extended that study by investigating parallel machine systems, 

which have more complex rescheduling strategies.  These papers have shown that rescheduling 

frequency can significantly affect the system performance (average flow time).  A lower 

rescheduling frequency (which causes longer rescheduling periods) lowers the number of setups 

(reducing unproductive time wasted on setups) by grouping similar jobs but increases 

manufacturing cycle time and WIP.  A higher rescheduling frequency allows the system to react 

more quickly to disruptions but may increase the number of setups.  Event-driven and periodic 

strategies exhibit similar performance.  Rescheduling when a machine fails or becomes available 
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after a repair decreases manufacturing cycle time slightly but increases the frequency of 

rescheduling. 

Intuitively, it seems natural that rescheduling more often yields better performance.  A 

number of experimental studies support this hypothesis.  Farn and Muhlemann [79] use 

simulation to study a single-machine system with sequence-dependent setup times.  Arriving 

jobs are included in the schedule at the next rescheduling point, and the schedule is created using 

a priority rule such as first-come-first-served or shortest processing time.  They conclude that 

rescheduling more often leads to lower setup costs.  Muhlemann et al. [16] study the dynamic 

job shop scheduling problem and experimentally compare different scheduling heuristics across 

a range of scenarios, including rescheduling period length, the number of jobs in the backlog, 

and the amount of uncertainty in processing times and machine failures.  They also suggest that 

the rescheduling period affects system performance more when there is greater uncertainty and 

that managers need to explore the tradeoff between the cost of scheduling and the benefits of 

more frequent scheduling.   

Bean et al. [1] show that the matchup algorithm (which requires more job reassignments) 

leads to better performance (less total tardiness) than a simple pushback strategy that simply 

delays tasks. 

According to Wu et al. [38] a robust, partial schedule leads to better system performance 

(less weighted tardiness) than dispatching rules.  However, as processing time variability 

increases, dispatching rules lead to better performance.  Leon et al. [74] state that, as processing 

time variability increases, the improvement (in expected makespan and expected delay) due to 

robust schedules increases. 

Mehta and Uzsoy [46] state that predictive schedules (with inserted idle time) increase 

predictability (reduce nervousness) but do not significantly degrade system performance 

(maximum lateness), compared to schedules generated by ignoring possible breakdowns. 

Kim and Kim [29] considered minor and major disturbances in their scheduling system.  

The simulation mechanism to select a dispatching rule will be called periodically, according to a 

monitoring period that is a multiple of the mean operation processing time, and at major 

Page 26 



disturbances, which occur infrequently (e.g. arrival of urgent jobs and major machine 

breakdowns).  Several values for the monitoring periods were studied.  They concluded that there 

was an advantage to checking the system performance periodically and that too-long monitoring 

periods resulted in worse performance of the systems and also that too-frequent monitoring could 

negatively affect performance. 

Sabuncuoglu and Karabuk [22] studied the frequency of rescheduling in the multi-

resource environment of a flexible manufacturing system with random machine breakdowns and 

processing times.  For the scenario considered, they concluded that never reacting to 

disturbances or reacting to every disturbance do not seem to be appropriate policies.  Then a 

moderate level of scheduling frequency is suggested to alleviate the negative effects of machine 

breakdowns. 

One of the major objectives of Shafaei and Brunn [32, 33] was to examine whether a 

more frequent rescheduling policy would always improve system performance.  According to the 

performance measure used, they concluded that, under loose due date conditions, the 

performance is not particularly sensitive to changes in rescheduling interval.  However, at tight 

due date conditions, the rescheduling interval had a much more significant effect on 

performance. 

They also showed that frequent rescheduling becomes more effective as the level of 

uncertainty increases and that with the recent sharp decline in the price of computer hardware 

and growing increases in the capabilities of production control systems, a more frequent 

rescheduling policy can be more easily and economically introduced. 

Although it can increase the computational effort of the rescheduling procedure (because 

it increases the number of jobs that are considered simultaneously), a longer rescheduling period 

can improve system performance through better coordination.  For example, Herrmann and 

Delalio [80] consider the impact of the rescheduling period on decisions regarding batching and 

scheduling of sheet metal punch press operations.  Their results indicate that, when material is 

inexpensive, decreasing the scheduling frequency can significantly reduce costs because fewer 

setups occur and more parts are produced from inexpensive unsheared sheets.  However, when 

material is expensive, changing the scheduling frequency does not affect costs as much. 
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The cost of rescheduling includes computational effort (human or computer) and 

disruptions to existing plans (nervousness).  The rescheduling period affects the number of jobs 

being considered for scheduling.  A longer rescheduling period means that more jobs (and tasks) 

will be considered in the scheduling problem.  This will increase the computational effort needed 

to create the production schedule.  Moving jobs from one scheduled machine to another may 

require additional material handling work.  For instance, Bean et al. [1] use the number of jobs 

reassigned as a measure of rescheduling cost.  

8 Scheduling theory and practice 

Understanding rescheduling can address the gap between theory and practice of 

production scheduling.  Production scheduling theory has had limited impact on practice because 

most scheduling results do not consider important characteristics of the environment in which 

scheduling occurs.  In particular, researchers have not considered fully the dynamic aspects of 

the manufacturing system.   

Solving production scheduling problems is an important technique for controlling 

dynamic, stochastic manufacturing systems.  Viewing rescheduling as a dynamic process 

provides a system-level perspective of production scheduling that can put this task into proper 

context.  Rescheduling policies identify not only when rescheduling should be done but also the 

objectives and constraints of the resulting scheduling problem.  For example, Bean et al. [1] 

present the matchup scheduling problem, which attempts to recover the original schedule as soon 

as possible while satisfying a constraint on allowable tardiness cost.  Vieira et al. [10, 13] study 

rescheduling policies that require the production schedule to minimize the number of setups and 

the job flow time. 

Portougal and Robb [81] discuss the gap between production scheduling theory and 

practice and emphasize the importance of the planning period.  Their paper argues that, if job 

cycle times are greater than the planning period, then careful scheduling is needed to coordinate 

activities in multiple planning periods, and complex models are appropriate.  If the cycle time is 

smaller, then scheduling is seldom important.  The paper states that, in the latter case, the only 

important objective is that the resource (or production unit) completes all of the desired work in 

the planning period.   
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However, one can easily see that scheduling is critical if careless scheduling would 

prevent the resource (or production unit) from accomplishing this goal.  In the presence of 

sequence-dependent setup times, for instance, scheduling significantly affects the total time 

required.  A poor schedule would waste valuable time doing setups.  In addition, proper 

scheduling can support other objectives, such as minimizing the costs associated with setups. 

Thus, it may be more appropriate to state that, when job cycle times are shorter than the 

planning period, satisfying the production target should set the constraints and objectives of the 

production scheduling problem.  The resulting production scheduling problems may emphasize 

finding feasible solutions over optimization, but such problems can be extremely difficult in 

realistic settings.  

McKay and Wiers [82] discuss the relationship between the theory and practice of 

scheduling and describe three principles that explain practical production scheduling processes.  

First, a scheduling process generates partial solutions for partial problems.  Second, a scheduling 

process anticipates, reacts to, and adjusts for disturbances.  Third, the scheduling process is 

sensitive to and adjusts to the meaning of time in the production situation.  All three principles 

support the perspective that scheduling is part of a dynamic process. 

9 Summary and conclusions 

A great deal of effort has been spent developing methods to generate optimal production 

schedules, and countless papers discussing this topic have appeared in scholarly journals.  

Typically, such papers formulate scheduling as a combinatorial optimization problem.  However, 

the scope of papers on rescheduling, a necessary part of managing a dynamic manufacturing 

system, varies greatly.  Although all rescheduling approaches, at their core, seek to help a 

manufacturing system run more productively and efficiently, papers describing these approaches 

address a wide variety of topics.  Some papers describe algorithms for generating or updating 

production schedules.  Other papers present new rescheduling policies that specify when 

production schedules are generated and updated.  Other papers present studies on dispatching 

rules, optimal control policies, or other rescheduling strategies.  There are many rescheduling 

environments discussed by these papers. 
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For this reason this paper has presented a framework for understanding rescheduling 

research and defined a number of terms used in rescheduling research and practice.  The 

framework includes rescheduling environments, rescheduling strategies, rescheduling policies, 

and rescheduling methods.   

There are two common rescheduling strategies: dynamic scheduling and predictive-

reactive scheduling.  Predictive-reactive scheduling includes three types of policies: periodic, 

event-driven, continuous, and hybrid rescheduling.  Under a periodic policy a schedule is revised 

(or created) periodically over time.  Under an event-driven policy, rescheduling occurs when 

certain events occur, including machine breakdown, rush order arrival and order cancellation.  A 

hybrid rescheduling policy will periodically update a schedule unless a rescheduling event takes 

place.  Dynamic, or continuous, rescheduling is a special case of event-driven rescheduling, 

since its approach is to reschedule the system at every rescheduling event, including, for 

instance, job arrival. 

The three most common schedule repair methods are regeneration, partial rescheduling, 

and right-shift scheduling.  Regeneration constructs a complete schedule by rescheduling not 

only the affected operations (or jobs) but also those not affected.  For this reason it is also called 

total rescheduling.  This strategy takes more computational effort to run since more operations 

must be scheduled.  On the other hand, better schedules can be created.  It yields the most 

schedule nervousness (and least stability).  Partial rescheduling is also called affected operations 

rescheduling, since it reschedules only those operations that were affected by the disruption.  

This reduces the schedule nervousness (and increase stability).  The right-shift method postpones 

the remaining operations by the amount of downtime.  In some cases, right-shift might be a 

special case of partial rescheduling.  The right-shift method yields the least schedule nervousness 

(and most schedule stability).   

This paper did not discuss the details of the many algorithms used to generate and update 

production schedules.  We leave such a detailed review to others.   

Instead, this paper focused on the entire area of rescheduling with the hope that this will 

help practitioners, researchers, and students understand this body of knowledge.  A 
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comprehensive classification of papers (along the lines of Table 1) is possible but beyond the 

scope of this paper due to the huge number of papers on scheduling manufacturing systems. 

Theory and Practice. Studying rescheduling helps bridge the gap between theory and 

practice of production scheduling.  Most scheduling results do not consider important 

characteristics of the dynamic environment in which scheduling occurs, which limits their 

usefulness.  Rescheduling provides a systems view of manufacturing that includes not only 

material flow and resource availability but also order release and production control systems.   

Modeling rescheduling.  Mathematical models of dynamic, stochastic manufacturing 

systems can provide useful information to analysts and managers trying to design manufacturing 

systems.  There are a wide variety of models available, including queueing network models and 

discrete event simulation models.  Typically, however, these types of models do not explicitly 

represent the production control policies (e.g., rescheduling policies) that will control the system.  

Consequently, because these policies significantly affect system performance, the resulting 

system models will be inaccurate, which can lead to poor design decisions. 

Because the rescheduling policy affects the performance of the manufacturing system, it 

needs to be considered in manufacturing system design.  Rarely is the dynamic behavior of the 

manufacturing system considered during the design phase.  When it is, more effort is spent 

modeling the resources in the factory and the flow of parts through the system.  Little effort is 

spent modeling the production control scheme.  This occurs because existing analytical and 

simulation models provide little support for rescheduling.  Often, they are limited to predefined 

sets of dispatching rules.  Although modern software for building discrete event simulation 

models allows an analyst to create complex models and sophisticated production control policies, 

building such models and conducting the necessary experiments can require a large amount of 

time and effort.   

More research is needed to compare the performance of manufacturing systems under 

predictive-reactive rescheduling policies to their performance under dynamic scheduling (such as 

dispatching rules).  This will yield additional insight into the advantages and disadvantages of 

rescheduling in different problem settings.  This study could be done by examining analytical 

models (for those systems where such models exist or can be constructed) or conducting 
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simulation studies (for more complex systems).  Although there have been some studies, a 

comprehensive campaign is still needed.  In addition, more research is needed to understand how 

the interactions between rescheduling policies and other production planning functions (such as 

capacity planning and material requirements planning) affect manufacturing system 

performance.  Finally, this line of research could be applied to other types of dynamic, stochastic 

decision-making systems (such as supply chains) where planning and scheduling activities affect 

system behavior. 
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