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Double-stranded DNA (dsDNA) sensor cyclic-GMP-AMP synthase (cGAS) along with

the downstream stimulator of interferon genes (STING) acting as essential immune-

surveillance mediators have become hot topics of research. The intrinsic function of the

cGAS-STING pathway facilitates type-I interferon (IFN) inflammatory signaling responses

and other cellular processes such as autophagy, cell survival, senescence. cGAS-

STING pathway interplays with other innate immune pathways, by which it participates

in regulating infection, inflammatory disease, and cancer. The therapeutic approaches

targeting this pathway show promise for future translation into clinical applications. Here,

we present a review of the important previous works and recent advances regarding the

cGAS-STING pathway, and provide a comprehensive understanding of the modulatory

pattern of the cGAS-STING pathway under multifarious pathologic states.
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INTRODUCTION

Pattern-recognition receptors (PRRs) serve as innate cellular sensors of danger signals, such
as pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns
(DAMPs), and yield cellular-stress response. DNA molecules are vital genetic components within
cells, which are compartmentalized restrictively into specific regions. The occasionally misplaced
DNA is degraded rapidly by scavenger cells and extracellular or intracellular ribonucleases.
Aberrant accumulation of DNA is relevant to tissue damage (1).

In 2008, several research teams discovered a new protein on the endoplasmic reticulum (ER)
which can be activated by immune-stimulatory DNA (ISD) and initiate type-I interferon (IFN)
responses, which was named “stimulator of interferon genes” (STING, also known as MITA,
ERIS) (2–4). STING does not bind to DNA directly, and bacteria-derived cyclic di-guanylate
monophosphate (c-dGMP) or cyclic di-adenosinemonophosphate (c-dAMP) were confirmed to be
ligands for STING (5, 6). Subsequently, it was found that some DNA sensors can facilitate STING
activation, such as interferon gamma inducible protein 16 (IFI16) (7). However, STING activation
could not be fully explained by the upstream factors/ligands that had been found. It was postulated
that an unknown upstream regulator might be responsible for STING activation.

In 2013, Wu and Sun found that cyclic guanosine monophosphate-adenosine monophosphate
(cGAMP) was a novel secondary messenger serving as a ligand of STING (8). Beside it, they
purified a new protein named “cyclic-GMP-AMP synthase” (cGAS) that had cytosolic DNA-sensing
ability and can synthesize cGAMP (8). Also, they found that the cGAS-cGAMP-STING pathway
was indispensable for host anti-viral immunity (9). Their work filled in the gaps missing from
upstream of STING.

Stimulator of interferon genes or cyclic-GMP-AMP synthase is expressed widely in
a broad spectrum of cells including immune, non-immune, cancer cells (10). Mounting
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evidence has demonstrated that the cGAS-STING pathway
is important for mediating cellular immune sensing, and
shows particular responses pattern to the ISD distinguished
from other nucleotide-sensing pathways. It is also regulated
delicately by several molecules or feedback loops to maintain
cellular homeostasis. Nevertheless, cGAS-cGAMP-STING
pathway itself has distinctive or even opposing effects under
different conditions.

In this review, we cover the roles of cGAS-STING pathway
in cellular type-I IFN immune response, and several cellular
processes including autophagy, survival and senescence. We
also summarize the literature on intrinsic cellular mechanisms
modulating cGAS-STING pathway as well as its cross-regulations
with other DNA-sensing pathways. Moreover, the inflammation-
modulation capacities of this pathway in infectious disease,
inflammation and cancers have been elucidated too, and a
pervasive pattern of this pathway has been described, which could
provide a plausible explanation of the contradictory findings
of studies. Finally, current or prospective therapeutic strategies
targeting the pathway, and issues that need to be addressed in the
future, are discussed.

cGAS RECOGNIZES CYTOSOLIC DNA
AND PRODUCES cGAMP

Cyclic-GMP-AMP synthase belongs to the structurally
conserved cGAS/DncV-like nucleotidyltransferase (CD-Ntases)
superfamily. The latter is expressed universally in prokaryotes
and eukaryotes, and can use purines or pyrimidines selectively
as substrates for the production of linear or cyclic di- or even
tri-nucleotide compounds, which act as secondary intracellular
messengers (11).

Cyclic-GMP-AMP synthase is distributed mainly in the
cytosol (also nucleus in some specific conditions) (8). Generally
speaking, cGAS is activated upon the recognition of B-type
double-stranded DNA (dsDNA) without sequence-specificity but
not A-type dsDNA or RNA (12, 13). Hybrid DNA:RNA or stem-
like single-stranded DNA (ssDNA) are also low-affinity ligands
for cGAS (14, 15). After binding with ligands, cGAS undergoes
an allosteric structural change, and subsequently catalyzes
its substrates guanosine triphosphate (GTP) and adenosine
triphosphate (ATP) to produce a mixed phosphodiester-linked
cyclic dinucleotide: G(2′–5′)pA(3′–5′)p cGAMP (abbreviated as
2′,3′-cGAMP or cGAMP) (16). cGAS also catalyze the synthesis
of linear dinucleotides such as AMP-2′-ATP, GMP-2′-GTP, and
AMP-2′-GTP as intermediate products (17).

There are two major dsDNA-binding sites on opposite sides
of the catalytic pocket: A and B site. Site A is the primary
contact surface for dsDNA, whereas site B is complementary,
binding another dsDNA. It allows for cGAS to the formation
of a 2:2 cGAS:dsDNA complex structure directed into two
orientations with dsDNA at least 20 bp (18–20) (Figure 1A).
Increased numbers of back-to-back dimers of cGAS hold the two
dsDNA molecules together and permit successive recruitment of
cGAS which, consequently, forms a 2n:2 cGAS:dsDNA higher-
ordered “ladder-like” oligomerization, with cGAS arrayed “head

to head/tail to tail” (19, 21). The DNA-binding protein HU,
mitochondrial transcription factor A (TFAM), or bacterial high
mobility group box 1 protein (HMGB1) can bend the dsDNA
into a U-shaped structure and, thus, facilitate binding of cGAS
dimers to the same strand as it travels in opposite directions
(21) (Figure 1B). Human cGAS, unlike mouse cGAS, is prone
to formation of this ladder-like network with long dsDNA,
because of the human-specific residues K187 and L195. These
two dsDNA-interfacing residues of site A loosen the interaction
of dsDNA with cGAS, leading to dsDNA curving and allowing
more convenient binding for the next adjacent cGAS (20, 21)
(Figure 1C). Finally, accumulated cGAS-dsDNA complexes can
go through a liquid-phase separation and condense into gel-
like droplets as a reaction unit (Figure 1D). This conformation
requires a sufficiently long dsDNA strand to form multivalent
interaction positions, also requires the function of the N-terminal
tail of cGAS and a recently discovered dsDNA-binding site in
the catalytic domain of cGAS (site C) (22, 23). Meanwhile,
the N-terminal tail of cGAS mediates cGAS localization
onto the membrane by binding to phosphatidylinositol 4,5-
bisphosphate (PI (4, 5) P2) and prevents liberation of cGAS
and oligomerization, but can release cGAS during cell stress
(24). The structure of cGAS determines long strand dsDNA
(>500–1,000 bp) could potentially stimulate the enzyme activity
and cGAMP production of cGAS (25). The ability of human
cGAS to discriminate long dsDNA strands from shorter dsDNA
may contribute to the specific sensing and recognition of the
“danger DNA” of pathogens, necrotic cells or cancer cells rather
than irrelevant shorter dsDNA, thereby enhancing the immunity
against them specifically.

ACTIVATION OF THE cGAS-STING
PATHWAY

Double-stranded DNA is restricted into the nucleus or
mitochondria and is rarely present in the cytoplasm. Extrinsic
dsDNA from pathogens such as viruses, bacteria, transcellular
vesicles or rupture of dying cells can be internalized into the
cytosol in several diverse ways (26–28). These extrinsic dsDNA
sources are engulfed by endosome through phagocytosis and
digested immediately by DNaseII when fusing with lysosomes
(29, 30). However, some escaping mechanisms under certain
conditions could help protect them from being degraded. For
example, antimicrobial peptide LL37 could efficiently transports
self-DNA from endosome into cytosol of monocytes (28). Cell
oxidative stress can lead to phagosomal acidification delay and
probably release endosome context including dsDNA owing to
increased membrane permeability (27, 31).

The intrinsic self-dsDNA can also be segregated inaccurately
and released into the cytosol (32, 33). For example, genomic
DNA (gDNA) injury as a result of genotoxic stress and DNA
self-instability or replication errors leads to double-strand breaks
(DSBs) and can be repaired by several ways (34). Impaired
mediators of DNA-damage repair response mediators, such
as ataxia telangiectasia mutated (ATM)-RAD3, poly ADP-
ribose polymerase (PARP) and breast cancer1/2 (BRCA1/2)
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FIGURE 1 | cGAS can recognize cytosolic DNA and produce cGAMP. (A)There are two DNA-binding sites on opposite sides of the catalytic pocket (site A,B) and a

proposed DNA-binding site at the catalytic domain of cyclic-GMP-AMP synthesis (cGAS) (site C). (B) Multiple cGAS molecules can bind two double-stranded DNAs

(dsDNA) to form a 2n:2 cGAS:dsDNA higher-ordered “ladder-like” oligomerization. Mitochondrial transcription factor A (TFAM) can bend the dsDNA into a U-shaped

structure and promote polymerization. (C) cGAS can recognize B-type dsDNA. In humans, the cGAS DNA-interfacing residue of site A loosens the interaction of

dsDNA to curve dsDNA away for more convenient binding with next adjacent cGAS. cGAS can catalyze GTP and ATP to synthesize cyclic guanosine

monophosphate-adenosine monophosphate (cGAMP). The N-terminal tail binds to the cell membrane, associating with phosphatidylinositol 4,5-bisphosphate [PI

(4,5)P2]. (D) Accumulation of cGAS-DNA complex goes through a liquid-phase separation and condenses into gel-like droplets.

are associated with persisting DSBs and accumulation of
cytosolic DNA (35–37). Extra-nuclear micronuclei formation
during mitosis is a source of cytosolic dsDNA caused by
DSBs (32, 38). Followed by homologous recombination repair
of collapsed replication forks, DNA cleavage by methyl
methanesulphonate (MMS) and ultraviolet-sensitive 81 (MUS81)
also lead to cytosolic dsDNA presenting (39). Furthermore,
manually Cre/loxP recombination technology can induce dsDNA
damage during DNA cleavage, which results in the accumulation
of cytoplasmic dsDNA (40). In normal cellular mitotic processes,
chromosomal DNA can be exposed to the cytoplasm, while it is
hard to bind and trigger cGAS (41).

In addition, mitochondrial DNA (mtDNA) is also a
considerable ligand of cGAS and can be released into the
cytosol under mitochondrial stress or dysfunction of proteins

which participates in maintaining mitochondrial operations (33,
42, 43) (Figure 2A).

Cells have several types of nucleases to restrict cytosolic
DNA to avoid cGAS activation. For example, three-prime repair
exonuclease 1 (TREX1 also known as DNaseIII) is a cytosolic
DNA exonuclease which removes unprotected dsDNA from the
cytosol (44). RNaseH2 locates to the nucleus and specifically
degrades the RNA in RNA:DNA hybrids participating in DNA
replication (45). DNaseII is a lysosomal DNase which degrades
undigested DNA in endosomes or autophagosomes to prevent
their entry into the cytoplasm (30). SAM domain and HD
domain-containing protein 1 (SAMHD1) is characterized as a
dNTPase and restricts reverse transcription of the RNA virus
(46, 47). SAMHD1 can also stimulate the exonuclease (but
not the endonuclease) activity of MRE11 to degrade nascent
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FIGURE 2 | Depiction of the cGAS-STING pathway. (A) Cytoplasmic DNA challenge. (1) Extrinsic DNA source: extracellular DNA can be taken up into endosomes

for digestion. Increased membrane permeability allows endolysosomal pathogenic DNA release into the cytosol. Viruses can release virons into the cytosol. The

hexamer pore facilitates movement of nucleotides into the capsid. The latter can also be ubiquitinated and degraded. (2) Intrinsic DNA source: self-DNA from the

nucleus with dysfunctional chromatin proteins can lead to chromatin DNA injury and gDNA presenting in the cytoplasm. Mitochondrial outer membrane

permeabilization (MOMP) induced by mitochondrial stress can release oxidized mitochondrial DNA (mtDNA). (3) Three-prime repair exonuclease 1 (TREX1), DNase II,

SAM domain, HD domain-containing protein 1 (SAMHD1) and RNaseH2 can restrict cytosolic DNA and DNA/RNA hybrids. cGAMP can be hydrolyzed by

ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1). (B) cGAMP transferring between cells. cGAMP can be transferred between cells

through viruses, membrane fusion, extracellular vesicles and cell gap junctions. Extracellular cyclic dinucleotides (CDNs) can transfer directly into cells by SLC19A1.

CDNs (including cGAMP) might be exported by some ways. (C) Inflammatory signaling mediated by the cGAS-STING pathway. After sensing DNA, cGAS produces

cGAMP and extracellular CDNs, promoting stimulator of interferon genes (STING) to undergo dimerization. STING can exit from the endoplasmic reticulum (ER), and

be translocated from the ER to the ER-Golgi vesicle, and arrives at the Golgi. STING and TANK binding kinase 1 (TBK1) can be oligomerized and cluster at the Golgi.

The STING-TBK1/IκB kinase (IKK) signalosome forms a scaffold to phosphorylate interferon regulatory factor 3 (IRF3) and inhibitor of NF-κBα (IκBα). Then, dimerized

IRF3 and the activated canonical NF-κB p50/p65 complex can be translocated into the nucleus as transcription factors to promote transcription of type-I IFN.

(D) Autophagy initiation and degradation. STING activation on ER triggers ER stress and mechanistic target of rapamycin complex1 (mTORC1) dysfunction. ER

stress and mTORC1 dysfunction can stimulate the Unc-51 like autophagy activating kinase (ULK1) complex and beclin1-phosphatidylinositol 3-kinase catalytic

subunit type 3 (PI3KC3) complex. Autophagy-related protein 9 (ATG9) and light chain 3 (LC3) are associated with genesis and elongation of the autophagosome.

After autophagy initiation, cGAS-STING is ubiquitinated and binds with p62. Then, they are packaged into autophagosomes and terminally sorted to lysosomes (Bold

arrows represent main signaling pathways, thinner arrows represent regulatory signaling pathways, and dashed arrows represent bypass or suspicious pathways).

ssDNA, and start DNA-repair responses at stalled replication
forks (48). Depletion of SAMHD1 leads to the cleaving of nascent

ssDNA by the activity of MRE11 endonuclease and cytosolic

translocation of gDNA (48). Deficiency of any of these nucleases

can lead to accumulation of self-DNA in the cytoplasm, thereby
activating the cGAS-STING pathway against DNA molecules
(30) (Figure 2A).

cGAMP CAN TRANSFER BETWEEN
CELLS AND ACTIVATE STING

The production of asymmetrically linked 2′,3′-cGAMP catalyzed
by cGAS has the highest affinity for STING to promotes STING
dimerization (49, 50). cGAMP as a second messenger can be also
transferred among cells in several ways to pass danger signaling of
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cytosolic DNA. Intercellular gap junction consists of two docking
hexamer channels formed by different connexins, which allows
many small molecules, including cGAMP, to pass bi-directionally
through cells. And intercellular transfer of cGAMP through
gap junction is largely dependent on connexin 43 (51–53).
Additionally, cGAMP can be packaged into virons and pre-notify
newly infected cells (54, 55). Cell fusion is a distinct manner for
intracellular transmission of the human immunodeficiency virus
(HIV); cGAMP also enter membrane-fused bystander cells in this
way (56). Extracellular vesicles such as exosomes can contain
cGAMP along with viral DNA, host gDNA or mtDNA, and
mediate cells communication (57, 58). There were no evidences
that cGAMP could be pumped out to extracellular space by
a channel/transporter. However, it was found that SLC19A1
can transmit cyclic dinucleotides (CDNs) into cell plasma (59,
60). Notably, ectonucleotide pyrophosphatase/phosphodiesterase
family member 1 (ENPP-1) can degrade extracellular cGAMP
(61) (Figure 2B). Besides triggering STING, these exogenous
cGAMP can directly bind to cGAS and prompt its activation as
well (62).

After binding to cGAMP, the “lid” region of the STING dimer
undergoes a conformational change that converts STING from
an inactive “open” formation to an active “closed” formation.
Following that, the STING dimer translocates from the ER
to perinuclear ER-Golgi intermediate compartment (ERGIC)
vesicles, finally arriving at the Golgi to form punctuate structures
with downstream molecules (2, 63). ER-retention of STING
caused by mutations results in reduced IFN signaling (64,
65). The translocon-associated protein β (TRAPβ) recruited by
inactive rhomboid protein 2 (iRhom2) initially forms the TRAP
translocon complex that mediates STING exit from the ER
(2, 66). They both assist cytoplasmic coat protein complex-II
(COPII) to drive ER-vesicle formation and carry the STING
complex to the Golgi (67, 68).

Trafficking STING can bind directly to and be phosphorylated
by TANK binding kinase 1 (TBK1) dimer or IκB kinase (IKK)
complex (3, 69, 70). The C-terminal tail (CTT) of STING is
a linear unfolded segment, which determines the optimization
of combination specificity. STING CTT in mammals tends to
bind TBK1, whereas in fish it tends to activate nuclear factor-
kappaB (NF-κB) signal (71). The STING phosphorylation site
Ser366 in the CTT cannot reach the kinase-domain active site
of its directly bound TBK1, instead can reach the kinase-domain
active site of the next adjacent TBK1 binding with another
STING and be phosphorylated, while TBK1 phosphorylate
each other (72, 73). Hence, STING and TBK1 can aggregate
on the Golgi to form the STING signalosome. Clustering
STING undergoes palmitoylation and full activation (74). It is
also possible for STING-IKK to cluster and form the STING
signalosome in this manner. The STING-TBK1/IKK signalosome
produces a scaffold to phosphorylate interferon regulatory
factor 3 (IRF3) or inhibitor of NF-κBα (IκBα). Activated IRF3
undergo dimerization (70). The activation of IκBα leads to its
polyubiquitination and degradation by the proteosome, thereby
eliminating its inhibition of NF-κB. There is also evidence
suggesting that NF-κB activation might not require STING
trafficking from the ER (75). Then, the dimerized IRF3 or

activated NF-κB p50/p65 (p65 is also known as RelA) complex
are translocated into the nucleus as transcription factors and
bind to the promoter of type-I IFN to aid the transcription of
type-I IFN (2, 3, 70). Meanwhile, activation of NF-κB p52/RelB
can prevent recruitment of p65 and inhibit the p50/p65 signal
(76) (Figure 2C).

STING DOWNSTREAM SIGNALING
PROMOTES IFNα/β EXPRESSION AND
AUTOPHAGY

Expressed type-I IFN can propagate among cells in paracrine
or autocrine manners. The binding of IFNα/β with its receptor
triggers janus kinase (JAK) and signal transducer and activator
of transcription (STAT) pathways, then induce transcription of
type-I IFN-stimulated genes (ISGs), which have IFN-sensitive
response elements (ISREs) in their 5′-untranslated regions
(UTRs) (77). IRF3 can also bind partially to several ISREs
alone (78). Herein, the expression of some ISGs including
interferon-induced protein with tetratricopeptide repeats (IFIT)
and pro-inflammatory cytokines such as tumor necrosis factor
α (TNFα), interleukin (IL)-6, C-X-C motif chemokine ligand
10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5)
is increased remarkably by the cGAS-STING pathway (79).
Furthermore, cGAS and STING are both ISGs, suggesting a
positive feedback loop in spreading of the IFN signal (80, 81).

Stimulator of interferon genes activation on the ER also
triggers an ER stress response with an “unfolded protein
response (UPR) motif ” on the C-terminus of STING, which
leads to and ER stress-mediated autophagy (82, 83). STING-
TBK1 activation and ER stress also induce mechanistic target
of rapamycin complex 1 (mTORC1) dysfunction (84). ER stress
or reduced mTORC1 signaling activates Unc-51-likeautophagy
activating kinase (ULK1) complex and the Beclin-1-class III
phosphatylinositol 3-kinase (PI3KC3 also known as VPS34)
complex, which promotes initiation of the classical autophagy
path (85). cGAS can also interact directly with the autophagy
protein beclin-1-PI3KC3 complex and trigger autophagy (86).
Furthermore, cGAS-dsDNA polymer can form a liquid-phase
condensate (as mentioned above), which could theoretically
be an initiator of autophagy (87). After autophagy initiation,
autophagy-related protein 9 (ATG9) undertakes the genesis of
the autophagosome along with light chain3 (LC3) undergoing
lipidation, thereby resulting in elongation of the autophagosome
(88). LC3 can also be recruited directly by ERGIC-loading STING
and bypass the classical autophagy pathway (68, 89).

cGAS-STING-mediated autophagy can spread to the whole
cell and help the elimination of intracellular microorganisms,
subcellular organelles or misfolded proteins, as well as the ER
itself that loads the STING signalosome (90–92) (Figure 2D).
cGAS-STING-mediated autophagy is also indispensable
for removing cytosolic DNA and inflammatory signaling
factors to restrict the inflammatory response raised by the
pathway itself (93). Excessive signaling of the autophagy
cascade can lead to irreversible apoptosis termed “autophagic
cell death” (94). Consequently, oligomerized cGAS or
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STING undergoes ubiquitination and is packaged into
autophagosomes with the help of p62, to be terminally
sorted into lysosomes (79, 83, 95, 96). cGAS or STING
is digested immediately in the autophagolysosome after
transient activation of downstream signaling (68, 79, 83,
89). Autophagy functions as a negative feedback loop
which ensures transient cGAS-STING signaling and avoids
consistent over-reaction of the pathway. Thus, impairment
of autophagy may give rise to destructive inflammatory
diseases (31).

REGULATION OF THE cGAS-STING
PATHWAY

We cataloged factors in the literature that could potentially
up- or down-regulate expression of cGAS/cGAMP/STING in
pre-translational or post-translational stages (Tables 1, 2). The
regulatory mechanisms of TBK1, IRF, and NF-κB in signaling

pathways associated with expression of type-I IFN are outside the
scope of this review.

CROSS-REGULATION OF THE
cGAS-STING PATHWAY WITH OTHER
DNA-SENSING PATHWAYS

PYHIN family member absent in melanoma 2 (AIM2) is a
cytoplasmic dsDNA sensor. It can recruit apoptosis-associated
speck-like protein containing a CARD (ASC) by its PYHIN
domain and form the AIM2 inflammasome. The inflammasome
activates caspase-1, which activates IL-1 and trigger pyroptosis
(97). The AIM2 pathway could counteract the cGAS-STING
pathway (98). First, cGAS is a target for caspase-1 cleavage
(99). Second, gasdermin D activated by caspase-1 can lead to
potassium ion (K+) effluxwhich inhibits cGAS (100). Conversely,
the cGAS-STING pathway can trigger the AIM2 inflammasome
or NLR family pyrin domain containing 3 (NLRP3) by several

TABLE 1 | Factors promoting cGAS-STING pathway.

Functions Factors Targets Mechanisms References

E3 ubiquitination TRIM56 cGAS Monoubiquitination at K335 (277)

STING K63-linked polyubiquitination at K150 (278)

RNF185 cGAS K27-linked polyubiquitination at K173/384 (279)

RNF26 STING K11-linked polyubiquitination at K150 (280)

AMFR INSIG1 STING K27-linked polyubiquitination at K137/150/224/236 (281)

MUL1 STING K63-linked ubiquitination of K224 (75)

Deubiquitination USP14 cGAS Cleaving K48-linked polyubiquitin chain at K414 (282)

USP21 STING Cleaving K27/63-linked polyubiquitin chain (283)

USP20 STING Cleaving K27/63-linked polyubiquitin chain (284)

CYLD STING Cleaving K48-linked polyubiquitination (285)

EIF3S5 STING Cleaving K48-linked polyubiquitination (66)

E3 SUMOylation TRIM38 cGAS Sumoylating at K231/479 to prevent polyubiquitination (286)

STING Sumoylating of STING at K338 to prevent polyubiquitination

De-SUMOylation SENP7 cGAS Cleaving SUMO on the K335/372/382 (287)

Directly interacting G3BP1 cGAS Supporting formation of large cGAS complexes (288)

zinc ion cGAS Promoting cGAS liquid phase condensation (22)

ZCCHC3 cGAS Enhancing the binding of cGAS to dsDNA (289)

Manganese ion cGAS Enhancing the binding of cGAS to dsDNA (290)

STING Enhancing cGAMP-STING binding affinity

TMEM203 STING Promoting activation (291)

ZDHHC1 STING Promoting dimerization (292)

TMED2 or TMED10 STING Promoting recruitment of STING into the COPII Complex for trafficking (67)

IFIT3 STING- TBK1 Promoting STING-TBK1 binding (293)

S6K1 STING- TBK1 Forming of a tripartite S6K1-STING-TBK1 (294)

GSK3b STING-TBK1 Promoting TBK1 autophosphorylation at Ser172 and promoting its binding to STING (295, 296)

Processing

body-associated

protein

LSm14A STING Processing STING nuclear mRNA precursor and maintaining mRNA level (297)

TRIM, tripartite motif-containing; UBXNs, ubiquitin regulatory X domain-containing proteins; RNF, RING finger domain; AMFR, autocrine motility factor receptor; INSIG1,

insulin-induced gene 1; MUL1, mitochondrial E3 ubiquitin protein ligase 1; USP, ubiquitin-specific protease; CYLD, cylindromatosis; EIF3S5, eukaryotic translation initiation

factor 3S5; iRhom2, inactive rhomboid protein 2; SUMO, small Ubiquitin-like Modifier; SENP7, sentrin/SUMO-specific protease 7; G3BP1, activating protein SH3 domain–

binding protein 1; ZCCHC3, CCHC-type zinc-finger protein 3; TMEM, transmembrane protein; TMED, transmembrane p24 trafficking protein 1; TRAPβ, translocon-

associated protein β; IFIT3, interferon-induced protein with tetratricopeptide repeats 3; S6K1, ribosomal protein S6 kinase 1; mTOR, mechanistic target of rapamycin;

GSK3b, glycogen synthasekinase 3b; CREB, c-AMP-response element binding protein.
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TABLE 2 | Factors inhibiting cGAS-STING pathway.

Functions Factors Targets Mechanisms References

E3 ubiquitination TRIM29 STING K48-linked ubiquitination at K370 (298)

TRIM30α STING K48-linked ubiquitination at K275 (299)

RNF5 STING K48-linked ubiquitination at K150 (300)

Deubiquitinating USP13 STING K27-linked deubiquitination at ? (301)

Desumoylation Senp2 cGAS Desumoylating at K231/479 allowing K48-linked ubiquitination (286)

STING Desumoylating at K338 allowing K48-linked ubiquitination

Directly interacting Cia-cGAS cGAS A circular RNA harboring a stronger affinity than dsDNA (135)

OASL cGAS Ubiquitin-like domain inhibiting cGAS enzymatic activation (302, 303)

AKT1 cGAS Phosphorylating the S291/S305 of the enzymatic domain (245)

STING- TBK1 Directly phosphorylating TBK1 preventing the TBK1–STING association (244)

RECON STING/NF-κB Competitively binding with CDNs (304)

STIM1 STING Retaining STING in the ER membrane without activation (305)

Nitro-fatty acids STING Nitro-alkylation inhibiting palmitoylation (306)

NLRC3 STING/TBK1 Blocking STING-TBK1 interaction (307)

PPM1A STING/TBK1 Dephosphorylating (308)

PTPN1/2 STING Dephosphorylating at Y245 (309)

NLRX1 STING- TBK1 Blocking STING-TBK1 interacting (310, 311)

SOX2 STING Promoting autophagy-dependent degradation (312)

MicroRNA miRNA25/93 cGAS Inhibiting expression of NCOA3 which promotes transcription (313)

transcription factor Nrf2 STING Decreasing mRNA stability (314)

Histone H3K4

lysine demethylase

KDM5 STING Suppressing the expression (315)

Phosphodiesterase ENPP1 cGAMP Hydrolyzing cGAMP (61)

Senp2, sentrin/SUMO-specific protease 7; TRIM, tripartite motif-containing; RNF5, RING finger domain; USP, ubiquitin-specificprotease; OASL, 2′-5′-oligoadenylate

synthase; mTORC2, mechanistic target of rapamycin complex 2; DDX58, DExD/H-box helicase 58; STIM1, stromal interaction molecule 1; NLRC3, NOD-like receptor

family CARD domain containing; PPM1A, protein phosphatase 1A; PTPN, protein tyrosine phosphatases non-receptor type; NLRX1, NLR family member X1; SOX2,

SRY-box 2; Nrf2, nuclear factor (erythroid-derived 2)-like 2; KDM5, lysine-specific demethylase 5; ENPP1, ectonucleotide pyrophosphatase/phosphodiesterase family

member 1; NCOA 3, nuclear receptor co-activator 3; TLR, Toll-like receptors.

means, and the process lags behind canonical IFN signaling (96,
101). In this way, the inhibitory nucleic-acid sensor NLR family
CARD domain containing 3 (NLRC3) can counteract STING by
binding and occupying it, but viral DNA as a possible NLRC3
ligand can reverse its occupation of STING (102) (Figure 3A).

Another PYHIN family member, IFI16, is a DNA sensor
located in the nucleus. IFI16 can bind to viral DNA sequences or
damaged chromatin DNA and be translocated to the cytoplasm to
recruit STING cooperatively with TNF receptor associated factor
6 (TRAF6) and p53 (103, 104). Several studies have shown that
IFI16 (which can stimulate the phosphorylation and recruitment
of STING and TBK1) is required for the full response of STING
(105, 106) (Figure 3B). Conversely, cGAS can partially enter
the nucleus and interact with IFI16 to promote its stability
(107). Therefore, it is inferred that during viral infection, IFI16
can facilitate recognition of decapsidated viral DNA in the
nucleus, while cGAS in the cytoplasm engages with viral gene
transcription products (104, 108). However, STING signaling
can trigger IFI16 degradation by tripartite motif-containing 21
(TRIM21) ubiquitination (109).

TLR is also an important PRR for multiple PAMPs
(110). TIR domain-containing adaptor-inducing IFNβ (TRIF)
is downstream of several subtypes of TLRs (including TLR3).
TRIF may be responsible for interacting with STING and helping
the dimerization of STING (111). During viral infection, the

TLR9-myeloid differentiation primary response 88 (MYd88)-
IRF3/7 pathway is necessary for mouse monocytes recruitment
to lymph nodes, whereas the STING pathway is necessary
for local production of type-I IFN (112). However, STING
signaling can induce suppressor of cytokine signaling1 (SOCS1)
expression, which can negatively regulate MyD88 activity
(113) (Figure 3C).

cGAS-STING PATHWAY IN CELL
SURVIVAL

Oxidized mtDNA can be released into the cytoplasm during
cell stress elicited by hypoxia, viral infection and mitochondrial
damage, etc.; oxidized mtDNA is resistant to degradation
by the cytosolic nuclease TREX1 (114). In addition, mtDNA
accompanied with TFAM (a mtDNA-binding protein that can
bend mtDNA) is also a reasonable target for recognition
by cGAS (21, 33). However, during regulated cell death (as
represented by apoptosis), it undergoes mtDNA release but
has certain mechanisms to ensure a minimal cGAS-STING-
mediated immune response. Mitochondrial outer membrane
permeabilization (MOMP) activation, which is executed by BCL-
2-associated X protein (BAX) and BCL-2 antagonist or killer
(BAK), is a highly controlled conserved process in regulated cell
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FIGURE 3 | Interaction of the cGAS-STING pathway with other DNA-sensing pathways and its role in cell survival. (A) Absent in melanoma2 (AIM2) pathway and

pyroptosis and necroptosis. AIM2 can be triggered by cGAMP and form an inflammasome, consequently triggering interleukin (IL)-1 production and pyroptosis.

Stimulator of interferon genes (STING) trafficking to the lysosome ruptures the lysosome membrane, resulting in K+ efflux and activation of the NLRP3

inflammasome, leading to pyroptosis. Cyclic-GMP-AMP synthase (cGAS) and interferon regulatory factor 3 (IRF3) can be a target for caspase-1 cleaving. Gasdermin

D can lead to K+ efflux and inhibition of cGAS. (B) Interferon gamma inducible protein 16 (IFI16). IFI16 can be transported to the cytoplasm to help to recruit STING

and TANK binding kinase 1 (TBK1). IFI16 as a PYHIN family protein may form the inflammasome only in theory. (C) Toll-like receptor (TLR) pathway. TIR

domain-containing adaptor-inducing IFNβ (TRIF) may be responsible for helping the dimerization of STING. STING signaling can induce suppressor of cytokine

signaling 1 (SOCS1) expression, which negatively regulates MyD88 activity. (D) Apoptosis. Mitochondrial outer membrane permeabilization (MOMP) formed by

BAX/BAK induced by mitochondrial stress can release oxidized mitochondrial DNA (mtDNA) and cytochrome c into the cytosol. Oxidized mtDNA is a suitable ligand

for cGAS recognition and is resistant to DNaseIII (TREX1) degradation. Cytochrome c binds to apoptotic protease-activating factor 1 (APAF1) and initiates the

formation of an apoptosome cooperatively with caspase-9 to activate caspase-3, which can induce apoptosis. Caspase-3 can cleave cGAS.

death. BAK and BAX activated by apoptosis signals cooperatively
form a pore-like conformation on the mitochondrial outer
membrane, leading to a permeability change of outer and also
inner membranes (115, 116). Consequently, the mitochondrial
matrix, including cytochrome C and oxidized mtDNA-TFAM,
is released into the cytoplasm (115, 117). Cytochrome C binds
to apoptotic protease-activating factor 1 (APAF1) and initiates
the formation of the apoptosome cooperatively with caspase-
9, which further triggers the intrinsic apoptosis program (117).
In vivo and in vitro studies have shown that an absence of

caspase-9 is associated with greater release of type-I IFN (43,
117). This occurs because caspase-9 and its downstream caspase-
3 can cleave cGAS and IRF3 to restrain deleterious inflammation
(118) (Figure 3D).

The cGAS-STING pathway can also initiate programmed
cell death. Activation of STING enhances phosphorylation
and activation of receptor interacting serine/threonine kinase
3 (RIP3) and mixed lineage kinase domain-like pseudokinase
(MLKL). Proapoptotic BCL2 binding component 3 (PUMA),
a member of BH3-only family, is subsequently activated in
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a RIP3/MLKL-dependent manner, which promotes leakage of
mtDNA by MOMP (119, 120). Activated IRF3 can bind directly
to BAX to form IRF3/BAX complex and induce apoptosis
(47). Excessive cGAS-STING-mediated autophagy signaling
can cause “autophagic cell death” and prevent malignant
transformation of cells through DNA damage (94, 121). STING
trafficking to the lysosome can broaden permeabilization of
the lysosome membrane, thereby rupturing the lysosome
and releasing its contents, resulting in “lysosomal cell death
(LCD)”. LCD further triggers K+ efflux and NLRP3 activation,
ultimately resulting in pyroptosis (96, 101) (Figure 3D).
Moreover, stimulating STING-dependent type-I IFN and TNFα
signals simultaneously can lead to necroptosis of tumor
cells (122, 123).

cGAS-STING PATHWAY IN CELL
SENESCENCE

Cell senescence is recognized as a permanent arrest of the
cell cycle, and is common in aging, immunity, ontogenesis
and infectious defense (124). It lacks a specific biomarker
but can be identified by the expression of several anti-
proliferative molecules (representatively Rb-p16 andp53-p21
pathway) (125). During senescence, changes in the nuclear
structure and loss of the nuclear lamina protein disrupt the
integrity of the nuclear envelope, leading ultimately to DNA
damage and cytoplasmic chromatin fragments (126). Cellular
senescence can be accelerated by accumulation of cytoplasmic
chromatin in turn (127). These senescent cells produce the
senescence-associated secretory phenotype (SASP), which shapes
an inflammatory microenvironment (128). The cGAS-STING
pathway has been reported to be involved in the recognition
of cytoplasmic chromatin fragments from senescence-related
DNA damage, and mediate the expression of SASP genes (129–
132). Along with these actions, the expression of TREX1 and
DNaseII is inhibited by DNA damage through the inhibition
of E2F/DP (a potential transcription factor of TREX1 and
DNaseII) (130).

For hematopoietic stem cells (HSCs), DNA damage can
promote excessive secretion of type-I IFN in the HSC niche
and activate p53 pathway, both of which can lead to long-term
senescence and exhaustion of HSCs (133, 134). HSCs expressing
a circular RNA named “cia-cGAS” in the nucleus, however, are
protected from this exhaustion as a result of cia-cGAS having
stronger affinity than that of self-DNA, which prevents it from
being sensed (135). It implied a novel target to manipulate the
immune environment in bone marrow and help for finding
treatment approaches for hematopoiesis-based diseases, such as
aplastic anemia. Utilizing cellular senescence to restrain tumor
growth is discussed below.

cGAS-STING PATHWAY IN INFECTION

cGAS-STING signaling has an essential role in defense against
a broad spectrum of intracellular DNA and RNA viruses (9, 26,

50). HIV is a typical RNA retrovirus: there is neither dsDNA in
its genome, nor production of nucleic acids (50). Nevertheless,
cGAS can detect the presence of HIV. RNA:DNA hybrids
synthesized during reverse transcription that can be sensed by
cGAS explain (at least in part) this phenomenon (14). cGAS may
be triggered by endogenous DNA broken and released during
HIV infection as well theoretically. However, some studies found
the new mechanisms. The early reverse-transcription production
of HIV-1 can flank short stem loops with paired base, which
lead to the production of Y-type DNA containing unpaired
guanosines that can activate cGAS well (15). Moreover, nucleolus
protein non-POU domain-containing octamer-binding protein
(NONO), as a sensor of capsid components of HIV, can help
cGAS to be translocated to the nucleus and assist cGAS to
sense HIV DNA accompanied by polyglutamine-binding protein
1 (PQBP1) (136, 137). The assistance proffered by NONO in
assisting cGAS to sense DNA is also associated with its role
in constructing a ribonuclear complex with DNA-dependent
protein kinase (DNA-PK) subunits around hexamethylene bis-
acetamide-inducible protein1 (HEXIM1), termed as “HEXIM1-
DNA-PK - paraspeckle components-ribonuclear protein complex
(HDP-RNP),” which also has a role in repair of DNA damage
and transduction of genotoxic signals (138). This complex is
also required to accompany cGAS-PQBP1 in sensing DNA
virus, such as Kaposi’s sarcoma-associated herpes virus (139). In
addition, during virus infection, STING activation can lead to
global suppression of translation in cells, which restricts viral
replication (140).

Compared with HIV-1, HIV-2 is less infective because it can
infect dendritic cells (DCs) and elicit an anti-virus immune
response. As a result, HIV-2 can cross-protect against HIV-
1 (141). This phenomenon has been attributed to the fact
that HIV-2 (instead of HIV-1) can encode protein Vpx, which
overcomes the SAMHD1 restriction of dNTP in DCs (46, 142).
HIV-1 can infect DCs via Vpx presentation, nevertheless, HIV-
1 still cannot be fully sensed and induce an efficient immune
response owing to certain escape mechanisms. Whether it is
HIV-1 or HIV-2, a completely robust IFN response is required
at pre- and post-integration sensing stages (143). cGAS in DCs
can detect reverse-transcribed cDNA of HIV-2 before and after
integration, whereas HIV-1 sensing is after genome integration
owing to its capsid protection (144, 145). It was suggested that
during initial infection by HIV-1, nucleotides are recruited into
the intact capsid through the hexamer pores on the HIV-1
capsid. Therefore, the capsid-coated HIV-1 virus prevents the
encapsidated reverse-transcription production from being sensed
by the cytosolic nucleic-acid sensors (146). HIV-1 capsids can
be ubiquitinated and then degraded by the host E3 ubiquitin
ligase function of TRIM5, which leads to detection of viral DNA,
meanwhile HIV-1 could use some host protein like cyclophilins
to evade the sensing (147, 148) (Figure 2A).

Similarly, other viruses also have evasion mechanisms to
escape cGAS-STING pathway surveillance (Table 3). Therefore,
identifying and preventing such viral-evasion factors could be a
viable means to design novel anti-viral drugs.

cGAS-STING pathway is responsible to protect against
intracellular or extracellular bacterial infection (especially
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TABLE 3 | Virus productions associated with evasion from cGAS-STING pathway.

Virus Proteins Targets Functions References

HSV-1 UL41 cGAS Selectively degrading cGAS mRNA (316)

VP22 cGAS Blocking cGAS enzymatic activity (317)

UL37 cGAS Deamidation (318)

UL46 STING NA (319)

γ1 34. 5 Protein STING Blocking translocation of STING (320)

CMV UL31 cGAS Disassociating DNA from cGAS (321)

UL83 cGAS Inhibiting cGAMP producing (322)

UL48 STING Cleaving K63-linked ubiquitin of STING (323)

UL82 STING Disrupting the STING-iRhom2-TRAPβ translocation complex (324)

m152 STING Blocking STING trafficking to Golgi (325)

US9 STING Disrupting STING oligomerization (326)

KSHV ORF52 cGAS Inhibiting cGAS enzymatic activity and interfering interaction between the HDP-RNP

and cGAS

(139, 327)

LANA cGAS Blocking cGAS enzymatic activity (328)

vIRF1 STING Blocking TBK1–STING interaction (329)

Coronavirus PLPro STING Inducing an incomplete autophagy and degration of STING and blocking

STING-TRAF3-TBK1 complex formation and ubiquitination of STING

(330)

Poxvirus F17 cGAS Disrupting mTOR pathway to promote cGAS degradationa and blocking STING

trafficking

(331)

STING Disrupting mTOR pathway to block STING trafficking

Poxins cGAMP Hydrolyzing cGAMP (332)

Zika virus NS1 cGAS Cleaving K11-linked polyubiquitin chains from caspase-1 to promote the cleaving of

cGAS

(333)

NS2B3 STING Promoting degration of STING (334)

Dengue virus NS2B cGAS Promoting autophagy-dependent cGAS degradation (335)

HPV E7 STING Inhibiting STING with LXCXE motif (336)

adenovirus E1A STING Inhibiting STING with LXCXE motif (336)

Influenza A virus FP STING Blocking STING dimerization (337)

HCV NS4B STING Blocking interaction between STING and TBK1 (338, 339)

HBV Pol STING Decreasing K63-linked polyubiquitination of STING (340)

HIV vpx STING- NF-κB Selectively suppressing STING-mediated NF-κB signaling (341)

HSV, herpes simplex virus; CMV, cytomegalovirus; iRhom2, inactive rhomboid protein 2; TRAPβ, translocon-associated protein β; KSHV, kaposi’s sarcoma-associated

herpes virus; HDP-RNP, HEXIM1-DNA-PK-paraspecklecomponents-ribonuclear protein complex; LANA, latency-associated nuclear antigen; vIRF1, viral interferon

regulatory factor 1; PLPro, papain-like protease; LC3, light chain3; mTOR, mechanistic target of rapamycin; TRAF3, TNF receptor associated factor 3; HCV, hepatitis c

virus; HPV, human papilloma virus; HBV, hepatitis B virus; HIV, human immunodeficiency virus; NF-κB, nuclear factor-κ B.

intracellular infections). CDNs (e.g., c-dGMP, c-dAMP, and
cGAMP) produced by bacteria are essential for the regulation
of bacterial function, such as biofilm formation, colonization,
and reproduction (149, 150). As ligands for STING, CDNs
can bind directly to and activate STING independently of
cGAS, which contributes to several immune responses from
bacteria (151). Usually, bacteria can enter or be engulfed
by the cell through the endophagosome and be sequestered
from the cytosolic sense receptor. Some bacteria, such as
Mycobacterium tuberculosis (Mtb), can survive in vacuoles,
resulting in an insufficient cellular immune response to defend
against it (152). In contrast, the ESX-1 secretion system of the
mycobacterium can translocate the phagosomal vacuolar matrix
including bacterial genome molecules into the cytoplasm and
trigger the cGAS-sensing pathway (153). For other bacteria,
such as Legionella pneumophila or and Brucella abortus, the
host guanylate binding proteins (GBPs) facilitate rupture of
phagosome vacuoles and are indispensable for controlling
their infection (154, 155). Autophagy signaling mediated by

cGAS/STING is also involved in microorganism clearance
mentioned above (90, 91).

Bacteria have evolved strategies to confront this pathway too.
Bacterial phosphodiesterase CdnP produced by Mtb or group-
B streptococci can degrade CDNs (156, 157). CpsA (a type
of Mtb LytR-CpsA-Psr domain-containing protein) can prevent
autophagy responses for eliminating pathogens (90). Chlamydia
trachomatis inclusion membrane proteins can maintain the
stability of the inclusion membrane and avoid inclusion lysis
(leading to pathogen antigens leaking out and being detected
by the host cell) (158, 159). Yersinia outer protein J (YopJ)
deubiquitinates STING and impedes the formation of the STING
signalosome (160). The cGAS-STING pathway activation even
impedes the elimination of Listeria monocytogenes because
bacterial DNA can be packaged into EVs and transferred into T
cells, where it induces apoptosis of T cells (161, 162).

Several protozoans, such as Toxoplasma gondii and malaria
parasites, have an intracellular period in their lifecycle.
T. gondii could engage cGAS-STING exclusively (163).
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However, IRF3 activation inducing ISG expression promotes
T. gondii development independently of IFN expression (163).
P. falciparum can target erythrocytes, lacking a nucleus and
unable produce IFN, but infected erythrocytes can secrete EVs
containing parasitic gDNA to monocytes and trigger cGAS (164).

cGAS-STING PATHWAY IN
AUTOIMMUNE OR INFLAMMATORY
DISEASES

The immune system is regulated by a complicated network.
Disorder of immune signaling can elicit non-infectious
inflammatory or autoimmune diseases. Excessive, uncontrolled
production of type-I IFN can lead to a spectrum of inflammation
diseases termed “type-I interferonopathies,” which have some
common manifestations (165). cGAS-STING is the one of main
sources of type-I IFN, acts as a cellular immune-sensing signaling
axis, and is involved in type-I interferonopathies.

Stimulator of interferon genes -associated vasculopathy with
onset in infancy (SAVI) is a typical STING-related hereditary
inflammatory type-I interferonopathy, and is manifested
by interstitial lung disease, dermatomyositis and arthritis.
Its pathology is featured by leukocytoclastic vasculitis and
microthrombotic angiopathy of small dermal vessels (166,
167) and patients can also suffer from lymphopenia (166–169).
The etiology of SAVI is a gain of function (GOF) mutant in
STING which leads to constitutive STING activation without
CDNs stimulation (166). Currently, several mutant amino
acids residues have been found in or close to the dimerization
domain (V155M, N154S, G166E, V147L, and V147M) (64, 166,
168, 170), as well as R284G, R284S, R281Q, and C206Y in the
cGAMP-binding domain (171).

Other types of type-I interferonopathies, such as systemic
lupus erythematosus (SLE) and Aicardi–Goutières syndrome
(AGS), have relationships with defective clearance of cytosolic
nucleic acids caused by congenital dysfunction of TREX1,
RNASEH2, and SAMHD1. SLE is a heterogeneous autoimmune
disease which has prominent type-I and also -II IFN signatures
(172). AGS comprises some systemic autoimmune syndromes
overlapping with SLE, and can be classified as a “lupus-
like disease” (173). Additionally, AGS also causes severe
developmental neurological disorders, including cerebral
calcifications, encephalopathy and cerebral atrophy.

Systemic lupus erythematosus is a representative model for
elucidating the mechanism of type-I interferonopathies. In SLE,
the level of self-DNA which is packaged into apoptosis-derived
membrane vesicles along with the level of anti-dsDNA antibody
is increased in the serum of patients (174). A study revealed
increasing levels of ISGs (including cGAS/STING) as well as the
cGAMP-detected ratio in peripheral-blood mononuclear cells of
SLE patients (175). As innate immune cells, DCs have essential
roles in antigen presentation, cytokine secretion, and priming
the adaptive response of immune cells (176). Plasmacytoid DCs
(pDCs) can internalize and recognize self-DNA and they are
the main source of type-I IFN in serum during SLE (177).
IFNα/β is essential for complete function of immature pDCs

(178). IFNα/β and IL-1 can induce mitochondrial oxidative
stress in DCs and decrease ATP production, which blocks
proton-pump function and increases pH of lysosomes. This
process inhibits mitochondrial degradation and blocks mtDNA
clearance, which engages the cGAS-STING pathway (31, 179).
Moreover, monocytes may sense mtDNA through cGAS-STING
and differentiate into DCs (31, 180). Neutrophil extracellular
traps (NETs) are complexes released by neutrophils exposed
to stimuli or autoantibody immune complexes. NETs comprise
extracellularly released chromatin, myeloperoxidase enzymes,
and also oxidized mtDNA. In lupus-like diseases, NETs can be
induced by IFNα/β and may play a major part in priming pDCs
(181, 182). All mechanisms stated above contribute to a more
aggravated type-IIFN response and exacerbate disease. A similar
phenomenon can be observed in SAVI, ataxia telangiectasia
(AT) and Artemis deficiency (183). However, compared with
SAVI, DCs in SLE can prime T-cell maturation significantly
and increasing secretion of pro-inflammatory cytokines, such
as IL-6 and TNFα can also lead to activation of adaptive
immunity (Figure 4A).

The cGAS-STING pathway can mediate systemic
inflammation as well as autoimmune activation. However,
it is also involved in the local inflammation of multiple tissues.
With regard to ischemic myocardial infarction (MI), cardiac
macrophages can sense dying ruptured cells and lead to fatal
post-MI cardiac inflammation, which is reversed by ablation of
cGAS/STING/IRF3 (184, 185). In a non-alcoholic steatohepatitis
(NASH) model induced by a methionine- and choline-deficient
or high-fat diet, lipotoxicity can cause mitochondrial damage
and up-regulate STING/IRF3 expression in hepatocytes, which
in turn promotes lipid accumulation and inhibits glycogen
synthesis. All above bring out hepatic inflammation and
hepatocytes apoptosis (186). In this model, mice with deficiency
of STING presents alleviated insulin resistance and lower
levels of low-density lipoprotein in serum, and also decreased
hepatic inflammation and fibrosis/steatosis, in which hepatic
macrophages/kupffer cells may take a big part (187, 188).
Lipotoxicity can induce p62 to be phosphorylated through the
cGAS-STING-TBK1 pathway, which causes aggravated protein
inclusions in hepatocytes and it indicates that p62 could be
a biomarker for NASH prognosis (189). mtDNA-dependent
inflammation induced by lipotoxicity also occurs in adipose
tissue and endothelial cells of blood vessels, which contributes
to tissue inflammation, insulin resistance, and cardiovascular
diseases (42, 190). In traumatic brain injury (TBI), local injury
initiates breakdown of the blood–brain barrier and global
neuroinflammation (191). STING expression is up-regulated in
TBI and can lead to increased expression of pro-inflammatory
cytokines and enlargement of secondary injury (192). Reduced
autophagy-associated protein expression induced by STINGmay
contribute to the dysfunction of autophagy and dampen the
elimination of necrotic tissue, thereby intensifying inflammation
(192). During silicosis, silica can yield cytosolic dsDNA release
and engage cGAS-STING, which activates DCs and macrophages
to cause severe lung inflammation. It also leads to death of
epithelial cells through the NLRP3 pathway and pulmonary
fibrosis (193). Similarly, mtDNA release in renal tubule cells has
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been found to be associated with acute kidney injury by cytotoxic
drugs and chronic renal fibrosis (194, 195).

Neurodegenerative diseases are correlated with local
inflammation (196). In the central nervous system (CNS),
microglia is considered to be the main source of cGAS-
STING-dependent IFN expression (197). In neurodegenerative
diseases, levels of the marker of microglia activation-cluster of
differentiation 68 (CD68), and pro-inflammatory cytokines are
increased (198). A significant feature of Parkinson’s disease (PD)
is the neuronal loss of cerebral nuclei (especially dopaminergic
neurons in the substantianigra). Serine/threonine-protein kinase
PINK1 and E3 ubiquitin-protein ligase parkin are ubiquitin-
related factors that take part in removing damaged mitochondria
by autophagy, and their dysfunction lead to the early onset of
PD (199). Parkin−/− and PINK1−/− mice, following exhaustive
exercise, show inflammation and loss of dopaminergic neurons,
which can be rescued by loss of STING (200). Similarly, AT is a
genetic disease caused by missense mutation of a DNA-repair

protein: ATM. AT patients usually show neurodegenerative
defects (especially ataxia) complicated with telangiectasia on
their eyes or body, deficiency of adaptive immune cells, and
predisposition to cancer (201). Nevertheless, up-regulation
of expression of type-I IFN can also be found in AT patients
and mice, causing them to be prone to autoimmune diseases
(36, 183, 202). This syndrome is related to p53-mediated
senescence but also the chronic inflammation mediated by the
cGAS-STING pathway which engages cytosolic uncombined
broken gDNA caused by ATM dysfunction (127). In addition,
accumulation of cellular mtDNA occurs in age-related macular
degeneration characterized by retinal pigmented epithelium
(RPE) degeneration. This can trigger chronic inflammation
by cGAS-STING pathway, in which NLRP3 inflammasomes,
inflammatory/apoptotic caspases are also involved (203, 204).

With regard to other diseases in which adaptive immune cells
prime, cGAS-STING has a different role. Multiple sclerosis (MS)
is a local inflammatory disease of CNS. MS is characterized
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by over-reactive microglia, infiltration of self-reactive T cells,
demyelization of nerve fibers and hyperplasia of gliocytes.
Autoantibodies against proteins expressed in immune-privileged
regions of CNS also contribute to its pathogenesis (205). In MS,
IFNα/β can attenuate disease severity effectively. This implies a
protective role for type-I IFN in CNS, which is considered to
counteract the pro-inflammatory IFNγ (206). Using experimental
autoimmune encephalitis (EAE) as a MS model, STING was
found to be indispensable for amelioration of type-I IFN-
mediated neuroinflammation, and it could be induced by a
conventional anti-viral drug ganciclovir (207). Ultraviolet (UV)
radiation is a factor inversely related to themorbidity ofMS (208).
It was found that UV-B irradiation can recruit inflammatory
monocytes and produce type-I IFN in a STING-dependent
manner (209). All above indicate that cGAS-STING-IFNα/β
pathway may have a beneficial effect on some CNS inflammatory
diseases such as MS.

A possible reason for the observed effect above is due
to indoleamine 2,3-dioxygenase (IDO), which can catabolize
tryptophan (Trp) oxidatively. Trp withdrawal or Trpoxidative
catabolites can interact with general control non-derepressible 2
(GCN2) and mTOR, of which both can control cellular amino-
acid metabolism and suppress T helper 1 (Th1) cells immunity
(210). IFNα/β is a potent IDO inducer to suppress proliferation
of CD4+ Th1 cells and promote differentiation of Foxp3+

regulatory T (Treg) cells, which are believed to suppress CNS-
specific autoimmunity (210, 211). In addition, DNA released
from dying cells can be internalized directly by T cells and
sensed by cGAS-STING pathway, which leads to enhancement of
the Th2 transcription factor GATA3 but suppression of the Th1
transcription factor T-bet. Consequently, this process polarizes
naive T cells toward Th2 differentiation (212). Studies mentioned
above may (at least in part) explain why the cGAS-STING signal
is a negative regulator of MS.

The inhibitory role of cGAS-STING in inflammation is also
attributed to its apoptosis-triggering role. In some subtypes of
SAVI and mouse models, apoptosis of blood-vessel endothelial
cells or bronchial epithelial cells and leucopenia can be observed
(especially T-cell lymphopenia) (166, 169, 170).When the STING
signal is stimulated, apoptosis occurs more frequently in normal
or cancerous T cells (119). Also, bone-marrow chimeras and
gene-knockout studies have shown that T cells defect in SAVI
are not associated with type-I IFN signaling or cGAS (213, 214).
Localization of STING at the Golgi can cause delay of T-cell
mitosis and reduced proliferation independently of IRF3 and
TBK1 (215). Furthermore, a “UPR motif” on the C-terminus
of STING can cause ER stress and UPR, resulting in Ca2+

overloading and T-cell death (82). A controversial view is that
B cells express STING variously and may undergo apoptosis
through this way (166, 216, 217). However, simultaneous
signaling by STING and the B-cell antigen receptor can promote
B-cell activation and antibody production independently of type-
I IFN (217) (Figure 4B).

As for some diseases with inflammatory responses involved,
the acute phase of pancreatitis causes dying acinar cells to
produce free dsDNA, which activates cGAS-STING signaling
in macrophages, and exacerbates inflammation severity (218).

However, in the chronic phase of pancreatitis, cGAS-STING
activation decreases pancreatic inflammation, which may be
mediated by limiting Th17 response (219). For gut mucosal
immunity, transient stimulation of STING could strengthen the
function of antigen-presenting cells (APCs) and promote Th1
and Th17 immune responses against microbes (220). Chronic
STING signaling, however, elicits an IL-10 response to control
the inflammation and avoids inflammatory enterocolitis such
as bowel disease (221). STING knockout mice present reduced
numbers of goblet cells, a decreased ratio of commensal versus
harmful bacteria and compromised Treg cells in the gut, making
it prone to enterocolitis (222).

cGAS-STING PATHWAY IN CANCER

Chromosomal instability (CIN) is an intrinsic feature of
cancer, and results spontaneously from errors in chromosome
segregation during the mitosis of cancer cells. CIN can also
be induced manually by radiotherapy or chemotherapy, which
causes DSBs. It results in micronuclei formation outside the
nucleus, of which rupture brings out irrepressible accumulation
of cytosolic self-DNA and engages cGAS (32, 38, 223). However,
normal mitotic processes involve exposure of chromosomal
DNA to the cytoplasm, but this cannot initiate a substantial
inflammatory reaction or apoptosis because nucleosomes can
suppress dsDNA-cGAS binding in a competitive manner (41).

An appropriate immune response against tumors via a type-
I IFN plays an indispensable part in limiting tumors and
prolonging host survival (224). It was found STING-deficient
mice are prone to developing several types of cancer and
have poor survival under a tumor burden, whereas stimulation
of STING can elicit robust immunity to tumors (225–227).
Amechanism ismany cancer cells expressing cGAS can recognize
cytosolic DNA and produce cGAMP to stimulate secretion of
type-I IFN through STING (228, 229). Excessive expression of
TREX1 in cancer cells, which can be induced by radiotherapy,
attenuates this progression (228). cGAS-STING can also promote
senescence of cancer cells through the p53-p21 pathway (129).
cGAS-STING-mediated autophagy contributes to autophagic cell
death if mitotic crisis occurs to avoid transformation of cancer
cells (121). Melanoma cells can also transfer cGAMP produced by
them to proximal non-cancerous host cells through gap-junction
channels and activate STING in these cells, which contributes
to the recruitment of tumor-infiltrating immune cells such as
natural killer (NK) cells (51, 230). Expression of the NK cell-
specific ligand NKG2D retinoic acid early transcript 1 (RAE1)
on cancer cells is highly up-regulated by STING once NK cells
permeate into tumor tissue (231). The activation of STING in the
endothelium within the tumor microenvironment (TME) could
contribute to the remodeling of tumor vasculatures, and may
have positive effects on tumor regression (232).

Dendritic Cells are the main source of type-I IFN in several
types of TMEs and are dependent on STING signaling (229).
More preferentially than macrophages, infiltrating DCs take
up tumor-derived DNA or cGAMP from dying cell fragments
by phagocytosis (27, 29, 129, 226, 233). Moreover, cancer
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cells can package DNA into exosomes and transfer DNA to
DCs (234). Produced cGAMP by cancer cells can also be
transferred to DCs through forming gap junction (53). By
activating cGAS-STING signal in DCs, CD8α+ subtype DCs
secret chemokines such as CCL5 and CXCL10 and cross-
prime infiltrating anti-tumor CD8+ T cells (29, 226, 235–
237). In contrast, numbers of immune-suppressing cells such
as Treg cells, myeloid-derived suppressor monocytes and M2
macrophages have been reported to be decreased (225, 238, 239).
Expression of IL-15/IL-15Rα complex is up-regulated in myeloid
cells with the help of STING/type-I IFN and promotes tumor
regression (240).

Tumor cells can evade intrinsic cellular surveillance in
different ways. In various cancer cell lines, cGAS, STING, TBK1,
and IRF3 are mutated frequently and their decreased expressions
are also related to the high level of methylation (241). STING
expression has been shown to be suppressed by the alternative
lengthening of telomeres (ALT) pathway, which is responsible for
prolonging the telomere length andmaintaining the proliferation
of tumor cells (242). A hypoxic environment in tumor cells can
lead to accumulation of lactic acid and is associated with the
inhibition of tumor-conditional DCs and reduced expression
of IFN signaling molecules (243). In breast cancer, functional
up-regulation of expression of human epidermal growth factor
receptor 2 (HER2), a ligand-independent receptor tyrosine kinase
(RTK), can arrest the expression of RAC-alpha serine/threonine-
protein kinase (AKT1) (a key factor in the mTOR pathway),
which is reported to inhibit the activation of cGAS and
TBK1 (244, 245).

Patients with lung adenocarcinoma have a low probability
of survival if they have reduced expression of cGAS (132).
Thus, expression of the cGAS-STING and DNA-damage
marker histone γH2AX in tumor cells could be considered as
independent prognostic factors to predict therapy response and
clinical outcome, and could be superior to that of traditional
markers like immunogenic cell death and T cells number (246).

However, some scholars have arrived at opposite conclusions.
When DSBs occur in cancer cells, cGAS can be relocated to
the nucleus and obstruct the formation of the PARP1-Timeless
complex, thereby inhibiting homologous recombination
repair and maintaining CIN, which potentiates tumor
evolution (35, 223). It has also been reported that cGAS
recognizing CIN activates non-canonical NF-κB signaling and
potentiates cellular metastasis programs (247). Furthermore,
STING−/− mice are resistant to skin carcinogenesis in a
7,12-dimethylbenz(a)anthracene (DMBA)-treatment model.
It has been demonstrated that when DMBA-induced
nuclear DNA leaks into the cytoplasm, STING can induce
chronic inflammatory stimulation that contributes to cancer
development (248). During brain metastasis, cGAMP transferred
to bystander cells (e.g., astrocytes) can also produce IFNα

and TNFα in the TME but, in this context, it will support
tumor development and chemoresistance (249). Coordinating
with myeloid cells penetrating into the tumor, myeloid-
derived suppressor cells can also be recruited through the C-C
chemokine receptor type 2 (CCR2) (250). Another study found
that microparticles yielded by tumor cells can turn macrophages

into the M2 type through cGAS-STING-TBK1, contrary to
previous findings (251).

Immune-system interactions with tumor cells are
complicated. The effect of cGAS-STING on cancer is dependent
on the type of tumor, host immune state, activated cell types,
therapeutic intervention, and the magnitude of cGAS-STING
activation. Like inflammation generated by cGAS-STING, a
time-dependent inflammatory anti-tumor response mediated by
cGAS-STING may be present. Temporary activation of cGAS-
STING in innate immune cells could enhance the anti-tumor
effect, whereas sustained activation of cGAS-STING might
induce immune tolerance of the tumor. More investigations
are necessary to ascertain the exact role of cGAS-STING in
oncology, and elucidate the specific advantages and adverse
effects of targeting the cGAS-STING pathway in cancer
therapy (Figure 5).

TARGETING THE cGAS-STING PATHWAY
FOR TREATMENT

Considering the pivotal role of the cGAS-STING pathway in
infection, inflammation and cancer, positive modulation of the
pathway signaling is a promising way to enhance the immune
state and restrict microorganisms or heterogeneous cells, whereas
negative modulation can control aberrant inflammation.

Radiotherapy or chemotherapy drugs such as cisplatin
or cyclophosphamide can induce DSBs and micronuclei,
then trigger the cGAS-STING pathway to enhance tumor
immunogenicity (252–254). In addition, PARP inhibitors such
as olaparib have promising effects on cancer cells lacking
BRCA2 because of their cooperative DNA-repair functions
(253). Although cGAS activation is inhibited by nucleosomes,
taxol can induce mitotic cell-cycle arrest and sustain divided
chromatin in the cytosol to activate the cGAS-STING pathway
slowly, and accumulation of signaling could stimulate apoptosis
of cancer cells (41). Inhibitors of topoisomerase 1 or 2 used
conventionally as chemotherapy drugs trigger minor damage to
DNA and accumulation of cytosolic DNA, which can engage
cGAS and enhance the anti-tumor or anti-infection responses of
cells (255–257).

cGAS-STING is essential on anti-tumor immune checkpoints
therapies. For example, blockade of CD47-signal regulatory
protein α (SIRPα) signaling on DCs can activate NADPH oxidase
2 (NOX2) and increase the pH in phagosomes along with
incomplete degradation of mtDNA, which can trigger cGAS-
STING (129). STING deficiency in mice abrogates the anti-tumor
effect of CD47 blockade (258). A similar phenomenon also
can be seen in anti-programmed cell death-1 (PD-1) therapy
(259). There is greater infiltration of IFNγ+ cells and CD8+

T cells and PD-1/PD-1 ligand 1 (PD-L1) expression in TME
treated by STING-ligand derivatives (260). Therefore, in several
types of tumors, combined administration of a STING agonist
and immune-checkpoint antibody could elicit a more curative
outcome compared with one therapy alone (238, 261).

Viruses can infect cells lacking cGAS-STING more effectively,
and have higher oncolytic activity compared with virus
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therapy alone. Hence, the use of oncolytic viruses such as
talimogene laherparepvec is beneficial for treating tumors
with low expression of cGAS/STING. STING expression can
be regarded as a prognostic measurement for such therapy
(262).

Some artificial analog molecules of CDNs, such as 5,6-
dimethylxanthenone-4-acetic acid (DMXAA) and 10-carboxy-
methyl-9 (10H) acridone (CMA) can bind the CDN pocket
of mouse-specific STING dimers and promote conformational
transition of STING from inactive “open” to an active
“closed” state (263, 264). DMXAA showed convincing efficacy
in restraining tumors in mice (265). However, DMXAA is
restricted in activating mouse-specific STING but not human-
specific STING, which could be an explanation for the
failure of DMXAA in treating 1299 non-small-cell lung cancer
patients in a phase-III clinical trial (NCT00662597) (266).
Nonetheless, with three substitutions (G230I, Q266I, and S162A),
human STING can also be induced by DMXAA to undergo
conformational transition (264). Another new compound,
amidobenzimidazole, has been found to be an agonist of

STING without lid closure and has potential therapeutic value
(267).

Cyclic dinucleotides and their derivates that can stimulate
STING directly are candidate adjuvants to restrain tumors.
Intratumoral administration of c-dAMP, c-dGMP, or cGAMP
analogs alone or combined with other adjuvants or tumor
antigens have shown anti-tumor effects (259, 268); phase-
I or II clinical trials (NCT02675439, NCT03172936, and
NCT03937141) of dithio-(RP,RP)-c-dAMP (known as ADU-
S100) are ongoing (261). To avoid the degradation and ensure
maximal phagocyte internalization of CDNs, endosomolytic
nanoparticles have been designed to package and deliver
CDNs. For example, pH-sensitive nanoparticles (e.g., STING-
nanoparticles) can release their contents if located in acidic
endosomal environments (269).

For treatment of type-I interferonopathies, lessons can be
taken from the treatment of canonical autoimmune disease such
as SLE, but there are several differences. For example, it was
found that corticosteroid pulse therapy, γ-immunoglobulins,
disease-modifying anti-rheumatic drugs, anti-CD20, and some
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immunosuppressants (e.g., methotrexate) have limited efficacy
against SAVI (166, 171). JAK inhibitors such as ruxolitinib,
tofacitinib and baricitinib that reduce type-I IFN downstream
signaling have shown therapeutic value against SAVI, but
further verification of their efficacy is needed (270). Moreover,
novel immune therapies, such as anti-IFNα and anti-IFNAR
immunoglobin, are in clinical trials for SLE. These could also be
tested against SAVI in the future (165).

Pharmaceutically screening has revealed that some anti-
malaria drugs, such as suramin, have an inhibitory effect on cGAS
by blockade of interaction between DNA and cGAS (271). In
addition, novel small molecules such as RU320521 or G150 can
occupy the enzymatic pocket of species-specific cGAS to abrogate
cGAMP synthesis (272, 273). Recently, a study found that aspirin
can acetylate cGAS at three lysine residues and block cGAS
activity (274). With regard to STING, the cyclopeptide Astin C
can block IRF3 recruitment onto the STING signalosome (275).
The molecule H-151 can block the palmitoylation of human-
STING (276). All of these agents are potential candidates for
alleviating type-I interferonopathies.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The cGAS-STING pathway is primarily responsible for the
modulation of immune response in cells when facing cytosolic
dsDNA challenge. Moreover, it is complicatedly cross-regulated
by other cellular processes or cellular signaling networks. The
exact fundamental mechanism of the pathway in cells and the
effect on the whole organism in specific states is not completely
clear and requires further investigation.

In conclusion, the cGAS-STING pathway has dichotomous
roles in the immune system. In general, cGAS-STING-type-I IFN
signaling can promote the innate immune response in myeloid
cells but alleviate the adaptive immune response exerted by T
cells and B cells. cGAS shows high expression in APCs such as
macrophages and DCs, but STING is expressed in most cells (10).
cGAS-STING signaling corresponding to cytoplasmic dsDNA
in APCs can boost innate and adaptive immunity transiently.
In this situation, the DNA challenge signal is limited to only
macrophages and DCs. Their pro-inflammatory and antigen-
presenting functions to adaptive immune cells are promoted
in the short-term. If the signal spreads to other bystander
cells, such as T cells, B cells, local resident cells by means of
cGAMP transfer, or just aberrant STING activation by GOF, it
causes apoptosis in bystander cells or adaptive immune cells and
immune tolerance in the long-term. Therefore, it is reasonable
to conclude that the intrinsic function of the cGAS-STING

pathway is essential for the innate immune system responses
of the host immediately after pathogen invasion or abnormal
cell appearing. Once the challenge persists, the cGAS-STING
pathway controls the adaptive immune system to avoid chronic,
detrimental inflammatory reactions or autoimmune diseases.

The inflammatory response exists universally in almost all
physiologic and pathologic progressions. cGAS-STING is pivotal
in modulating cellular inflammation, so it is promising to extend
our conception of the cGAS-STING pathway onto more diseases
with inflammatory responses involved, especially CNS-based
diseases such as stroke, in which the inflammatory reaction exists
but was recognized less.

Moreover, for targeting the cGAS-STING pathway for
therapeutic purposes, drugs should be optimized to augment the
desirable effect and prevent its unwanted effects. For example,
to eliminate tumor cells or infectious agents, agonists of cGAS-
STING would be a rational option if designed to target APCs
exclusively but not T cells or B cells. In this scheme, the anti-
tumor immune response is enhanced while avoiding apoptosis
of adaptive immune cells and infiltration of immune suppressor
cells. Also, most research on the cGAS-STING pathway has
focused on its IFN-expressing role but overlooked autophagy
and cell-death roles, which are also main downstream signaling
of the pathway. Therefore, some drugs, such as emricasan, are
potential apoptosis inhibitors that may have a complementary
effect on ameliorating apoptosis of blood-vessel endothelial cells
or bronchial epithelial cells, and lymphopenia, in SAVI.

Until now, studies of the cGAS-STING pathway have been
done mainly in the laboratory but it has large space to be
explored in clinical or translational fields. Additionally More
PRRs and cellular immune-surveillance pathways may remain to
be discovered to piece together the molecular puzzles of the cell.
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