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This paper reviews most of the recent research done in the field of dynamic stability/ dynamic instability/ 

parametric excitation /parametric resonance characteristics of structures with special attention to parametric 

excitation of plate and shell structures. The solution of dynamic stability problems involves derivation of the 

equation of motion, discretization and determination of dynamic instability regions of the structures. The 

purpose of this study is to review most of the recent research on dynamic stability in terms of the geometry 

(plates, cylindrical, spherical and conical shells), type of loading (uniaxial uniform, patch, point loading ….), 

boundary conditions (SSSS, SCSC, CCCC ….),  method of analysis (exact, finite strip, finite difference, finite 

element, differential quadrature and experimental ….), the method of determination of dynamic instability 

regions (Lyapunovian, perturbation and Floquet’s methods ), order of theory being applied (thin, thick, 3D, non-

linear….), shell theory used (Sanders’, Love’s and Donnell’s),  materials of structures (homogeneous, 

bimodulus, composite, FGM….) and the various complicating effects such as geometrical discontinuity, elastic 

support, added mass, fluid structure interactions, non-conservative loading and twisting etc. The important 

effects on dynamic stability of structures under periodic loading have been identified and influences of various 

important parameters are discussed. Review on the subject for non-conservative systems in detail will be 

presented in Part-2. 
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1. INTRODUCTION 

Plate and shell structures are extensively used in civil, mechanical and aerospace applications. Structural 

elements subjected to in-plane periodic forces may undergo unstable transverse vibrations, leading to parametric 

resonance, due to certain combinations of the values of load parameters and natural frequency of transverse 

vibration. Since the excitations when they are time dependent appear as parameters in the governing equations, 

these excitations are called parametric excitations. This instability may occur below the critical load of the 

structure under compressive loads over a range or ranges of excitation frequencies. Several means of combating 

parametric resonance such as damping and vibration isolation may be inadequate and sometimes dangerous with 

reverse results. A number of catastrophic incidents can be traced to parametric resonance. In contrast to the 

principal resonance, the parametric instability may arise not merely at single excitation frequency but even for 

small excitation amplitudes and combination of frequencies. Thus the dynamic stability characteristics are of 

great technical importance for understanding the dynamic systems under periodic loads. In structural mechanics, 

dynamic stability has received considerable attention over the years and encompasses many classes of problems. 

The distinction between ‘good’ and ‘bad’ vibration regimes of a structure, subjected to in-plane periodic loading 

can be distinguished through a simple analysis of dynamic instability region (DIR) spectra. 

Dynamic instability was first observed by Faraday [1] in 1831. He observed that the liquid (wine) in a cylinder 

(wineglass) oscillated with half of the frequency of the exciting force movement of moist fingers around the 

glass edge.  Rayleigh [2] gave the first mathematical explanation of the phenomenon in 1883.  The general 

theory of dynamic stability of elastic systems of deriving the coupled differential equation of the Mathiew-Hill 

type and the determination of the regions of instability by seeking periodic solution using Fourier series 

expansion, was explained by Bolotin [3]. An extensive bibliography of the earlier works on parametric response 

of structures was presented by Evan-Iwanowski [4] in 1965. The survey of the theory of parametric vibration 

along with current and stochastic problems was given by Ibrahim [5] in review articles. The various phenomena 

under the heading of dynamic stability, with similarity and differences between them was discussed in detail by 

Simitses [6] through 1987. He pointed out that parametric resonance characteristics are one of the best defined 

class of “dynamic stability” problems. Dynamic stability of structures was also discussed briefly by Nayfeh and 

Mook [7]. The present study mostly deals with recent investigations on dynamic stability of plates and shells 

after 1987 along with several early papers, which were inadvertently omitted, in the previous reviews. 
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This paper reviews the literature focusing on different aspects of research. The method of solution of dynamic 

stability class of problems involves first to reduce the equations of motion to a system of Mathieu-Hill equations 

having periodic coefficients and the parametric resonance characteristics are studied from the solution of the 

equations, that are obtained from different methods of solution. These methods may be grouped, with respect to 

their origins, into three main categories as Bolotin’s approach using Floquet’s theory, multiscale perturbation 

analysis and Lyapunovian exponents. In these analysis, the geometry, loading of the structural components as 

well as its boundary conditions play a major role in the choice of the methods of solution. The other aspects of 

research are the method of analysis. Dynamic stability of structures has been observed experimentally and 

analytically. The emergence of the digital computers with their enormous computing speed and core memory 

capacity has changed the outlook of the structural analysts and caused the evolution of various numerical 

methods such as finite strip method, finite difference method, method of multiple scales, finite element method 

(FEM), generalized differential quadrature method (GDQM) etc. Parametric excitation of plate and shell 

structures under periodic loads is investigated by classical thin plate theory, first order shear deformation theory 

(FSDT) considering shear deformation and using higher order shear deformation theory (HSDT). Dynamic 

instability studies are carried out on structures with homogeneous, transversely isotropic, bimodulus and 

orthotropic materials. Studies on parametric resonance characteristics of structures with cross-ply, angle-ply and 

sandwich configurations have also been conducted.  

Most of the dynamic stability studies in literature are carried out on structures subjected to uniaxial uniform in-

plane compressive periodic loads. However, studies have also been carried out on structures subjected to in-

plane edge biaxial loads, patch loads, concentrated loads, random loads and even tensile loads. Plates and shells 

simply supported on four sides (SSSS) were considered by many investigators. Dynamic instability of structures 

under other boundary conditions such as clamped, elastic foundation, and multiple supports are also considered. 

Parametric excitation behaviour of plates of different geometry such as rectangular, annular, skew, polygonal, 

circular and isotropic stiffened plates has been studied in the literature. The parametric resonance characteristics 

of cylindrical, spherical, conical, elliptic and hyperbolic paraboloidal shells have been investigated.  

Complicating effects like geometrical discontinuity, plates supported on elastic foundations, optimization, visco-

elasticity, twisting and non-linear theory have also been considered. The researchers have also investigated the 

problems involving combination resonance and the effect of longitudinal resonance on parametric excitation. 
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2. GENERAL THEORIES INVOLVING DYNAMIC STABILITY: 

The basic configuration of the problem presented here is a laminated composite doubly curved panel with cutout 

subjected to in-plane periodic concentrated edge loading as shown in Fig.1. The choice of the laminated doubly 

curved panel geometry has been made as a basic configuration so that depending on the value of curvature 

parameter, plate, cylindrical panels and different doubly curved panels including twist can be considered as 

special cases. Specific problems can be explained from the general theory by proper choice of geometry, load, 

material and other parameters. 

2.1 Governing differential equations 

The governing differential equations, given by Bert and Birman [8] for dynamic stability of orthotropic   

cylindrical shells, modified for the parametric excitation of laminated composite shear deformable doubly curved 

panels, can be expressed as : 
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Where N  and N 0  are the external loading in the X and Y directions respectively. The constants R0
x y x, Ry, and Rxy 

identify the radii of curvature in the X and Y directions and the radius of twist respectively. Nx, Ny, and Nxy are 

the internal membrane forces, Qx   and Qy are the shearing forces and Mx, My and Mxy are the moment resultants. 

C1   and C2 are tracers by which the analysis can be carried out by shear deformable version of the theories of 

Sanders’[9], Love’s [10] and Donnell’s [11] shallow shell theories. If C1 = C2=1, the equation corresponds to 

Sanders’ theory. For the case, C1=1 and C2=0, the equation reduces to Love’s theory. For C1= C2=0, the equation 

corresponds to Donnell’s shallow shell theory. 
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The equation of motion for vibration of a laminated composite doubly curved panel with cutout as shown in 

Figure 1, subjected to in-plane periodic loads can be expressed in the form:  

0}]]{[][[}]{[ =−+ qKPKqM ge&&                                                                  (2) 

Where q is the vector of degrees of freedoms (u, v, w, θx, θy). 

The in-plane load P is periodic and can be expressed in the form: 

tPPtP ts Ω+= cos)(                                                                                    (3) 

where  is the static portion of load P(t).  is the amplitude and   Ω  is the frequency of the dynamic portion 

of P(t). The static elastic buckling load of the shell P

sP tP

cr may be considered as the measure of the magnitudes of Ps 

and Pt such that: 

crs PP α=  ,  crt PP β=                                                                                     (4) 

Where α and β are the static and dynamic load factors respectively. 

 

Fig. 1 Geometry of  laminated composite doubly curved panel with cutout under periodic load 

 

Using  Eq. (4), the equation of motion in matrix form is obtained as: 

0}]{cos][][][[}]{[ =Ω−−+ qtKPKPKqM gcrgcre βα&&                                    (5) 

Eq. (5) represents a system of second order differential equations with periodic coefficients of the  Mathieu-Hill 

type. The boundaries of the dynamic instability regions are formed by the periodic solutions of period T and 2T, 
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where T=2 π/Ω. The boundaries of the primary instability regions with period 2T are of practical importance [3] 

and the solution can be achieved in the form of the trigonometric series 
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Putting this in Eq.(5) and if only first term of the series is considered, equating coefficients of sin Ωt/2 and  

cos Ωt/2 , the equation (5) reduces to  
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Eq.(7) represents an eigenvalue problem for known values of α, β and . The two conditions under a plus and 

minus sign correspond to two boundaries of the dynamic instability region (DIR). The eigenvalues are Ω, which 

give the boundary frequencies of the instability regions for given values of α and β. In this analysis, the 

computed static buckling load of the panel may be considered as the reference load for numerical computations 

crP

 

2.2 Constitutive relations 

The basic doubly curved laminated shell is considered to be composed of composite material laminate (typically 

thin layers). The material of each lamina consists of parallel continuous fibers embedded in a matrix material. 

Each layer may be regarded as on a microscopic scale as being homogenous and orthotropic. The stress 

resultants are related to the mid-plane strains and curvatures for a laminated shell element as: 
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The extensional, bending-stretching coupling and bending stiffnesses are expressed as  
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The transverse shear stiffness is expressed as : 
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Where κ is the transverse shear correction factor and ijQ  terms are the conventional off axis stiffness values, 

which depend on the material constants, and ply orientations. 

 

2.3 Strain displacement relations 

Green-Lagrange’s strain displacement relations are presented in general throughout the structural analysis. The 

linear part of the strain is used to derive the elastic stiffness matrix and the non-linear part of the strain is used to 

derive the geometric stiffness matrix. The total strain is given by 

{ } { } { }nll ε+ε=ε                                      (12) 

The linear strain displacement relations are 
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The non-linear strain components are as follows: 
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3. DYNAMIC STABILITY OF PLATES 

General theories involving dynamic stability presented in section 2 can be appropriately recast to study the 

instability behaviour of both isotropic and composite plates.  

3.1 Isotropic Plates 

The dynamic stability of plates under periodic in-plane loads was considered first by Einaudi [12] in 1936. A 

comprehensive review of early developments in the parametric instability of structural elements including plates 

was presented in the review articles [4-7]. Simons and Leissa [13] explained the stability behaviour of 

homogeneous plates subjected to in-plane acceleration loads. Yamaki and Nagai [14] treated rectangular plates 

under in-plane periodic compression. The dynamic stability of clamped annular plates is studied theoretically by 

Tani and Nakamura [15] using the Galerkin procedure. It was found that principal resonance was of most 

practical importance, but that of combination resonance cannot be neglected when the static compressive force 

was applied. Dixon and Wright [16] studied experimentally the parametric instability behaviour of flat plates by 

normal or shear periodic in-plane forces. Oscillating tensile in-plane load at the far end causing parametric 

instability effects around the free edge of the cutout is an interesting phenomenon in structural instability. 

Carlson [17] conducted experiments on the parametric response characteristics of a tensioned sheet with a crack 
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like opening. Cutouts, cracks and other kinds of discontinuities are inevitable in structures due to practical 

considerations. Datta [18] investigated experimentally the buckling behaviour and parametric resonance 

behaviour of tensioned plates with circular and elliptical openings. Datta [19] later studied the parametric 

instability of tensioned panels with central openings and edge slot. The parametric resonance experiments for 

different opening parameters indicate that the dynamic instability effects are more significant for narrow 

openings than for wider openings.  The studies on the dynamic stability of plates by Ostiguy et al. [20] showed 

good agreement between theory and experiment. The emergence of digital computers caused the evolution of 

various numerical methods besides analytical and experimental procedures. Hutt and Salam [21] used the finite 

element method for the dynamic stability analysis of homogeneous plates using a thin plate 4-noded finite 

element model. Extensive results were presented on dynamic stability of rectangular plates subjected to various 

types of uniform loads with/without consideration of damping. Prabhakara and Datta [22] explained the 

parametric instability characteristics of rectangular plates  subjected to in-plane periodic load using finite 

element method, considering shear deformation. Plates and shells are seldom subjected to uniform loading at the 

edges. Cases of practical interest arise when the in-plane stresses are caused by localized or any arbitrary in-

plane forces. Deolasi and Datta [23] studied the parametric instability characteristics of rectangular plates 

subjected to localized tension and compression edge loading using Bolotin’s approach. The effect of damping on 

dynamic stability of plates subjected to non-uniform in-plane loads was investigated by Deolasi and Datta [24] 

using the Method of Multiple Scales (MMS). They further extended the work [25] to explain the combination 

resonance characteristics of rectangular plates subjected to non-uniform loading with damping. It was observed 

that under localized edge loading, combination resonance zones were important as simple resonance zones and 

the effects of damping on the combination resonances may be destabilizing under certain conditions.  Deolasi 

and Datta [26] verified experimentally the parametric response of plates under tensile loading.  

Floquet’s theory was used by most of the investigators [21-23] to study the dynamic stability of plates. The 

regions of dynamic instability regions were determined by Bolotin’s method. Aboudi et al. [27] studied the 

instability of viscoelastic plates subjected to periodic loads on the basis of Lyapunov exponents. The viscoelastic 

behaviour of the plate was given in terms of the Boltzmann superposition principle, allowing any viscoelastic 

character. Square and rectangular plates were the subject of research for many investigators [21-25, 28]. Shen 

and Mote [29] discussed the parametric excitation of circular plates subjected to a rotating spring.  The analytical 
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works on dynamic stability analysis of annular plates [15] got new direction with the use of finite element 

method.  Chen et al. [30] investigated the parametric excitation of thick annular plates subjected to periodic 

uniform radial loading along the outer edge, using higher order plate theory and axi-symmetric finite element. 

The dynamic stability of annular plates of variable thickness was studied by Mermertas and Belek [31]. The 

Mindlin plate finite element model was used to handle both the thin and thick annular plates.  Young et al. [32] 

presented results on the dynamic stability of skew plates acted upon simultaneously by an aerodynamic force in a 

chordwise direction and a random in-plane force in spanwise direction. The dynamic instability of simply 

supported thick polygonal plates was analyzed by Baldinger et al. [33] and the corresponding stability regions of 

the first and second order are calculated, considering shear and rotatory inertia.  Structures consisting of plates 

are often attached with stiffening ribs for achieving greater strength with relatively less material. Srivastava et al. 

[34] investigated the parametric instability of stiffened plates using the 9-node isoparametric plate element and 

stiffener element. The results showed that location, size and number of stiffeners have a significant effect on the 

location of the boundaries of the principal instability regions. As far as loading is concerned, many studies 

involved dynamic stability of plates subjected to uniform [21, 28] in-plane periodic loading. The dynamic 

stability of plates subjected to partial edge loading and concentrated in-plane compressive edge loading was 

considered by Deolasi and Datta [23-25]. Srivastava et al. [35-36] investigated the dynamic stability of stiffened 

plates subjected to non-uniform in-plane periodic loading. Takahashi and Konishi [37] analyzed the parametric 

resonance as well as combination resonance of rectangular plates subjected to in-plane dynamic force. Takahashi 

and Konishi [38] further investigated the dynamic stability of rectangular plates subjected to in-plane moments. 

Langley [39] examined the response of two-dimensional periodic structures to point harmonic loading. The study  

has extensive application to all types of two-dimensional periodic structures including stiffened plates and shells 

and it raises the possibility of designing a periodic structure  to act as a spatial filter to isolate sensitive 

equipment from a localized excitation source. Young et al. [32] studied the parametric excitation of  plates 

subjected to aerodynamic and random in-plane forces.  The numerical studies involving dynamic stability 

behaviour of plates with openings are relatively complex due to non-uniform in-plane load distribution and are 

relatively new. Prabhakara and Datta [40] investigated the parametric instability behaviour of plates with 

centrally located cutouts subjected to tension or compression in-plane edge loading. Srivastava et al. [41] 

analyzed the dynamic stability of stiffened plates with cutouts subjected to uniform in-plane periodic loading. 
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The study considered stiffened plates with holes possessing different boundary conditions, cutout parameters, 

aspect ratios neglecting the in-plane displacements. The interaction of forced and parametric resonance of 

imperfect rectangular plates was explained by Sassi et al. [42]. In this study, the temporal response and the phase 

diagram were used besides the frequency response and FFT curves to study the transition zones. The effect of 

one particular spatial mode of imperfection on a different mode of vibration was investigated for the first time.  

Cederbaum [43] through a finite element formulation studied the effect of in-plane inertia on the dynamic 

stability of non-linear plates. Ganapathi et al.[44] investigated the non-linear instability behaviour of isotropic as 

well as composite plates, subjected to periodic in-plane load through a finite element formulation. The analysis 

brought out the existence of beats, their dependency on the forcing frequency, the influence of initial conditions, 

load amplitude and the typical character of vibrations in different regions. Touati and Cederbaum [45] analyzed 

the dynamic stability of non-linear visco-elastic plates.  

3. 2 Complicating effects 

Most of the investigators considered the dynamic stability of plates on classical simply supported edges. Saha et 

al. [46] studied the dynamic stability of a rectangular plate on non-homogeneous Winkler foundation. The 

effects of stiffness and geometry of the foundation and aspect ratio on the stability boundaries of the plate for 

first and second order simple and combination resonance were investigated. Lee and Ng [47] presented results on 

the dynamic stability of plate on multiple line and point supports subjected to pulsating conservative in-plane 

loads. The effects of sinusoidal perturbations are examined by Bolotin’s method. The dynamic stability of 

electrically conducting beam-plates in transverse magnetic fields was considered by Lee [48], considering the 

concise theory of flexural vibration of magnetoelastic plates immersed in transverse magnetic fields. A 

variational formulation of optimization problems for mechanical elements including plates subjected to 

parametric excitation force, in-plane periodic loading was presented by Forys [49]. The examples of variational 

optimization against loss of stability were solved and analyzed in the state of parametric periodic resonance.  

Kim et al. [50] analyzed the parametric resonance of the sheet metal in a model of a plate subjected to time 

varying and non-uniform edge tension. Theoretical results for plate vibration were compared to experimental 

measurements of sheet metal vibration in a production facility. Datta and Deolasi [51] investigated the dynamic 

instability of plates subjected to partially distributed follower edge loading with damping. 
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3. 3 Composite Plates 

The increasing use of fibre-reinforced composite materials in automotive, marine and especially aerospace 

structures, has resulted in interest in problems involving dynamic instability of these structures. The effects of 

number of layers, ply lay-up, orientation and different types of materials introduce material couplings such as 

stretching-bending and twisting-bending couplings etc. All these factors interact in a complicated manner on the 

vibration frequency spectrum of the laminates affecting the dynamic instability region. The stability behaviour of 

laminates was essential for assessment of the structural failures and optimal design.  As per Evan-Iwanowski [4], 

the earliest works on dynamic stability of anisotropic plates were done by Ambartsumian and Khachaturian [52] 

in 1960. Considerable progress has been made since the survey [4-7] in this subject.  There is a renewed interest 

on the subject after Birman [53] studied analytically the dynamic stability of rectangular laminated plates, 

neglecting transverse shear deformation and rotary inertia. The effect of unsymmetrical lamination on the 

distribution of the instability regions was investigated in the above study. Mond and Cederbaum [54] analyzed 

the dynamic stability of antisymmetric angle ply and cross ply laminated plates within the classical lamination 

theory, using the method of multiple scales. It was observed that besides the principal instability regions, other 

cases could be of importance in some cases. Srinivasan and Chellapandi [55] analyzed thin laminated rectangular 

plates under uniaxial loading by the finite strip method. The transverse shear deformation and in-plane inertia as 

well as rotatory inertia were neglected and the region of parametric instability was derived using Bolotin’s 

procedure. Bert and Birman [56] investigated the effect of shear deformation on dynamic stability of simply 

supported anti-symmetric angle-ply rectangular plates neglecting in-plane and rotary inertia. The parametric 

studies on the effects of the number of layers, aspect ratio and thickness-to-edge length ratio were investigated. 

The dynamic instability of composite plates subjected to in-plane loads was investigated by Cederbaum [57] 

within the shear deformable lamination theory, using the method of multiple scales. Chen and Yang [58] 

investigated on the dynamic stability of thick anti-symmetric angle-ply laminated composite plates subjected to 

uniform compressive stress and/or bending stress using Galerkin's finite element. The thick plate model included 

the effects of transverse shear deformation and rotary inertia. The effects of number of layers, lamination angle, 

static load factor and boundary conditions were investigated. Moorthy et al. [59] considered the dynamic 

stability of uniformly uniaxially loaded laminated plates without static component of load and the instability 

regions were obtained using finite element method. Extensive results were presented on the effects of different 

 12



parameters on dynamic stability of angle-ply plates. Kwon [60] studied the dynamic instability of layered 

composite plates subjected to biaxial loading using a high order bending theory. Chattopadhyay and Radu [61] 

used the higher order shear deformation theory to investigate the dynamic instability of composite plates by 

using the finite element approach. The first two instability regions were determined for various loading 

conditions using both first and second order approximations. Pavlovic [62] investigated the dynamic stability of 

anti-symmetrically laminated angle-ply rectangular plates subjected to random excitation using Lyapunov direct 

method. Tylikowski [63] studied the dynamic stability of non-linear anti-symmetric cross-ply rectangular plates. 

The parametric results on biaxial loading were compared with those obtained by classical theory.  Cederbaum 

[64] has investigated on the dynamic stability of laminated plates with physical non-linearity. Librescu and 

Thangjitham [65] analyzed the dynamic stability of simply supported shear deformable composite plates along 

with a higher order geometrically non-linear theory for symmetrical laminated plates. Gilai and Aboudi [66] 

obtained results on the dynamic stability of non-linearly elastic composite plates using Lyapunov exponents. The 

non-linear elastic behaviour of the resin matrix was modelled by the generalized Ramberg-Osgood 

representation. The instability of laminated composite plates considering geometric non-linearity was also 

reported using C0 shear flexible QUAD-9 element by Balamurugan et al. [67]. The non-linear governing 

equations were solved using the direct iteration technique. The effect of a large amplitude on the dynamic 

instability was studied for a simply supported laminated composite plate. The non linear dynamic stability was 

also carried out using C1 eight-nodded element by Ganapathi et al.[68]. Numerical results were presented to 

study the influences of ply angle and lay-up of laminate. The parametric resonance characteristics of composite 

plates for different lamination schemes were also studied. Certain fiber reinforced materials, especially those 

with soft matrices exhibit quite different elastic behaviour depending upon whether the fiber direction strain is 

tensile or compressive. The dynamic stability of thick annular plates with such materials, called the bimodulus 

materials was studied by Chen and Chen [69]. The annular element with Lagrangian polynomials and 

trigonometric functions as shape function was developed. The non-axisymmetric modes were shown to have 

significant effects in the annular bimodulus plates. The dynamic stability of thick plates with such bimodulus 

materials were examined by Jzeng et al.[70]. The finite element method was used to investigate the stability of 

bimodulus rectangular plates subjected to periodic in-plane loads. The effects of shear deformation and rotatory 

inertia were considered using first order shear deformation theory. The dynamic stability of bimodulus thick 
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circular and annular plates was analyzed by Chen and Juang [71]. Chen and Hwang [72] studied the 

axisymmetric dynamic stability of orthotropic thick circular plates. Cederbaum [73] investigated on the dynamic 

stability of viscoelastic orthotropic plates. The stability boundaries were determined analytically by using the 

multiple scale method. Time dependent instability regions and minimum load parameter were derived together 

with an expression for the critical time at which the system, with a given load amplitude, would turn unstable. 

Cederbaum et al. [74] studied the dynamic instability of shear deformable viscoelastic laminated plates by 

Lyapunov exponents. Librescu and Chandiramani [75] analyzed the dynamic stability of transversely isotropic 

viscoelastic plates subjected to in-plane biaxial edge load system. The effects of transverse shear deformation, 

transverse normal stress and rotatory inertia effects are considered in this study. Sahu and Datta [76] have 

investigated the dynamic stability of composite plates subjected to non-uniform loads including patch and 

concentrated loads using finite element method. The dynamic stability of laminated composite stiffened 

plates/shells due to periodic in-plane forces at boundaries was discussed by Liao and Cheng [77]. The 3-D 

degenerated shell element and 3-D degenerated curved beam element were used to model plates/shells and 

stiffeners respectively. The method of multiple scales was used to analyze the dynamic instability regions. 

 3. 4 Complicating effects 

Most of the studies on parametric excitation are for structures without any geometrical discontinuity. However, 

delaminations are inevitable in composite structures due to practical considerations. Chattopadhyay et al. [78] 

investigated the instability associated with delaminated composite plates subjected to dynamic loads. Wang and 

Chen [79-80] explained the dynamic instability behaviour of non-rotating [79] and rotating [80]  sandwich 

circular plates using finite element method. It was observed that the effects of constraint layer tend to stabilize 

the circular plate system. The width of instability regions increased with increase of rotational speeds. Patel et al. 

[81] studied the dynamic instability of layered anisotropic composite plates on elastic foundations. Yeh and 

Chen [82] investigated the parametric excitation of a rectangular orthotropic sandwich plate with electro-

rheological fluid core. Yeh and Chen [83] also analyzed on the dynamic stability of a sandwich plate with a 

constraining layer and electro-rheological fluid core. However, studies concerning the dynamic stability 

characteristics of the plate in thermal environments are scare. Marcus et al. [84] examined the dynamic stability 

of symmetrically laminated orthotropic rectangular plates due to a thermally oscillating load by using an 

extension of Bolotin’s theory. As the advanced inhomogeneous composite materials mainly used for thermal 
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resistant components, functionally graded materials (FGMs) attracted much more research effort because of their 

multifunctional properties. The first contribution to the dynamic stability of FGM structures was made by Ng et 

al.[85], who studied the parametric resonance of simply supported FGM rectangular thin plates under pulsating  

in-plane loading and a fixed temperature by the normal mode expansion technique. Yang et al.[86] investigated 

the dynamic stability of laminated functionally graded materials (FGM) plates based on higher-order shear 

deformation theory. Recently, Wu et al.[87] analyzed the dynamic stability of thick FGM plates subjected to 

aero-thermo-mechanical loads using the moving least squares differential quadrature method. The influences of 

various factors such as gradient index, temperature, mechanical and aerodynamic loads, thickness and aspect 

ratios as well as boundary conditions were studied. Shukla and Nath [88] dealt with the non-linear dynamic 

buckling of laminated composite rectangular plates subjected to uniform time dependent in-plane temperature 

induced loading. The non-linear governing equations of motion were solved analytically using fast Chebyshev 

series technique. The numerical results for various boundary conditions were presented in this study. Chen and 

Chen [89] studied the parametric resonance of polar orthotropic sandwich annular plates with a viscoelastic core 

layer subjected to a periodic uniform radial stress using the finite element method. The axisymmetric discrete 

layer annular element and Hamilton’s principle were employed to derive the equations of motion for a sandwich 

plate including the transverse shear effect. The viscoelastic material in the core layer was assumed to be 

incompressible, and the extentional and shear moduli were described by complex quantities.  Kim and Kim [90] 

analyzed the dynamic stability of laminated plates under follower forces. Ravi Kumar et al.[91] examined the 

dynamic instability characteristics of laminated composite plates subjected to partial follower edge load with 

damping and showed certain aspects of destabilizing behaviour of damping. 

 4. DYNAMIC STABILITY OF SHELLS         

The widespread use of shell structures in civil, aerospace and hydrospace applications has stimulated many 

researchers to study various aspects of their structural behaviour. The dynamic stability analysis of shells is more 

complicated due to the addition of curvature in the panel.                                                                                                                      

4.1 Isotropic Shells 

The widespread use of shell structures in aerospace and hydrospace applications has stimulated many researchers 

to study various aspects of their structural behaviour. Instability in shells under periodic loads occurs when there 

exists certain relationships between the frequency of axial loads and the natural frequencies of the shell. As per 
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Evan-Iwanowski [4], an early publication on the parametric stability of cylindrical shell filled with liquid was 

made by Bublik and Merkulov [92] in 1942. The dynamic stability of simply supported cylindrical shells under 

periodic axial and radial loads was treated by Yao [93]. The dynamic stability of circular cylindrical and 

spherical shell subjected to uniform axial and radial pressure was studied by Bolotin [3]. Parametric resonance in 

shell structures under periodic loads had been of considerable interest since the subject was studied by him.The 

Lyapunov direct method was used to define the stability of a cylindrical shell under radial pressure by Bieniek, 

Fan and Lackman [94] and the solutions for the pre-buckling motion and the perturbated motion were obtained 

by the use of Galerkin method. Evensen and Evan-Iwanowski [95] investigated the dynamic response and 

stability of completely clamped, shallow, thin elastic spherical shells under uniformly distributed periodic loads 

both analytically and experimentally. Parametric instability of thin, cantilevered circular cylindrical shells 

subjected to in-plane longitudinal inertia loading arising from sinusoidal base excitation was investigated by 

Vijayraghavan and Evan-Iwanowski [96] analytically and experimentally. The linear bending theory used in the 

analysis was found adequate in predicting the incipience of instability. Excellent agreement was obtained 

between the analytical and experimental results, in determining the principal instability regions.  The effect of 

longitudinal resonance on dynamic stability was examined by Koval [97] for simply supported cylindrical shells 

under axial excitation. A detailed study of resonances was carried out in the above study. The dynamic stability 

of clamped, truncated conical shells under periodic axial load was studied by Tani [98] using the Donnell type 

equations. Two principal instability regions were determined by combining Bolotin's method and a finite 

difference method. The effects of static axial load and end plate mass on the principal instability regions were 

also investigated. Yamaki and Nagai [99] investigated the dynamic stability of circular cylindrical shell 

subjected to periodic shearing forces, on the basis of Donnell type equations modified with the transverse inertia 

force. Yamaki and Nagai [100] also studied the dynamic stability of circular cylindrical shell under four types of 

boundary conditions, with the effect of the static compressive load using Galerkin procedure and Hsu's method. 

It was found that the effect of longitudinal resonance was generally negligible for thin shells. The stability of the 

steady state response of simply-supported circular cylinders subjected to harmonic excitation was investigated by 

Radwin and Genin [101] using variational equations.  The dynamic stability of supported cylindrical pipes 

conveying fluid was examined by Ariaratnam and Namachchivaya [102]. The effects of the mean flow velocity, 

dissipative forces, boundary conditions, and virtual mass on the extent of the parametric instability regions were 
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then discussed. Chiba et al.[103] performed experimental studies on the dynamic stability of cantilever 

cylindrical shells partially filled with liquid, under horizontal excitation. It was found that a combination 

instability resonance of sum type could occur, involving two natural vibrations with the same axial mode 

vibration number but with the circumferential wave number differing by one. Tylikowski [104] investigated the 

stability of circular cylindrical viscoelastic shells subjected to time varying axial compression and uniformly 

distributed radial loading, using the direct Lyapunov method. The change of membrane loading direction from 

the axial direction to the circumferential one on the stability regions was also discussed. Kratzig and Eller [105] 

developed numerical procedures for the dynamic stability analysis of non-linear, dynamically excited shell 

structures. Special algorithms were deduced for the treatment of dynamic snap-through phenomena, dynamic 

quasi-bifurcations and parametric resonances. The dynamic stability and non-linear parametric vibration of 

isotropic cylindrical shells with added mass were considered by Kovtunov [106] using finite element method. Ye 

[107] investigated the effects of static load and static snap through buckling on the instability for spherical and 

conical shells were investigated using Galerkin method. Nawrotzki et al.[108] presented  a unified concept for 

the dynamic stability of shells subjected to conservative and non-conservative forces, using finite rotation theory 

and finite element method involving elasto-plastic material behaviour. For the characterization of kinematic 

instability phenomena, such as parametric resonances, flutter, dynamic quasi bifurcations, or kinetic snap-

through behaviour, special classes of qualitative techniques for neighboring orbits were considered. Turhan [109] 

presented a boundary tracing method as an extension of Bolotin's method to cover combination resonance for 

parametrically excited systems. The applicability of a uniform stability theory to shell structures undergoing 

elastic or elasto-plastic deformations was demonstrated by Nawrotzki, Kratzig and Montag [110] using FEM 

with the help of Lyapunov exponents. Gilat and Aboudi [111] studied the dynamic buckling of viscoelastic 

plates and shells under cylindrical bending. The method of solution relied on an incremental process in 

conjunction with the finite difference method with respect to the special co-ordinate and the Ranga-Kutta method 

with respect to time. The parametric resonance of cylindrical shells under combined static and periodic loading 

was investigated using four different thin shell theories by Lam and Ng [112] using Bolotin's method. The 

effects of various thin shell theories on parametric instability were based on Donnell's, Love's, Sanders' and 

Flugge's theories. The contribution of the stresses due to the external forces was accounted for according to 

Donnell's theory. The parametric resonance of cylindrical shells under combined static and periodic loading was 
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studied using Donnell's, Love's, and Flugge's thin shell theories by Lam and Ng [113]. The contribution of 

stresses due to external forces was considered in this study according to the assumptions made in that particular 

theory unlike the previous work. The parametric resonance of a rotating cylindrical shell subjected to periodic 

axial loads was investigated by Ng et al.[114].  Popov [115] demonstrated the use of bifurcation theory and non-

linear dynamics for the understanding of structural buckling under dynamic loads and vibration of circular 

cylindrical shells under parametric excitation.  

Most of the investigators studied the dynamic stability of uniformly loaded closed cylindrical shells with a 

simply supported boundary condition, using analytical approach. Popov, Thompson and Croll [116] investigated 

the stability of periodic solutions of parametrically excited cylindrical panels, neglecting transverse shear and 

rotary inertia. The dynamic stability of uniformly loaded cylindrical panels was studied by Ng, Lam and Reddy 

[117] using an extension of Donnell's shell theory to a first order shear deformation theory (FSDT) and Bolotin's 

approach. The dynamic instability of conical shells was studied by Ng et al. [118] using Generalized Differential 

Quadrature method. Sahu and Datta [119] studied the dynamic stability of singly and various doubly curved 

panels including elliptic paraboloids and hyperbolic paraboloids, subjected to non-uniform in-plane harmonic 

loading, using finite element method, considering transverse shear deformation and rotary inertia. The effect of 

cutout on parametric excitation of doubly curved panels was investigated by Sahu and Datta [120]. The effects of 

static and dynamic load factors, geometry, boundary conditions and the cutout parameters on the principal 

instability regions of curved panels were investigated in detail using Bolotin’s approach.  

4. 2 Complicating effects 

Noah and Hopkins [121] studied the effect of support flexibility on the dynamic behaviour of pipes conveying 

fluid both for steady and pulsatile flows. The numerical results illustrated the effects of the amount of 

translational and rotational resiliences at the elastic support on the regions of parametric and combination 

resonances of pipes. Popov et al. [122] analyzed the internal auto- parametric instabilities in the free non-linear 

vibrations of cylindrical shells. Direct numerical integration was employed to examine chaotic motions. It was 

observed that the chaotic motions near a homoclinic separatrix appeared immediately after the bifurcation, 

giving an irregular exchange of energy. This chaos occurred at arbitrarily low amplitude, with approaching of 

perfect tuning. Mcrobie et al. [123] presented on the auto parametric instabilities in the free non-linear vibrations 

of cylindrical shells, focused on two modes i.e. a concertina mode and chequerboard mode, whose non-linear 
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intereaction breaks the in-out symmetry of the linear vibration theory. Ganesan and Kodali [124] discussed on 

the dynamic instability of cylindrical shell conveying a pulsatile flow of hot fluid. The semi analytical finite 

element formed the basis for the modeling the structural continuum under the influence of temperature and 

flowing fluid. Beroulli’s principle and impermeable conditions of the fluid were the basis for the coupled fluid 

structure interaction analysis. The effect of fluid temperature and excitation parameter on the behaviour of 

dynamic stability system was examined. Javidruzi et al.[125] presented a finite element study on the vibration, 

buckling and dynamic stability behaviour of a cracked cylindrical shell with fixed supports and subjected to an 

in-plane compressive/tensile periodic edge load. The effects of crack length and orientation were analyzed.  Zhu 

et al.[126] investigated on the three dimensional analysis of the dynamic stability of piezoelectric circular 

cylindrical shells. Bolotin’s method was employed to determine the dynamic instability regions. It was observed 

that both the piezoelectric effect and electric field had minor effect on the instability regions. Djondjorov  et al. 

[127] investigated on the dynamic stability of fluid conveying straight cantileverd pipes lying on variable elastic 

foundations. Tao and Zhang [128] studied the dynamic stability of a rotor partially filled with a viscous liquid. 

Most et al.[129] presented the stochastic dynamic stability analysis of non-linear structures with geometrical 

imperfections under random loading, by the maximum Lyapunov exponent. This exponent turns positive for 

unstable systems and can be computed by non-linear time integration with simultaneous stability analysis. Fluid 

structure interaction problems were investigated by Jung  et al. [130] to study the dynamic stability of liquid 

filled projectiles under a thrust. The projectile was modeled as a flexible cylindrical shell, and the constant and 

pulsating follower force modeled the thrust. Park and Kim [131] investigated the dynamic stability of completely 

free cylindrical shell under a follower force by using finite element method. Recently Ravi Kumar et al. [132] 

analyzed the dynamic instability characteristics of doubly curved panels subjected to partially distributed 

follower edge loading with damping using finite element method. 

4. 3 Composite Shells 

As per Ibrahim [5], the dynamic stability of anisotropic cylindrical shells was first considered by Markov [133] 

in 1949. The earlier studies on parametric resonance of laminated shell structures were found from the review 

papers by Evan-Iwanowski [4], Ibrahim [5], and Simitses [6]. The parametric instability of thick orthotropic 

cylindrical shells was studied analytically by Bert and Birman [8]. The theory used is a general first-order shear 

deformable shell theory and can be considered to be the thick  shell version of the popular Sanders' thin shell 
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theory for cylindrical shells. By means of tracers, this theory can be reduced to thick shell versions of the 

theories of Love's and of Donnell's theories. Extensive results were presented for thick isotropic (short and long) 

shells and  for two layered cross-ply and angle-ply cylindrical shells. The principal instability regions of thick 

and thin two layered cross-ply cylindrical shells were also compared. Ray and Bert [134] studied the dynamic 

stability of suddenly heated thick composite shells. The dynamic instability of shear deformable laminated  

composite simply supported circular cylindrical shell was analyzed by the Method of Multiple Scales (MMS) by 

Cederbaum [135]. The simply supported laminated shell of finite length was examined within Love's first 

approximation theory, with the addition of transverse shear deformation and rotary inertia. It was shown that, 

besides the principal instability region, other cases of resonances i.e combination resonance can be of 

importance. A perturbation technique was employed by Argento and Scott [136-137] to study the instability 

regions of layered anisotropic circular cylindrical shells subjected to axial loading. The studies discussed the 

theoretical development [136] and numerical results [137] of the variation of instability regions with the 

circumferential wave number and also the magnitude of the external axial load. Results were presented for a 

three layered 00/900/00 graphite epoxy shell. The same technique was used again later by Argento [138] to 

determine the instability regions of a composite circular cylindrical shell subjected to axial loading and torsional 

loading. The main emphasis of this study was the comparison of effects of pure axial loading, pure torsional 

loading and combined axial and torsional loading on the dynamic stability of the laminated shells. Ganapathi and 

Balamurugan [139] studied the dynamic instability of laminated composite circular cylindrical shells using a C0 

shear flexible two nodded axisymmetric shell element. The effects of various parameters such as ply angle, 

thickness, aspect ratio, axial and circumferential wave numbers on dynamic stability were studied. The dynamic 

stability of thin cross-ply laminated composite cylindrical shells under combined static and periodic axial force 

was investigated by Ng, Lam and Reddy [140] using Love's classical theory of thin shells. The effects of 

different lamination scheme and the magnitude of the axial load on the instability regions were examined using 

Bolotin's method.  Lam and Ng [141] investigated on the dynamic stability analysis of thin laminated composite 

cylindrical shells under combined static and periodic loads, using Love’s theory of thin shells. The effects of the 

length-to-radius  and thickness-to-radius ratios of the cylinder on the instability regions were examined. 

Most of the above mentioned investigators studied the dynamic stability of uniformly loaded closed cylindrical 

shells with a simply supported boundary condition. The study of the parametric instability behaviour of curved 
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panels is new. The effects of curvature and aspect ratio on dynamic instability for a uniformly loaded laminated 

composite thick cylindrical panel were studied by Ganapathi et al.[142] using finite element method. The 

effectiveness of a nine-nodded shear flexible shell element, based on the field consistency principle was 

demonstrated in this study by examining the dynamic stability of laminated curved panels due to periodic in-

plane load. Sahu and Datta [143] investigated on the dynamic stability of singly and various doubly curved 

laminated composite panels including spherical, elliptic and hyperbolic paraboloids  using finite element method. 

Zhang and Campen [144] studied the dynamic stability of doubly curved orthotropic orthotropic shallow shells 

under impact. The non-linear governing differential equations were derived based on a Donnell type shallow 

shell theory. The non- linear behaviour was investigated by neglecting the influence of inertia and damping, and 

the results showed that two saddle node bifurcation would occur under certain conditions. Ravi Kumar et 

al.[145] examined the tension buckling  and dynamic stability behaviour of laminated composite doubly curved 

panels subjected to partial edge loading. The investigation showed the presence of pockets of compression 

region causing instability effects. Sahu and Datta [146] also analyzed recently the dynamic stability of singly and 

doubly curved panels with cutouts. The effects of sizes of cutouts, ply orientation, curvature on parametric 

excitation of different curved panels including spherical, elliptic and hyperbolic paraboloidal shells were 

considered in this investigation. Ravi Kumar et al. [147] investigated on the tension buckling and parametric 

instability characteristics of doubly curved panels with circular cutout subjected to non-uniform tensile edge 

loading. The concept of local buckling effects was discussed. Ganapathi and the co-researchers [148-149] 

studied the dynamic instability analysis of truncated circular conical shells, using C0 two nodded shear flexible 

shell element.  Kamat et al.[150] analyzed the parametrically excited laminated composite joined conical-

cylindrical shells. The formulation was based on first order shear deformation theory and the effect of in-plane 

and rotary inertia was considered. The influence of various parameters such as orthotropicity, cone angle, lay up, 

combination of different sections, thickness ratio, static load and external pressure on the dynamic stability 

regions of cross ply laminates was studied in this investigation. 

    

4. 4 Complicating effects 

Birman and Bert [151] also investigated the dynamic stability of torsionally reinforced composite cylindrical 

shells in thermal fields. It was found in this study that a shell subjected to high temperature became dynamically 
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unstable at smaller values of the magnitude and frequencies of the driving force when compared to shells excited 

at room temperature. Ng et al.[ 152] studied the parametric resonance of simply supported FGM cylindrical thin 

shells under pulsating in-plane loading and at a fixed temperature by the normal mode expansion technique. 

Yang and Shen [153] presented semi analytical solutions of dynamic stability problems for shear deformable 

FGM cylindrical panels, which has tremendous aerospace applications, subjected to periodic in-plane force and 

thermal load due to temperature change. Kadoli and Ganesan [154] studied the parametric resonance of a 

composite cylindrical shell containing pulsatile flow of hot fluid. A coupled fluid structure interaction model in 

conjunction with uncoupled thermomechanical model was used for the analysis. Recently, Ravi Kumar et al. 

[155-156] studied the dynamic stability of doubly curved panels subjected to follower edge load. These studies 

involved non-conservative load cases, which will be further discussed in the Part-2 of the review. 

5. CONCLUDING REMARKS 

This paper surveyed the dynamic stability of plates and shells subjected to conservative forces. On the whole, the 

focus of research on dynamic stability was changing towards new materials, methods of analysis and towards 

complicated geometry, loading and boundary conditions. Recently more studies were conducted on laminated 

composites than homogeneous materials. Functionally graded materials (FGMs) are the new generation of 

composite materials in extreme high temperature environments. The shell-type piezoelectric smart structures 

have become the focus of research in recent years. The structural configuration shifted from plates to closed 

cylindrical shells and then towards curved panels including cylindrical, spherical, hyperbolic paraboloidal and 

elliptical paraboloidal panels. As regards methodology, the focus was shifted from analytical methods to 

numerical methods and with the advent of high speed computers, more studies were made using the finite 

element method. The study revealed that recent investigations on dynamic stability were concentrating more on 

complicated aspects, such as non-uniform loading, stiffened plates, plates on Winkler foundations, boundary 

conditions, combination resonance, damping, fluid structure interaction, non-linearity, doubly curved panels etc. 

than plates or closed cylindrical shells. The studies involving cutouts have been dealt up to bare and stiffened 

plates and curved panels subjected to uniform loading. Limited attention was given towards experimental 

verification on the parametric instability behaviour of homogeneous plates. On a literature study by the authors, 

more investigations were reported in the literature on dynamic stability of turbomachinery blades which were 

modeled as beams. However, no research was reported on dynamic stability of blades as twisted plates. More 
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attention should be given for dynamic stability analysis of shells containing fluids, non-linearity, damping, non-

conservative loading, non-classical curvature and boundary conditions. Attention is also needed for dynamic 

stability of surface structures with varying thickness to simulate more towards practical applications. More 

research is also needed for rotating structures subjected to in-plane periodic loading. Considerable attention is 

also needed towards experimental verification of the computational models.  
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