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Abstract

Peste des petits ruminants virus (PPRV) causes high mortality in goats and sheep and the disease has shown a

greatly increased geographic distribution over the last 15 years. It is responsible for serious socioeconomic

problems in some of the poorest developing countries. The ability to create recombinant PPRV would provide a

useful tool for investigating the biology of the virus and the pathology of disease, as well as for developing new

vaccines and diagnostic methods. Here we report the first successful rescue of recombinant PPRV from a full-length

cDNA clone of the virus genome. Successful recovery of PPRV was achieved by using a RNA polymerase II promoter

to drive transcription of the full-length virus antigenome. We have used this technique to construct a virus

expressing a tracer protein (green fluorescent protein, GFP). The recombinant virus replicated as well as the parental

virus and could stably express GFP during at least 10 passages. The newly established reverse genetics system for

PPRV provides a novel method for constructing a vaccine using PPRV as a vector, and will also prove valuable for

fundamental research on the biology of the virus. We found that our recombinant virus allowed more rapid and

higher throughput assessment of PPRV neutralization antibody titer via the virus neutralization test (VNT) compared

with the traditional method.

Introduction

Peste des petits ruminants (PPR) is a highly contagious

disease of domestic and wild small ruminants caused by

peste des petits ruminants virus (PPRV); it is responsible

for serious socioeconomic problems in some of the

poorest developing countries [1-3]. PPR is a notifiable

disease listed by the World Organisation for Animal

Health (OIE). PPR was first reported in the Ivory Coast

in 1942, and later found in the Middle and Near East,

southwest and central Asia [4-6], and recently in China

[7]. PPRV, which is a member of the genus Morbillivirus

belonging to the family Paramyxoviridae [8], is a linear,

non-segmented, single stranded, negative-sense RNA

virus with a genome length of 15948 bp. The PPRV gen-

ome encodes six structural proteins (nucleocapsid (N),

phosphoprotein (P), matrix (M), fusion (F),

hemagglutinin (H), and polymerase (L)), and two non-

structural proteins (C and V), which are in the order of

3′-N-P/C/V-M-F-H-L-5′ on the genome [9-12]. PPRV

vaccine strain (Nigeria 75/1, PPRV/N75/1) has been

widely used as a safe and efficacious live vaccine to con-

trol PPR infections [13].

Several studies have indicated that recombinant para-

myxoviruses are effective and genetically stable vectors

with many advantages [14-16] due to their relatively

simple reverse genetic systems. However, a reverse gen-

etic system for PPRV has so far not been possible, des-

pite effort in several laboratories, although a rescue

system for rinderpest virus (RPV), which is evolutionary

closest to PPRV, has been known since 1997 [17], and a
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PPRV mini-genome rescue system was described in

2007 [18].

Green fluorescent protein (GFP) is a useful tracer pro-

tein to observe and optimize virus rescue efficiency, and

to study the characteristics of rescued viruses. Recom-

binant viruses expressing GFP could also be utilized to

genetically mark vaccines to allow serological differenti-

ation between animals that have been vaccinated against

PPR and those recovering from natural infection [16,19]

or to improve the virus neutralization test (VNT) [20-

23]. In this study, we developed a system for recovering

recombinant PPRV and introduced the GFP open read-

ing frame into a recombinant form of PPRV/N75/1 to

create a marked recombinant PPRV which we have used

initially to improve PPRV VNT assays for use in studies

of immune responses to different vaccines.

Materials and methods

Cells and viruses

PPRV vaccine strain (Nigeria 75/1, PPRV/N75/1) was

obtained from the China Institute of Veterinary Drug

Control, Beijing, China. Vero cells (The American Type

Culture Collection, ATCC: CCL-81) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco,

Carlsbad, CA, USA) containing 10% fetal bovine serum

(FBS) (Gibco). Vero cells expressing the canine form of

the general morbillivirus receptor, signaling lymphocyte

activation molecule (SLAM), (VDS cells) were the kind

gift of Dr P Duprex, Queen’s University Belfast, UK and

were maintained in DMEM/10% FBS/0.1 mg/mL Zeocin.

PPRV/N75/1 or rescued recombinant PPRV were propa-

gated and titrated in Vero cells cultured in DMEM con-

taining 2% FBS.

Serum samples

Ten goats (nos. 1–10) and 10 sheep (nos. 11–20) were

vaccinated twice with 2 × 105 50% tissue culture infective

dose (TCID50) of recombinant capripoxvirus (rCPV)

expressing PPRV glycoprotein H (rCPV-PPRVH) [24]

with a three-weeks interval. Serum samples were col-

lected two weeks following the second vaccination.

Eleven additional goats (nos. 21–31) were vaccinated

with 107 TCID50 PPRV/N75/1, and serum samples were

collected four weeks post-vaccination. Serum samples

were collected from each test animal before vaccination

to act as negative controls.

Plasmid construction

PPRV/N75/1 was propagated in Vero cells, and RNA

from infected cells isolated. The entire viral genome was

amplified by RT-PCR using high-fidelity Pfx DNA poly-

merase (Invitrogen, Carlsbad, CA, USA) in four overlap-

ping sections (F1 to F4), which were assembled into a

full-length cDNA clone (Figure 1a). The complete cDNA

of the genome of the virus stock used was fully

sequenced and confirmed [GenBank: HQ197753]. A

number of minor differences between the sequence

determined for this stock of the PPRV/N75/1 vaccine

and that previously published for PPRV/N75/1 [Gen-

Bank: X74443] were noted, but it is not possible to tell if

these are due to mistakes in the earlier sequence or to

changes to the vaccine seed stock over time. The ham-

merhead ribozyme sequence (HamRz) and hepatitis

delta virus ribozyme sequence (HdvRz) were introduced

at the 5′ and 3′ ends of the antigenomic sequence, re-

spectively, as previously described by Inoue et al. [25,26].

The assembled HamRz-(full-length genomic cDNA)-

HdvRz was then cloned into the pCI vector (Promega,

Madison, WI, USA) under the control of the CMV pro-

moter. The resulting plasmid was named pN75/1

(Figure 1a).

New gene fragments were then inserted into pN75/1

between nt 3405 and 3406 of the PPRV/N75/1 sequence

(i.e. at the start of the M gene) as illustrated in

Figure 1b: a 32 nt gene start (GS) sequence (5′-aggag-

caagggcaactgagcttcacagacaag-3′), a Not I restriction site,

a Pme I restriction site, a 66 nt gene end (GE) sequence

(5′-cacatcctataatcaacatctcatactcggttgaaaacatcctctcaat-

caggctattacaaaaaa-3′) and a CTT intergenic trinucleo-

tide. In brief, the genome construction was carried out

as follows: DNA fragment Fa (ending at the GS of the M

gene with a Not I site introduced at 3′ end) and Fb

(starting from the GE of the P gene with Not I and Pme

I sites introduced at the 5′ end) were PCR-amplified

from pN75/1 and ligated together to get DNA Fab, then

DNA F1 used in the original construction of pN75/1

was replaced with DNA Fab to give plasmid pN75/1-in-

sertion (Figure 1b). The net result was equal to insertion

of the five genetic elements above into pN75/1 between

nt 3405 and 3406 of the PPRV/N75/1 genome cDNA

sequence.

Finally, we inserted the open reading frame (ORF) for

GFP into pN75/1-insertion. The GFP ORF was PCR-

amplified from pIRES2-EGFP (Clontech, Mountain

View, CA, USA) using PrimeSTAR HS DNA polymerase

(Takara, Shiga, Japan) with primers 5′-tctgcggccgc

gccgccaccatggtgagcaagggcgag-3′ (the Not I site is under-

lined and the Kozak sequence is in bold) and 5′-ctc

gtttaaacttacttgtacagctcgtc-3′ (the Pme I site is under-

lined). The amplified product was ligated into EcoR V-

cut pBluescript II KS(+), removed from that plasmid by

digestion with Not I and Pme I and cloned into pN75/1-

insertion, cut with the same enzymes, to produce plas-

mid pN75/1-GFP (Figure 1c).

In addition, the ORFs of the N, P and L genes were

amplified from pN75/1 and inserted into pCAGGS to

construct helper plasmids. The resultant plasmids were

named pCA-N, pCA-P and pCA-L, respectively. All
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primer sequences used in this study are available from

the corresponding author upon request.

Transfection of Vero cells and rescue of recombinant

viruses from cloned cDNA

To rescue the recombinant PPRV or PPRV/GFP, 90%

confluent Vero or VDS cells in one well of a 6-well plate

were transfected with the plasmids pCA-N (2 μg), pCA-

P (1 μg) and pCA-L (1 μg) together with 4 μg of pN75/

1-GFP. Lipofectamine 2000 (Invitrogen) or TransIt-LT1

(Mirus Biologicals) were used for transfections following

the manufacturers’ instructions. After 7–9 days of incu-

bation at 37°C, the cells and supernatants were collected

and freeze-thawed twice and then passaged in fresh cells

to propagate the rescued virus. Supernatants from cyto-

pathic effect-positive wells were used to propagate viral

stocks in Vero or VDS cells. The complete genomic

sequences of the rescued viruses were confirmed by se-

quencing. The rescued viruses were named rPPRV/N75/

1 and rPPRV/GFP.

pN75/1-insertion

pN75/1-GFP

5’ 3’L

GS GE…CTT CTT

(3405 nt)

agg...Not I Pme I

(3406 nt)Insertion sequence

N P M F H

GS GE…CTT CTT

(3405 nt)

agg...Not I Pme I

(3406 nt)

GFPkozak

Insertion sequence

GFP5’ 3’LN P M F H

5’

F1

pN75/1 N P M F H L 3’

HdvRzHamRz
Spe I

(11592 nt)

Rsr II

(4921 nt)

F4
F3

F2

CMV pCI
polyA

Spe I

(9360 nt)

C

B

A

5’ 3’LN P M F H

GSGE CTT

Fa

Not I

FbPmeINot I

Rsr II

(4921 nt)

Replace F1 of pN75/1 

with Fab

Not I PmeIGE CTT GS GE CTT GS

Ligation of Fa and Fb

Fb

Fa

pN75/1

Fab
5’ 3’

Figure 1 Construction of plasmids for PPRV rescue. (A) The cDNA fragments F1, F2, F3 and F4 were reverse transcribed and amplified from

PPRV/N75/1 genomic RNA. The hammerhead ribozyme sequence (HamRz) and the hepatitis delta virus ribozyme sequence (HdvRz) were

introduced to the 5′ end of F1 and the 3′ end of F4, respectively. All fragments were then subcloned stepwise into the pCI vector to produce

plasmid pN75/1. (B) DNA fragments Fa (from the HamRz to the GS sequence of M with a Not I site introduced at 3′ end) and Fb (from GE of P

gene to the end of F1 with Not I and Pme I sites introduced at the 5′ end) were PCR-amplified from pN75/1 and ligated together to get fragment

Fab, then section F1 of pN75/1 was replaced with Fab to get plasmid pN75/1-insertion. The net result was equal to insertion of a morbillivirus

gene start (GS) sequence, Not I and Pme I sites, gene end (GE) sequence and CTT intergenic trinucleotide into pN75/1 between nt 3405 and 3406

of the PPRV/N75/1 genome cDNA sequence. (C) The GFP ORF with a Kozak sequence at the 5′ end of the ORF was inserted into plasmid

pN75/1-insertion to produce plasmid pN75/1-GFP.
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Growth curves

Vero cells were grown to 70% confluence in 6-well

plates and infected with 0.1 multiplicity of infection

(MOI) of virus for 1 h. The inoculum was removed and

the cells were washed twice with medium, then 2 mL of

medium were added to each well. Cells with medium

were stored at −70°C each day from 3 to 8 days post-

infection, and were freeze-thawed twice before titration.

The TCID50 of released virus was quantitated by estab-

lished methods [27].

Immunofluorescence assays

Vero-SLAM cells grown in 12-well plates on glass cover-

slips were infected with PPRV/N75/1 or rPPRV/GFP at

a MOI of 0.05 and incubated for 2 d. Cells were fixed

with 3% paraformaldehyde in PBS and stained with

monoclonal antibody recognizing PPRV H followed by

AlexaFluor 568-labelled anti-mouse IgG (Invitrogen).

Cells were stained with DAPI for 5 min before mounting

to stain the nuclei of all cells. Images were taken by se-

quential scanning at each wavelength on a Leica con-

focal microscope. Mock-infected cells were used as

controls. For live cell imaging, Vero cells were infected

at a MOI of 0.1 and imaged at the indicated time post

infection using an inverted fluorescence microscope

(Zeiss, Oberkochen, Germany).

Western blotting

Vero cells were infected with PPRV/N75/1 or rPPRV/

GFP at a MOI of 0.1 and incubated until the cytopathic

effect (CPE) involved 60–80% of cells. The cell extracts

were then analyzed by SDS-PAGE and blotted on a

nitrocellulose membrane. The membrane was incubated

with mouse anti-GFP monoclonal antibody (Sigma) as a

primary antibody, and with peroxidase-conjugated goat

anti-mouse IgG (Sigma) as a secondary antibody. Immu-

nostained proteins were visualized using 3,3′-diamino-

benzidine reagent. Mock-infected Vero cells were used

as controls.

Analysis of GFP fluorescence

Vero cells grown in 6-well plates were infected with

rPPRV/GFP at a MOI of 0.1. The cells together with

their medium were freeze-thawed twice when the CPE

reached 100%, and 200 μL of this broken cell prepar-

ation was added to 100 μL of cell-lysis buffer (0.15 M

Tris-Cl, pH 8.0, 1.5% Triton X-100). After incubating for

15 min, 100 μL aliquots of cell lysate were transferred to

wells of a 96-well white plate (Corning, Lowell, MA,

USA). Mock-infected cells were used as controls. The

GFP fluorescence of each well was read on a Microplate

Fluorescence Reader (Bio-Tek, Winooski, VT, USA). The

excitation peak was set at 485 nm, the emission peak at

528 nm, and the sensitivity at 50. The relative

fluorescence units (RFU) were calculated as: [(fluores-

cence of the test well) - (fluorescence of the control

well)].

Virus neutralization tests

Titrating of PPRV-neutralizing antibody (VNA) in serum

samples were performed in quadruplicate in 96-well

plates as previously described [24] following OIE recom-

mendations [28]. All serum samples were inactivated by

heating at 56°C for 30 min before testing. The inacti-

vated sera were diluted five-fold in triplicate, and then

serially diluted two-fold for VNA titration. PPRV/N75/1

or rPPRV/GFP (100 TCID50 in 100 μL cell culture

medium) was mixed with 100 μL of diluted serum in a

96-well plate and incubated at 37°C for 1 h. Vero cells

(50 μL) were added to each well and the plates were

incubated at 37°C. The CPE was recorded at day 14 for

PPRV/N75/1 as described previously [28]. A titer ≥ 10

was considered positive.

Statistical analysis

The statistical analyses of the comparison between the

results of assays using PPRV/75/1 and rPPRV/GFP were

carried out using a paired t test as calculated using the

GraphPad Prism program. A P value< 0.05 was consid-

ered significant.

Results

Rescue of rPPRV and GFP expression of rPPRV/GFP

in vitro

Previous attempts to rescue PPRV from full-length cop-

ies of the genome had used T7 RNA polymerase-driven

transcription of the virus antigenome, since this method

has been successful with all other morbilliviruses, indeed

most viruses of the order Mononegavirales, rescued to

date. We hypothesised that the PPRV rescue may not

have worked because of some sequence element in the

PPRV genome (e.g. cryptic transcription termination sig-

nals) that were preventing full genome synthesis. We

therefore attempted the recovery of recombinant PPRV

using an RNA pol II promoter to drive transcription,

and ribozymes at both ends of the PPRV sequence to en-

sure that the final transcript had exact viral termini, as

has been shown to be effective for rabies virus rescue

[25]. We therefore constructed the PPRV genome plas-

mid as described in Methods (Figure 1) as well as appro-

priate helper plasmids expressing the N, P and L

proteins of PPRV, and rPPRV/N75/1 and rPPRV/GFP

were rescued successfully on Vero cells. Because rPPRV/

GFP is much easier than rPPRV/N75/1 for evaluating or

optimizing the reverse genetic system, rPPRV/GFP was

used in all following experiments. Optimum ratios of

plasmids were determined based on the frequency of

GFP-positive cells after transfection, and we were able to
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recover recombinant PPRV/GFP in 50%–80% of trans-

fected wells using the final method as described.

To confirm rPPRV/GFP replication and normal viral

protein expression as well as GFP expression, infected

VDS cells were immunostained with anti-PPRV H MAb

as described in Methods. Immunofluorescence micros-

copy showed clear labeling of cells infected with either

PPRV/N75/1 or rPPRV/GFP (Figure 2a), while only cells

infected with rPPRV/GFP showed the green fluorescence

expected of GFP expression (Figure 2a). The GFP expres-

sion was strong enough to be seen even in early stages of

infection, as shown by the appearance of cells at the bor-

ders of infection foci which were clearly green but had not

yet expressed detectable amounts of the viral H protein.

Infected cells could easily be seen by live cell imaging

(Figure 2b). The expression of GFP was further confirmed

by Western blot analysis, which showed that a protein of

the appropriate size was detected with anti-GFP antibody

in lysates of rPPRV/GFP-infected cells (Figure 2c, lane 4),

while no band was detected with mock- or PPRV/N75/1-

infected cells (Figure 2c, lanes 2 and 3).

Virus growth and stability in vitro

To determine whether the rescue procedure or exogen-

ous gene insertion affected the replicative ability of our

recombinant virus, growth curves of rPPRV/GFP and

PPRV/N75/1 in infected Vero cells were determined.

The results (Figure 3a) show that there was no discern-

ible difference in growth rate or maximum titre between

the two viruses. To determine whether repeated passage

of rPPRV/GFP in Vero cells affected replication and ex-

pression, rPPRV/GFP was propagated in Vero cells for

10 passages, and samples of culture medium plus cells

collected every second passage; these samples were
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Figure 2 Replication of and GFP expression by rPPRV/GFP in Vero cells. (A) Cells infected with either rPPRV/GFP (i, iv, vii) or PPRV/N75/1 (ii,

v, viii), or mock infected (iii, vi, ix), were fixed and labeled for the presence of PPRV glycoprotein H (red); GFP was detected by its natural

fluorescence. Cells were counterstained with DAPI to show the nuclei. (B) GFP expression in live, PPRV/N75/1- and rPPRV/GFP-infected Vero cells

was observed by direct observation of unfixed cells 2 days post infection. (C) Lysates of Vero cells that had been infected with PPRV/N75/1 or

rPPRV/GFP were analyzed by Western blotting using mouse anti-GFP monoclonal antibody. Mock-infected Vero cells were used as a controls.
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assayed for total (cell associated and medium) virus titre

and for GFP expression. The results show that the virus

titer (Figure 3b) and GFP expression (Figure 3c) from

different passages changed only slightly.

PPR virus neutralization test using rPPRV/GFP

GFP expression from our rPPRV/GFP is easily observed

in live cells by fluorescence microscopy. We took advan-

tage of this to help us observe virus growth during the

carrying out of VNTs, growth that is normally detected

by the observation of cytopathic effect (CPE). Serum

from a vaccinated sheep (no. 31) was tested in a VNT

assay using rPPRV/GFP or PPRV/N75/1. GFP fluores-

cence (Figure 4a (i-iv)) and CPE (Figure 4a (ix-xii)) of

rPPRV/GFP or CPE of PPRV/N75/1 (Figure 4a (xiii-xvi))

was observed at 4, 6, 10 and 14 d post-infection in wells

where virus was incubated with 320-fold diluted serum.

The GFP fluorescence could be observed as early as day
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Figure 4 Comparison of PPR virus neutralization test using rPPRV/GFP and PPRV/N75/1. (A) Detection of virus replication during VNT

assay. Serum from a goat (no. 31) previously vaccinated with 107 TCID50 PPRV/N75/1 was tested using either rPPRV/GFP or PPRV/N75/1. The GFP

fluorescence ((i) to (iv)) and CPE ((ix) to (xii)) of rPPRV/GFP or the CPE of PPRV/N75/1 ((xiii) to (xvi)) after treatment with diluted serum (320-fold)

were observed at 4, 6, 10 and 14 d post-infection. (B) Twenty PPRV-positive sera from rCPV-PPRVH vaccinated goats (nos. 1–10) or sheep (nos.
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difference seen.
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4 (Figure 4a (i)), and was very clear after day 6

(Figure 4a (ii-iv)), whereas the PPRV/GFP (Figure 4a (xi-

xii)) and PPRV/N75/1 CPE (Figure 4a (xv-xvi)) were

only clearly observed from day 10. Therefore, the

rPPRV/GFP VNT results were available at least four

days earlier than if using PPRV/N75/1.

In order to verify that the two methods gave the same

titre, 20 PPRV-positive sera from rCPV-PPRVH vacci-

nated goats (nos. 1–10) or sheep (nos. 11–20) were

assayed for PPR VNA titer using either PPRV/N75/1 or

rPPRV/GFP. As shown in Figure 4b, there was no statisti-

cally significant difference (P> 0.05, paired t-test) between

the VNA titer results using the two viral strains. Ten add-

itional positive serum samples from PPRV/N75/1-vacci-

nated goats (nos. 21–30), which have much higher VNA

titres, were assayed in the same manner, and with same

results (P> 0.05, Figure 4c). The VNA titer of 30 (nega-

tive) serum samples collected from 30 test animals (nos.

1–30) before vaccination were all lower than 5 (data not

shown) using either rPPRV/GFP or PPRV/N75/1.

Discussion

Here, a full PPRV reverse genetics system has been

established for the first time. Since the establishment of

a RPV reverse genetics system more than a decade ago

[17], several groups have attempted to establish a PPRV

reverse genetics system [18,29]. However, the attempts

have been unsuccessful to date (personal communica-

tion). We have now successfully rescued a recombinant

PPRV expressing GFP. Rescue efficiencies were accept-

able, but not high, and rescue efficiency may have to be

improved to enable recovery of PPRV with more exten-

sive or deleterious mutations, either to use PPRV as a

novel vaccine vector or for fundamental research.

Our results showed that neither rescue conditions nor

insertion of an additional gene affected recombinant virus

replication and passage stability in Vero cells. This is in

contrast to the findings with similar recombinant viruses

made using the vaccine strain of RPV [19,30], where the

insertion of an extra gene between the virus P and M

genes led to a reduction in growth rate. GFP expression

was high, suggesting potential use of a PPRV reverse gen-

etics system to construct recombinant multivalent vac-

cines by replacing the GFP ORF with the coding sequence

for an immunogenic antigen from another virus, or the

creation of tagged viruses for use in fundamental research

on the growth and spread of PPRV in its hosts, as has

been recently carried out with measles virus [31,32]. A

version of rPPRV/GFP could be used as a marker vaccine,

especially if GFP is expressed as a membrane-anchored

protein, which was necessary with RPV-based constructs

to elicit a serum antibody response to the GFP [16,19].

PPRV/N75/1 replicates relatively slowly in Vero cells,

with 14 days typically required for observation of CPE in

VNT assays where low initial MOIs are used. CPE dur-

ing early infection (1–6 d post-infection) can be very dif-

ficult to observe. In addition, complex serum

components may cause CPE-like cell death at dilutions

below 20-fold even when the sera are heat-inactivated at

56°C. When the VNA titer is between 5 and 20, it is dif-

ficult to judge whether cell death has been caused by

virus or by the serum itself, which may lead to false-

negative results and underestimation of VNA titre.

rPPRV/GFP could easily solve the two above-mentioned

problems. First, virus growth can be observed with the

help of GFP fluorescence as early as four days post infec-

tion in these assays, and VNT results could be deter-

mined with confidence as early as six days post

infection. Thus, eight days could be saved compared

with traditional methods using PPRV/N75/1. Secondly,

viral CPE could be distinguished easily from CPE-like

cell death caused by serum with the help of GFP fluores-

cence, even though only a limited number of cells are

infected by rPPRV/GFP. There is also the potential to

use machine scanning of wells of 96-weel plates in a

fluorescence plate reader to automate scoring of VNT

assays, allowing higher throughput of samples, an im-

portant consideration where large scale trials of vaccines

or tests for vaccine effectiveness are taking place.
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