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Abstract

Alzheimer’s disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-b peptide (Ab) and by loss of
cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and
cognitive decline in AD correlate better with the amount of soluble Ab than with the extent of amyloid plaque deposits in
affected brains. Inhibition of nAChRs by soluble Ab40 is suggested to contribute to early cholinergic dysfunction in AD.
Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR
subtypes, binding with nanomolar affinity to soluble Ab40 and blocking Ab-induced inhibition of carbamylcholine-induced
currents in PC12 cells expressing a7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have
now defined the amino acids in IQ essential for reversal of Ab40 inhibition of carbamylcholine-induced responses in PC12
cells, mediated by a7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble
Ab, IQ and analogues of IQ on a3b4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar
concentrations of soluble Ab40 potently inhibit the function of a3b4 nAChRs, and that subsequent addition of IQ or its
analogues does not reverse this effect. However, co-application of IQ makes the inhibition of a3b4 nAChRs by Ab40
reversible. These findings indicate that Ab40 inhibits different subtypes of nAChRs by interacting with specific receptor
domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of
cholinergic function in AD.
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Introduction

Alzheimer’s disease (AD) is the most common age-related

neurodegenerative disorder and the seventh leading cause of death

in the United States [1]. Currently, no effective treatment is

available to slow down or stop deterioration of nerve cells in AD.

This irreversible disease appears to be initiated by synapse failure,

resulting in impairment of cognitive and other cerebral functions

[2]. A large body of evidence indicates that the primary agent of

neurodegeneration in AD is a 39–43 amino acid residues long

peptide known as amyloid-b (Ab). The majority of secreted Ab is

40 amino acids long (Ab40), while the longer, 42-amino acid

species (Ab42) has a high propensity to nucleate and drive the

formation of soluble aggregates (e.g., oligomers, protofibrils) and

insoluble amyloid fibrils [3,4,5]. Substantial evidence indicates that

soluble Ab oligomers are the proximal neurotoxins responsible for

synapse dysfunction in AD (for reviews, see [2,6,7]. However, the

mechanisms linking Ab40 to synapse dysfunction and neuronal

loss remain to be fully elucidated.

A prominent feature of AD pathology is the loss of cholinergic

neurons and nicotinic acetylcholine receptors (nAChRs) through-

out the brain [8,9]. With nearly 30 subtypes of brain nAChRs

having been described, the three most abundant nAChR subtypes

in the mammalian brain are composed of a7, a4b2, and a3b4

subunits [10], expressed in major brain areas including cortex and

hippocampus [11]. Although the direct binding of Ab to a7

receptors has been questioned [12], high-affinity association of

Ab42 with a7 and a4b2 nAChRs has been observed in amyloid

plaques and in neurons of AD patients [13,14,15,16]. There is also

considerable evidence that Ab affects the function of nAChRs (for

reviews, see [17,18]). Nanomolar concentrations of Ab42 or Ab40

have been reported to inhibit both human and rat homomeric a7

receptors [19,20,21,22,23,24]. Moreover, Ab has been shown to

exert subtype-specific actions, activating non-a7 nAChRs in rat

basal forebrain neurons [25] and inhibiting non-a7 nAChR
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subtypes (a4b2, a2b2, a4a5b2) in rodent hippocampal slices [26].

In studies employing heterologously expressed human nAChRs,

Ab has been shown to inhibit a7 and a4b2 subtype function

without affecting a3b4 nAChRs [23]. Those effects, however, are

still somewhat controversial, as other reports show that picomolar

concentrations of Ab have no effect [23] or even activate whole-

cell current responses of a7 nAChRs ([27,28,29,30]; for a review,

see [31]).

Using phage-display screening of a peptide library, we

previously reported that soluble Ab binds with nanomolar affinity

to a heptapeptide with aminoacid sequence IQTTWSR, hence-

forth denoted IQ, which is homologous to an amino acid sequence

located at the nicotine and acetylcholine (ACh) binding pocket in

most subtypes of human nAChRs [24]. Nanomolar concentrations

of IQ block Ab-induced inhibition of carbamylcholine-induced

currents in neuronal-differentiated PC12 cells expressing a7

nAChRs, suggesting that inhibition of nAChRs by Ab results

from its binding to the nicotine/ACh binding domain in the

receptor. Our previous results further indicated that Ab interacts

with several nAChR subunits homologous to IQ, such as a
subunits [24]. Crystallographic studies and alignment of nAChR

sequences reveal that the location of the ligand binding site is

highly conserved in nAChRs, but the actual ligand binding

residues may vary, creating specificities for different ligands [32].

Here, we have used a combination of alanine scanning

mutagenesis and rapid kinetic whole-cell current recording

[33,34,35] to define the amino acid residues in IQ that are

essential for alleviating blockade of the inhibition of a7 nAChRs

by Ab40. In addition, we examined the effects of soluble Ab40, IQ

and IQ peptide analogues on a3b4 nAChRs, which are present in

human brain but exhibit low homology to a7 in terms of amino

acid sequences at the nicotine/ACh binding site. Results show that

nanomolar concentrations of soluble Ab40 inhibit a3b4 nAChRs.

In contrast with our previous observations on a7 nAChRs [24], IQ

and its analogues do not block Ab40 inhibition of a3b4 nAChRs.

However, simultaneous exposure to IQ and Ab40 makes the

inhibition of a3b4 nAChRs by Ab40 reversible. These results

suggests that Ab binds to distinct binding sites on different

nAChRs subtypes and point to the region homologous to IQ in

nAChRs as a relevant target for Ab40 neurotoxicity in AD.

Results

Amino acid residues of IQ involved in blocking inhibition
of a7 and other endogenously expressed nAChRs by
Ab40

In order to identify key amino acid residues of the IQ peptide

involved in blockade of Ab-induced inhibition of nAChRs, whole-

cell recordings of nAChR currents were carried out in neuronal-

differentiated PC12 cells. RT-PCR analysis revealed that such

cells express a3, a5, a7, b2 and b4 nAChR subunits, and

measurements in the presence of methyllycaconitine (MLA)

indicated that, on day 2 following induction to neuronal

differentiation, a7 receptors contributed about 50% of cholinergic

receptor-mediated whole cell currents [36].

We have previously shown that soluble Ab40 (200 nM) caused a

marked (,60%) inhibition of nAChR currents and that addition

of 500 nM IQ completely blocked this effect. Control measure-

ments showed that addition of IQ alone (up to 500 nM) did not

elicit any current in differentiated PC12 cells and (up to 750 nM)

did not interfere with currents evoked by carbamylcholine (CCh)

[24]. However, at higher concentrations (.1 mM) IQ inhibited

nAChR-mediated whole cell currents (ICCh) and induced cell

death (data not shown), indicating a relatively narrow concentra-

tion range in which IQ could be safely used to prevent nAChR

inhibition by Ab40 in the absence of cell toxicity.

We have now investigated a series of IQ analogues for their

abilities to block Ab-induced inhibition of nAChRs in the absence

of cell toxicity. A number of peptides were synthesized

corresponding to a full alanine scan of the IQ heptapeptide or

to truncated tetrapeptides. The impact of those peptides on cell

viability was initially tested by the MTT assay, and none of them

exhibited cytotoxicity at concentrations of 1 or 100 mM in PC12

cells (Fig. S1). Moreover, no toxic effects exerted by these peptides

were observed in HEK cells transfected for a3, b4 receptor

expression (data not shown).

Each of the IQ analogue peptides (at a fixed concentration of

500 nM, based on our previous results with IQ; ref 24) was then

tested for its capacity to alleviate Ab-induced inhibition of

nAChRs in PC12 cells (measured in the presence of 0.2 mM

CCh and 200 nM Ab40 in order to assess maximum inhibition

rates; ref 24). Among the tetrapeptides tested, TTWS best

mimicked the effect of full-length IQ (Fig. 1), completely reversing

Ab40 inhibition of nAChR-mediated whole cell currents (ICCh

9562%), followed by TWSR (ICCh 8464%), IQTT (ICCh

8065%) and QTTW (ICCh 7266%). Representative current

traces are shown in Fig. S2. Alanine scanning of the IQ sequence

showed that replacement of Ile eliminated the capacity to block

Ab-induced inhibition of nAChRs (IleRAla, ICCh 5764%).

Moreover, replacement of Trp or Ser residues by Ala resulted in

significantly reduced abilities to block Ab40 inhibition (TrpRAla,

ICCh 7263%; SerRAla, ICCh 7963%).

Effects of Ab, IQ and IQ analogues on a3b4 nAChRs
Given the abundance of a3b4 receptors in the human brain, we

next investigated the inhibition of a3b4 nAChRs by Ab40 in the

presence of 200 nM Ab40 at effective 0.2 mM CCh concentra-

tion. Co-application of 200 nM Ab40 and 0.2 mM CCh resulted

in approximately 35% inhibition of a3b4 nAChR currents in

transformed HEK cells (Fig. 2). Successive shots of 0.2 mM CCh

on the same cell at 5 min intervals (Fig. 2, white bars, shots 1–6)

had no significant effect in the response to CCh, indicating lack of

receptor desensitization under these conditions. However, appli-

cation of three successive shots of 0.2 mM CCh plus 200 nM

Ab40 (Fig. 2, light grey bars, applications 1–3) reduced the cellular

response to CCh to approximately 60% of the control level.

Subsequent application of three additional shots of 0.2 mM CCh

alone to the same cell did not recover the original response to CCh

(Fig. 2, light grey bars, shots 4–6), indicating that a3b4 nAChRs

remained inhibited even after washout of Ab. In fact, Ab-induced

inhibition of a3b4 nAChRs persisted even after 6 successive shots

of CCh (4 minutes between each shot, comprising approximately

30 minutes for each experiment) following a single initial exposure

to 0.2 mM CCh plus 200 nM Ab40 (Fig. S3).

Irreversible inhibition of a3b4 receptors by Ab was also

observed following three shots of 0.2 mM CCh plus 200 nM

Ab40 and 0.5 mM SQI (a control scrambled peptide that has the

same amino acid composition as IQ but does not bind to Ab),

followed by three shots of 0.2 mM CCh alone (Fig. 2, black bars).

Cells that had been exposed to three shots of 0.2 mM CCh plus

200 nM Ab40 in the presence of 0.5 or 2 mM IQ presented

reduced response to CCh stimulation (,60% and 70% of control

currents, respectively; Fig. 2, grey bars, shots 1–3). Thus, in

contrast with its ability to block inhibition of a7 nAChRs [24], IQ

was not capable of preventing the inhibition of a3b4 nAChRs by

Ab. Interestingly, however, the response of a3b4 receptors to CCh

(Fig. 2, grey bars, shots 4–6) returned to control levels during the

washout period after the co-application of CCh, Ab40 and IQ.

Peptides Reversing nAChR Inhibition by b-amyloid
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This indicates that, in the presence of IQ, the inhibition of a3b4

receptors by Ab40 becomes reversible following Ab40 washout.

As a control, we tested whether IQ, QI (a peptide with a reverse

sequence compared to IQ) or SQI induced activation of a3b4

nAChR currents or had any impact on cellular response to CCh.

Results showed that none of the three peptides by themselves

elicited currents or had any detectable effect on whole-cell current

responses of PC12 cells (Fig. S4), supporting the notion that rescue

of cellular a3b4 nAChR response to CCh by IQ is due to its

interaction with Ab.

Finally, we evaluated the effects of IQ and selected peptide

analogues on the inhibition of a3b4 nAChRs by Ab. To this end,

cells received three shots of each peptide as shown in Fig. 3. For all

cells analyzed (at least 3 cells per experimental condition), currents

measured in the presence of the peptides were compared to those

measured in the presence of CCh alone or CCh+Ab. For each cell,

3 shots (with a 4 minute interval between them) of CCh were

applied to elicit maximum responses, then 3 shots of CCh+Ab to

induce inhibition, followed by 3 shots of CCh+Ab+peptide, and

finally 3 more shots of CCh alone in order to verify the persistence

of inhibition.

In the absence of peptides, inhibition by Ab40 was found to be

persistent when CCh alone was applied after the shots of

CCh+Ab. Interestingly, when shots included CCh+A-

b+IQTTWSR (0.5 or 2 mM), a3b4 nAChR currents were rescued

from inhibition when measured in the presence of CCh alone

(after washout of Ab). We next tested the effects of the TTWS and

TWSR tetrapeptides, which had shown the best protective actions

against Ab-induced inhibition of nAChRs, and IQTTASR, which

lacks the highly conserved Trp residue in the agonist-binding

domain of nAChRs and presented the lowest capacity to alleviate

Figure 2. IQ makes Ab40 inhibition of a3b4 nAChR currents in
transformed HEK cells reversible. HEK cells expressing a3b4
nAChRs received consecutive shots (at 5 min intervals) of 0.2 mM
CCh plus 200 nM Ab, in the absence or presence of IQ (0.5 mM) as
indicated. Shots 1–3 contained 0.2 mM CCh alone (white bars), 0.2 mM
CCh plus 200 nM Ab (light grey bars), 0.2 mM CCh plus 200 nM Ab and
0.5/2 mM IQ (grey bars) or 0.5 mM SQI (black bars), used as an inactive
control. Shots 4–6 contained 0.2 mM CCh alone for evaluation of
reversibility of receptor inhibition. Bars represent mean values 6 S.D. of
at least 3 replicate measurements (normalized by the maximal current
evoked by 0.2 mM CCh) obtained from 4–6 different cells. (***,
p,0.001, in comparison with 0.2 mM CCh plus 200 nM Ab).
doi:10.1371/journal.pone.0067194.g002

Figure 1. IQ and selected analogues reverse Ab40 inhibition of nAChRs in PC12 cells. (A) Current responses (normalized by the maximal
current evoked by 0.2 mM CCh) of neuronal-differentiated PC12 cells exposed for 2 s to 0.2 mM CCh plus 200 nM Ab40 in all experimental
conditions, except for the control measurement with CCh alone, and, as indicated, 500 nM of different IQ analogues. Bars represent means 6 S.D. of
at least 3 replicate measurements performed in 4–6 different cells (**, p,0.01; *** p,0.001 in the comparison with the control current evoked by CCh
alone).
doi:10.1371/journal.pone.0067194.g001

Peptides Reversing nAChR Inhibition by b-amyloid
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Ab40 inhibition of a7 currents (Fig. 1). A slight increase in Ab-

induced inhibition was observed in the presence of SQI, which,

however, was not statistically significant.

When tested on a3b4 nAChR-expressing cells, all peptides

tested failed in preventing the inhibition of a3b4 nAChR-

mediated currents by Ab. However, when Ab40 was added to

cells in conjunction with IQ, TTWS or IQTTASR (0.5 mM each),

a3b4 nAChR-mediated currents in response to CCh alone

returned to approximately 100%, 88% and 94%, respectively, of

control levels. On the other hand, TWSR, QI and SQI peptides

Figure 3. Effects of IQ and analogues on Ab40 inhibition of a3b4 nAChRs in transformed HEK cells. (A) HEK cells expressing recombinant
a3b4 nAChRs received 3 consecutive shots (at 4 min intervals) of 0.2 mM CCh plus 200 nM Ab40 in the absence or presence of 0.5 and 2 mM
IQTTWSR. QI and SQI (500 nM) were used as ineffective control peptides. Recovery of current response was evaluated after washout and 3 shots of
CCh alone. (B) HEK cells expressing recombinant a3b4 nAChRs received 3 consecutive shots of 0.2 mM CCh plus 200 nM Ab40 in the absence or
presence of 500 nM TTWS, TWSR or IQTTASR. QI and SQI (500 nM) were used as ineffective control peptides. Recovery of current response was
evaluated after washout and 3 shots of CCh alone. Bars represent mean values 6 S.D. of current responses (normalized by the maximal current
evoked by 0.2 mM CCh) of at least 3 measurements performed in at least 3 different cells. (***, p,0.001).
doi:10.1371/journal.pone.0067194.g003

Peptides Reversing nAChR Inhibition by b-amyloid

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e67194



were unable to rescue the inhibition of CCh-induced a3b4

nAChR-mediated responses by Ab40 (Fig. 3).

Discussion

We have previously identified an Ab40 ligand, a peptide termed

IQ, that blocks Ab-induced inhibition of nAChRs at nanomolar

concentrations [24]. IQ is homologous to the ligand-binding

domain of nAChRs. The location of the ligand-binding site is

conserved among different pentameric ligand gated ion channel

receptors, but the actual ligand binding residues may vary,

creating specificities for different ligands [32]. Therefore, we

proposed that Ab40 might interact with the ligand-binding

domain of distinct nAChRs subunits, preferentially binding to

those with higher homology to IQ, such as a7. This is consistent

with previous reports of higher affinity interactions between Ab40

and a7 than with a4b2 nAChRs from rat and guinea pig cerebral

cortex and from hippocampal synaptic membranes [13,14].

Neuronal nAChRs are assembled as homomeric or heteromeric

combinations of a (a2–10) and b (b2–4) subunits. The majority of

human CNS nAChRs is of the a4b2 subtype and the remainder is

largely made up of a7 subunit homopentamers and a3b4

heteromers, although several other combinations are also known

[10,23].

Here, we have asked which amino acid residues of IQ are

essential for blockade of Ab40 inhibition of receptor currents in

cells containing a7 or heteromeric nicotinic receptors, and

specifically tested the effects of soluble Ab, IQ and IQ analogues

in cells expressing only the a3b4 nAChR subtype. We used a

whole-cell current-recording approach in combination with the

cell-flow technique [33] to briefly expose differentiated PC12 cells

or HEK cells expressing a3b4 nAChRs to Ab40 and other ligands.

This procedure minimizes receptor desensitization and avoids long

periods of incubation with Ab, assuring preservation of Ab40 in

soluble state during the experiments, as previous described [24].

Co-application of 0.2 mM CCh, 200 nM Ab40 and 500 nM of

different IQ analogues to differentiated PC12 cells showed that,

among the tetrapeptides tested, TTWS was the analogue that best

emulated the protective effect of full-length IQ, completely

preventing Ab-induced inhibition of nAChRs (ICCh 9562%).

Next in terms of effectiveness were TWSR, IQTT and QTTW.

Both TTWS and TWSR contain Trp57, a highly conserved

residue present in the sequences of all nAChRs described so far

[37]. Trp57 has been shown to be important for binding of d-

tubocurarine (a competitive antagonist of nAChRs) to Torpedo

nAChR [38]. Both peptides also contain a Ser residue (Ser58)

present in 1 of the 12 human nAChR subunit sequences and

conservatively replaced by Thr in 5 of the remainder 11

sequences. Ala-scanning of the IQ sequence indicated that the

Trp and Ser residues of IQ are essential for efficacy in preventing

Ab40 inhibition of nicotinic receptors. Ala substitutions also

pointed to the importance of Ile in the IQ sequence. Significantly,

Ile53 (or its highly conserved substitution Leu) is present in 11 of

the 12 human nAChR subunits known to date.

On the other hand, replacement of Gln, Thr or Arg residues by

Ala did not significantly affect the efficacy of IQ analogues (Fig. 1),

despite the fact that mutations in Gln56 (numbering according to

the a7 nAChR sequence) affect the affinities for ACh and nicotine

[39]. Collectively, these results show that Ile, Trp and Ser residues

in the amino acid sequence of IQ (IQTTWSR) are essential to

block Ab40 inhibition of nAChRs. Based on these findings, we

propose that protection by longer peptides (containing 6 amino

acid residues or more) can be explained on the basis of a sequence

motif in which Ile, Trp and Ser residues at positions 1, 5 and 6,

respectively, are conserved (i.e., IxxxWS). A similar model can be

developed for shorter peptides (of 4 amino acid residues or less)

and also for protection against inhibition of a3b4 receptors and

possibly other nicotinic subtypes by Ab40 (Fig. 4). For a7 nicotinic

receptors and other subtypes expressed by PC12 cells, carbox-

yterminal Trp and Ser residues must be conserved to preserve

efficacy of tetrapetides in blocking Ab40 inhibition. On the other

hand, our results show that for a3b4 receptors the Trp residue can

be replaced by a nonpolar (aliphatic or aromatic) amino acid

residue without loss in activity (Fig. 3B). Defining these structural

motifs may prove useful for development of novel IQ analogues

with improved efficacy in protection against Ab40 inhibition of

nAChRs and/or recovery from such inhibition, and as a

molecular backbone for development of non-peptide drugs.

The fact that IQ is homologous to several nAChR subunits [24]

suggests that Ab40 binds to this highly conserved domain in

different nAChRs subtypes. Although direct binding was not tested

in the present study, we assume a similar mechanism of action for

the other tested peptides. In order to test this hypothesis, we tested

the effects of Ab, IQ and IQ analogues in a cell line expressing a

single subtype of nAChR, the a3b4 subtype, characterized by

large whole-cell current responses and widely used as model for

binding and activity screening on nicotinic receptors

[40,41,42,43,44]. Moreover, this receptor subtype was recently

employed to characterize the mechanism of action of the

Alzheimer drug tacrine [42] and has also been shown to be

involved in disease states such as nicotine-induced seizures and

hypolocomotion in mice [45]. Results showed that 200 nM soluble

Ab40 persistently blocked the response of a3b4 nAChRs to CCh

remaining 60614% of currents induced by CCh alone. To our

knowledge, there is only one other study testing the effects of Ab40

on a3b4 nAChRs [23]. That study showed that Ab failed to elicit

changes in amplitude of ACh-evoked currents mediated by human

a3b4 nAChRs expressed in Xenopus laevis oocytes. It should be

noted, however, that Ab40 was bath applied at a significantly

lower concentration (10 nM) than used in the present study

(200 nM). Moreover, Pym et al. [23] pre-incubated Ab40 with

cells for 3 min, which might lead to aggregation and, consequent-

ly, to a decrease in the concentration of soluble Ab40 species that

directly interact with nAChRs. Although the concentration of

Ab40 in the cerebrospinal fluid of AD patients has been reported

to be between 1 and 10 nM [46], the concentration of Ab40 at

cholinergic synapses is unknown.

In contrast to their effects in cells expressing a7 and heteromeric

nAChRs, IQ and analogues did not block Ab40 inhibition of a3b4

nAChRs expressed in HEK cells, suggesting that IQ binding to

Ab40 is not sufficient to prevent Ab from interacting with and

inhibiting a3b4 receptors. However, addition of IQ made the

inhibition of a3b4 nAChRs by Ab40 reversible, suggesting that IQ

binding to Ab40 modifies its interaction with a3b4 receptors, likely

facilitating Ab40 dissociation and receptor re-activation by the

agonist. Activity screening of IQ analogues indicated that only

TTWS and IQTTASR were able to mimic IQ and make Ab40

inhibition of a3b4 nAChRs reversible, emphasizing the impor-

tance of the TTWS tetrapeptide in Ab40 interaction with

nAChRs. Unexpectedly, the Trp residue (present in all nAChRs)

that is essential in IQ to block Ab40 inhibition of a7 nAChRs was

not necessary to alleviate the effects of Ab40 on a3b4 nAChRs,

suggesting that different amino acid residues or different protein

domains are involved in Ab40 interaction with distinct subtypes of

nAChRs.

Current results support the notion that Ab40 binds with distinct

affinities to and has different effects on various subtypes of

nAChRs [6,27]. Indeed, it has been reported that Ab binds with

Peptides Reversing nAChR Inhibition by b-amyloid
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high affinity (in the picomolar range) to a7 nAChRs in cortical

regions and in the hippocampus in AD, and with about 5,000

times lower affinity to a4b2 nAChRs [13,14]. However, as a

general mechanism, blockade of nAChRs by Ab may also affect, at

concentrations similar to those used in the present study, the

cholinergic control of neurotransmitter release, including glycine,

glutamate, aspartate and GABA [47,48].

Distinct effects of Ab on different subtypes of nAChRs reinforce

the idea that Ab binding to different receptor subtypes may

involve different binding sites, occasionally increasing but more

often blocking agonist response. Moreover, the difference in effects

of IQ and analogues in cells expressing a7 and other heteromeric

receptors versus in cells solely expressing a3b4 nAChRs may be

due to the fact that IQ presents higher homology to the ligand

binding pocket of a7 than of a3b4 nAChRs. In nAChRs, the

ligand-binding site is located at the interface between two subunits

[46,49]. Numerous biochemical studies have shown that the

principal part of the binding site is formed by a-subunit residues

[50,51,52,53], whereas neighboring subunit residues contribute to

form the complementary part of the binding pocket. Thus,

heteropentamers such as a3b4 subtype contain two different

ligand-binding sites with distinct affinities, whereas the homo-

pentameric a7 receptor contains five identical ligand-binding sites

[32]. The most vulnerable neurons in AD seem to be those

expressing high levels of nAChRs, particularly those containing

the a7 subunit [54], and levels of nAChRs as well as some of their

associated proteins decrease in AD [55,56]. An interesting recent

study reported that deletion of the a7 nAChR gene prevents

cognitive deficits and synaptic pathology in a mouse model of

Alzheimer’s disease [57]. Our current results provide novel

information to drive further progress in AD drug design. Drugs

like IQ, capable of disrupting Ab-a7 nAChR interactions, might

alleviate Ab-mediated toxicity and block AD development.

In conclusion, our finding that Ab exerts subtype-specific

inhibitory effects on a7 and a3b4 nAChRs suggests that receptor

subunit composition might account for some of the different

actions reported for Ab40 on neurons in vivo. Furthermore, we

show that the region homologous to IQ in nAChRs is a relevant

target to alleviate blockade of a7 and a3b4 nAChRs by Ab. Our

results identify, for the first time, the amino acid residues probably

involved in binding and inhibition of nAChRs by Ab and may

provide a valuable platform for drug design of novel AD

therapeutics. The potential relevance of our findings to drug

design and development of novel AD treatments is further

underscored by a recent string of disappointing clinical trials on

Ab antibodies (Bapineuzumab and Solanezumab), which have cast

a shadow over anti-Ab immunotherapy strategies [58].

Materials and Methods

Peptide synthesis
Peptides IQ (IQTTWSR), AQTTWSR, IATTWSR,

IQATWSR, IQTAWSR, IQTTASR, IQTTWAR, IQTTWSA,

IQTT, QTTW, TTWS, TWSR and scrambled IQ (SQI;.

TIWQSTR) were synthesized as detailed elsewhere [24].

Figure 4. Suggested conserved amino acid sequence for reversal of a3b4 nAChR inhibition by Ab.
doi:10.1371/journal.pone.0067194.g004
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Cell culture
PC12 cells (ATCC, catalogue # CRL-1721) were cultured and

induced to neuronal differentiation as described [24,36]. Briefly,

PC12 cells were cultured in DMEM (Invitrogen, Life Technolo-

gies, Carlsbad, CA, USA) in the presence of 10% FBS (Cultilab,

Campinas, São Paulo, Brazil), 5% horse serum (Invitrogen, Life

Technologies, Carlsbad, CA, USA), streptomycin (100 mg/ml),

penicillin (100 U/ml – Sigma-Aldrich, St. Louis, MO, USA) and

1 mM sodium pyruvate (Invitrogen, Life Technologies, Carlsbad,

CA, USA). N5,29-O-dibutyryl cAMP (dibutyril cAMP) and FGF-2

(45 ng/ml) were added to cultures to induce differentiation into

mature sympathetic neurons expressing increased numbers of

neuronal nAChRs [59]. For differentiation, 2.56105 cells/ml, as

determined by Neubauer chamber counting, were induced to

neuronal differentiation for up to 6 days in DMEM containing

30 ng/ml FGF-2 (Sigma-Aldrich, St. Louis, MO, USA) and

250 mM dibutyril cAMP (Sigma-Aldrich, St. Louis, MO, USA).

Under these conditions, differentiated PC12 cells express a3, a5,

a7, b2 and b4 nicotinic receptor subunits [36]. For evaluation of

cell viability, PC12 cells on day 3 of neuronal differentiation were

exposed for 48 h to different peptides at 1 and 100 mM

concentrations, then washed with PBS and stained with trypan

blue. Five fields were photographed per well and live and dead

cells were counted. Statistical analysis was based on the Student’s

t-test.

Human embryonic kidney cells (HEK293 cells) stably express-

ing rat a3 and b4 nAChR subunits [60] were obtained from Dr.

Yingxian Xiao, Georgetown University. Transfected cells were

cultured in DMEM (Invitrogen, Life Technologies, Carlsbad, CA,

USA) supplemented with 10% FBS, 100 U/ml penicillin G,

100 mg/ml streptomycin and 0.3 mg/ml geneticine (Sigma-

Aldrich, St. Louis, MO, USA) at 37uC and 5% CO2. Cells were

allowed to attach to 35 mm cell culture dishes for 48 h prior to

being used in whole-cell recording experiments.

Whole-cell current recording and rapid application of
ligand solutions (cell flow technique)

PC12 cells following 3–6 days of neuronal differentiation were

cultured at a density of 20–100 cells/mm2 on 35 mm cell culture

dishes. Whole-cell recordings were performed at room tempera-

ture at a transmembrane voltage of 270 mV. The solution in the

recording pipette contained 145 mM KCl, 10 mM NaCl, 2 mM

MgCl2, 1 mM EGTA, 25 mM HEPES, pH 7.4. The bath

solution was composed of 145 mM NaCl, 5.3 mM KCl,

1.8 mM CaCl2, 1.2 mM MgCl2, 10 mM glucose, 25 mM

HEPES, pH 7.4. Further details were previously reported [24].

Using carbamylcholine (CCh), a stable analog of ACh, we have

previously shown that whole-cell current (ICCh) data in neuronal-

differentiated PC12 cells could be well described by a single

binding site model, yielding a Kd of 259658 mM for CCh. A Kd

value of 2 mM has already been determined for a3b4 nAchRs

expressed by HEK cells [61]. According to previous work

published by Niu et al., 1995 and Hess et al. 2000 [62,63], the

equilibrium between open and closed channel forms is defined by

the concentration of the agonist, thereby the closed channel form

reveals higher affinity for the inhibitor as the open channel form

does. Therefore, higher percentages of inhibition by Ab40 are

expected at low CCh (0.2 mM) concentration. Because the density

of receptors in the plasmamembrane (i.e., the total number of

binding sites) differs somewhat from cell to cell, all ICCh values

were normalized to the currents measured in the presence of

0.2 mM CCh [24]. CCh-induced currents were recorded by

whole-cell recording in combination with a rapid kinetic ligand

delivery system, denominated the cell-flow technique, which

provides a time resolution of 10 ms [24,33,34,35]. Briefly, a U-

shaped stainless steel capillary tube (250 mm i.d.) with a circular

porthole of 150 mm in diameter at the base of the U was connected

to pumps on both ends so the solution containing ligand could be

driven into the tube at one end and removed through the other

end at twice the entry flow rate [33]. The porthole was placed

about100 mm away from each cell clamped by the recording

pipette. Upon closing a solenoid valve between the U-tube and the

suction pump by an electric trigger, CCh, Ab40 and/or different

peptides were applied to the cell in a laminar flow. Ab40 and

peptide solutions were mixed prior to co-application with CCh.

Recorded signals were amplified using an Axopatch 200B

amplifier (Molecular Devices, LLC, Sunnyvale, CA, USA) and

filtered at 2 KHz using a 40-pole low-pass Bessel filter. The

filtered signals were digitized using a Digidata 1322A interface,

recorded using the pCLAMP software package (Molecular

Devices) and analyzed using Microcal Origin software (Microcal

Software, Inc., North Hampton, MA, USA). Statistical analysis

was performed by comparing mean values using one-way analysis

of variance (ANOVA) with Bonferroni’s correction.

Correction for receptor desensitization in cell-flow
measurements

The maximum current amplitude is proportional to the density

of open channels. As receptor desensitization may occur while the

ligand solution is equilibrating with the cell surface, observed

current amplitudes are corrected for desensitization using the

equation [33,35]:

I(t)~I1e
{t=t1zI2e

{t=t2zIe, ð1Þ

where I(t) is the maximum current amplitude at time t; I1, I2, Ie are

the maximum current amplitudes for the first, second, and

equilibrium current decay components, respectively; and t1 and t2

are the time constants for the first and second components (fast

and slow receptor desensitization, respectively). Origin software

(Microcal Software, Inc.) was used to estimate the rate of current

decay in the presence of agonist. Equation 1 was fitted to the

decreasing part of the recording and the observed maximum

current amplitude was corrected for receptor desensitization

accordingly [33].

Supporting Information

Figure S1 Cytotoxicity assay selected IQ analogues.
PC12 cells induced to neuronal differentiation were incubated in

the presence of different peptides for 48 hours, washed with PBS

and stained with trypan blue. The percentages of live and dead

cells of five fields per well were counted and compared to those of

control cells incubated in the absence of peptides.

(TIFF)

Figure S2 Current traces of different peptides tested for
reversion of a3b4 nAChR inhibition by Ab40. Current

responses (normalized by the maximal current evoked by 0.2 mM

CCh) of neuronal differentiated PC12 cells exposed for 2 s to

0.2 mM CCh plus 200 nM Ab40 in all experimental conditions,

except for the control measurement with CCh alone, and, as

indicated, 500 nM of different IQ analogues. The here shown

original data are illustrative for mean values 6 S.D. reported in

Fig. 1.

(TIF)

Figure S3 Ab40-induced inhibition of a3b4 nAChR
currents in transformed HEK cells persists after
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washout. Following six consecutive applications of 0.2 mM CCh,

0.2 mM CCh was co-applied once in the presence of 200 nM

Ab40. Following washout of Ab, inhibition persisted in six

consecutive applications of CCh (p,0.005, when compared to

control currents measured prior to Ab administration).

(TIF)

Figure S4 IQ, QI or SQI alone do not instigate nAChR
currents in PC12 cells. The initial whole-cell response induced

by 0.2 mM CCh was normalized to 100% of activity. None of the

peptides (IQ, QI, SQI, tested at 2 mM) induced changes in CCh-

evoked currents nor activated receptor responses in the absence of

agonist. Arrows indicate time points of ligand application.

(TIF)
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