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�is paper presents a novel quasi-zero-sti	ness (QZS) isolator designed by combining a tension spring with a vertical linear spring.
In order to improve the performance of low-frequency vibration isolation, geometric nonlinear damping is proposed and applied
to a quasi-zero-sti	ness (QZS) vibration isolator. �rough the study of static characteristics 
rst, the relationship between force
displacement and sti	ness displacement of the vibration isolation mechanism is established; it is concluded that the parameters
of the mechanism have the characteristics of quasi-zero sti	ness at the equilibrium position. �e solutions of the QZS system are
obtained based on the harmonic balance method (HBM).�en, the force transmissibility of the QZS vibration isolator is analyzed.
And the results indicate that increasing the nonlinear damping can e	ectively suppress the transmissibility compared with the
nonlinear damping system. Finally, this system is innovative for low-frequency vibration isolation of rehabilitation robots and
other applications.

1. Introduction

With the development of science and technology, intelligent
lightweight small-sized robots can be achieved; however,
vibration isolation is still an important problem in robot
control, especially the low-frequency vibration isolation.
At present, the low-frequency vibration isolation of robots
mainly uses bionics, an active and passive combination of
methods, which have high cost and complexity [1–4]. By the
mechanical vibration theory, the frequency of the traditional

passive vibration isolation system is√2 times its own natural
frequency [5–7]. To achieve a low frequency of 0.5∼70Hz,
with wide frequency domain vibration isolation, the natural
frequency of the vibration isolation system can be reduced.
According to the natural frequency of the formula, reducing
the natural frequency will reduce the system sti	ness or
increase the load quality, but in fact the system sti	ness and
load capacity have their limits [8]. With the deep research of
vibration isolation systems, a kind of nonlinear quasi-zero-
sti	ness vibration isolation is realized by a linear positive-
sti	ness spring parallel negative-sti	ness mechanism, which
has excellent characteristics of high static sti	ness and low
dynamic sti	ness and good low-frequency vibration isolation

performance [9]. Alabuzhev et al. [10] made a comprehensive
exposition of the theory of zero-sti	ness vibration isolation
and proposed the corresponding design method. Fulcher
et al. [11, 12] used two rods that are articulated under axial
force as the negative-sti	ness mechanism. Liu et al. [13–16]
and Zhang et al. [17, 18] used similar Euler bars under axial
loads as negative-sti	ness mechanisms for vibration isolation
of precision instruments; it is obvious that negative-sti	ness
mechanisms have great prospects in precision engineering.
Carrella et al. [19–21] studied the static properties of sym-
metric oblique springs with parallel positive-sti	ness springs
and their force and displacement transfer rates. Le and Ahn
[22] studied the quasi-zero-sti	ness characteristics of the
system with the horizontal spring parallel vertical spring and
applied it to vehicle seat vibration isolation. On this basis,
it is possible to adjust the vibration isolation system with
di	erent bearings [23]. �e quasi-zero sti	ness was realized
by using a parallel spring and vertical spring in parallel by
Peng et al. [24–26]. Lu and Bai [5] adopted a new kind of
connecting rod spring mechanism as the negative-sti	ness
mechanism, which increased the static bearing capacity of
the system. Meng [27] used the disc spring as the negative-
sti	ness mechanism and realized the quasi-zero-sti	ness
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(a) �ree-dimensional vibration isolation diagram: (1) base, (2) sup-
port column, (3) a skateboard, (4) a connecting rod, (5) stage, (6)
vertical springs, (7) slider, and (8) tension spring

(9)

(10)

(b) 3Dmodeling of the vibration isolator: (9) isolated
objects and (10) rollers

Figure 1

parallel positive-sti	ness spring. Zhou et al. introduced a
cam-roller negative-sti	ness mechanism and also achieved
quasi-zero-sti	ness isolation [28]. However, there are not
many studies on the combination of nonlinear damping and
quasi-zero-sti	ness systems [29, 30].

In this paper, a QZS vibration isolator with geometric
nonlinear damping is developed with the purpose of enhanc-
ing the vibration isolation performance.�e rest of the paper
is organized as follows. �e model and static characteristics
of the QZS system are built in Section 2. �en, in Section 3,
the force transmissibility of the QZS system is analyzed
in order to prove the advantage of nonlinear damping in
transmissibility. Some conclusions are drawn in Section 4.

2. 3D Modeling of the Vibration Isolator

As shown in Figure 1(a), we present a vibration isolation
system with quasi-zero sti	ness, including (1) base, (2)
support column, (3) a skateboard, (4) a connecting rod, (5)
stage, (6) vertical springs, (7) slider, and (8) tension spring.
Two pins are arranged on the slide block, and the slide block,
the connecting rod, and the horizontal spring are connected
through a cylindrical pin; both ends of the vertical spring
are, respectively, arranged in the spring mounting hole of the
base and the carrying table. In order to describe the vibration
isolator and its vibration isolation performance more clearly,
we add a 3D model of the vibration isolator which is
represented in Figure 1(b). In Figure 1(b), (9) represents the
mass of the object being isolated, (10) indicates the wheel; it
replaces the slider (7) in Figure 1(a), because the use of rollers
can reduce the friction, which can improve the accuracy of
the model.

For this quasi-zero-sti	ness vibration isolation mecha-
nism, the vertical spring is mainly used to carry the static
mass, while the two symmetrical horizontal tension springs
in the 
gure are the negative-sti	ness mechanism, which can
be o	set by the rigidity of the vertical positive-sti	ness spring.

2.1. Negative-Sti�ness Mechanism. If the vertical spring is
not considered, the force analysis of the negative-sti	ness
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Figure 2: Schematic diagram of stress analysis.

mechanism is shown in Figure 2. When the carrier carries
a mass of the object, a force � is applied in the vertical
direction, and the displacement � of the object causes the
two horizontal tension springs to be stretched, and a vertical
upward force is generated on the object. According to the
geometric relationship, take one of the 1/2 parts of the tensile
spring stress analysis and 
nd out the expression of � in the
vertical direction: � = 4�� tan (�) , (1)

where �� = ��� is the horizontal force of the 1/2 part of
the tension spring, � is the angle between the connecting rod
and the horizontal line, and � is the distance of the stretched
spring 1/2 portion.

In any position, the expression of the angle is

tan (�) = ℎ0 − 
√�2 − (ℎ0 − 
)2 ,� = √�2 − (ℎ0 − 
)2 − �0,ℎ0 = √�2 − �02.
(2)
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Figure 3: Dimensionless force displacement.

Combining formulas (1) and (2), the restoring force of the
negative sti	ness is

� = 4��(1 − �0√�2 − (√�2 − �02 − 
)2)
⋅ (√�2 − �02 − 
) .

(3)

Formula (3) is nondimensional and the two sides of the
equation are divided by ���0:

�̂ = 4(1 − 1√�2 − (ℎ̂0 − 
̂)2)(ℎ̂0 − 
̂) , (4)

where �̂ = �/���0, 
̂ = 
/�0, � = �/�0, ℎ̂0 = √�2 − 1.
Formula (4) is the expression of the dimensionless force

displacement of the negative-sti	ness mechanism of the
vibration isolation system, so that it can be obtained as shown
in Figure 3(a).

According to Figure 3(a), the di	erent values of the
parameter � have some in�uence on the negative-sti	ness
characteristics of the mechanism. When � = 1, the dimen-
sionless force always increases with increasing nondimen-
sional displacement, inwhich case it is not a negative-sti	ness
mechanism. When � > 1, this mechanism has negative sti	-
ness, and the negative-sti	ness region is between the two
extreme points of the displacement curve. As shown in
Figure 3(b), the B region is a negative-sti	ness region, and
the dimensionless force decreases with the increase of the
dimensionless displacement in the negative-sti	ness region.

2.2. Quasi-Zero-Sti�ness (QZS) Vibration Isolation System.
In view of the in�uence of the low-frequency vibration
from the ground on the working performance of the biped
robot, a new type of quasi-zero-sti	ness vibration isolation
system is constructed by connecting the negative-sti	ness
mechanism proposed in Section 2.1 and the linear positive-
sti	ness spring with sti	ness �

V
. In order to reduce the

vibration of the robot foot, the design block diagram is shown
as in Figure 4.

In Figure 4, the quasi-zero-sti	ness mechanism is
mounted on the robot’s foot, but not directly connected to
the ground. To reduce friction, the robot moves through the
roller of the foot.�erefore, the quasi-zero-sti	ness system is
mounted on both sides of the wheel to sense low-frequency
vibrations from the ground. �e robot’s foot is extracted and
the quasi-zero-sti	ness isolator is analyzed. Assuming the
vertical force �, according to Figure 1, the nondimensional
force–displacement relationship of the quasi-zero-sti	ness
vibration isolation system is expressed as

�̂ = 
̂ + 4�(1 − 1√�2 − (ℎ̂0 − 
̂)2)(ℎ̂0 − 
̂) . (5)

From the above formula, when ℎ̂0 = 
̂, the system’s return
force is not zero, and the system force–displacement relation-
ship is a cubic polynomial, and the displacement belongs to
̂ ∈ (0 ∼ 2ℎ̂0).

Hence, �̂ = 
̂−ℎ̂0.�e dimensionless force–displacement
expression of the system is�̂ = �̂ + ℎ̂0 − 4�(1 − 1√�2 − �̂2) �̂, (6)
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Figure 4: Block diagram of rehabilitation robot quasi-zero-sti	ness vibration isolation and whole sketch map.
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Figure 5: Sti	ness curves under di	erent � values.
where� = ��/�V

represents the sti	ness ratio. Equation (6) is
derived.�e relationship between the dimensionless sti	ness
and displacement of the system is obtained:

�̂ = 1 + 4�( �2(�2 − �̂2)3/2 − 1) . (7)

According to formula (7), when � is certain, the e	ects
of di	erent � values on the sti	ness are shown in Figure 5.
When � is certain, the e	ect of di	erent sti	ness ratios �
on the sti	ness is shown in Figure 6. Figure 5 shows that
when the horizontal tension spring reaches the maximum
tensile state, there is minimum sti	ness and the sti	ness of
the system is symmetrical about the equilibrium position.
With the increasing of �, the dimensionless sti	ness changes
from positive to negative. Figure 6 shows that when � is
constant, the dimensionless sti	ness of the system changes
from positive to negative as the sti	ness ratio increases. In a
word, Figures 5 and 6 show that controlling � can change the
sti	ness and achieve zero sti	ness.
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Figure 6: Sti	ness curves under di	erent sti	ness ratios.

At the equilibrium position, �̂ = 0, the dimensionless

sti	ness of the system �̂ = 0 is obtained:
�̂QZS = 1 + 4� ( 1� − 1) ,� = �4 (� − 1) . (8)

Combined with formulas (7) and (8), the quasi-zero-sti	ness
characteristics of the system at di	erent positions in the
equilibrium position can be obtained, as shown in Figure 7.
According to Figure 7, under the situation that � is increasing
constantly, we need to have smaller sti	ness � to maintain
zero sti	ness in the equilibrium position.

In order to study the dynamic characteristics of the
system, it is necessary to simplify the mathematical model.
In this paper, we use the Taylor expansion to approximate the
restoring force. Hence, �̂ = 0. Taylor expansion expression is

�̂ = �̂ (0) + �̂� (0) �̂ + �̂�� (0)2! �̂2 + �̂��� (0)3! �̂3 + ⋅ ⋅ ⋅ (9)
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Figure 7: Nondimensional displacement sti	ness for a parameter.

with the approximate relation of dimensionless force dis-
placement�̂ = �̂ (0) + �̂ (0) �̂ + �̂� (0)2! �̂2 + �̂�� (0)3! �̂3. (10)

According to formulas (5)∼(8) and Figure 5, �̂(0) = ℎ̂0,�̂�(0) = 0, and formula (10) is simpli
ed as�̂ = ℎ̂0 + (1 + 4� ( 1� − 1)) �̂ + 2��3 �̂3. (11)

When � = 1.375, � = 0.92, and & = 2�/�3, the exact
solution and approximate solution of the dimensionless dis-
placement sti	ness are shown in Figure 8. From Figure 8(a),
at the equilibrium position �̂ = 0, the exact curve and the
approximate curve of the sti	ness curve are coincident, so it is
feasible to replace the exact expression in the small amplitude
range.

According to Figure 8(a), with the increase of the dis-
placement absolute value, the error of displacement sti	ness
and the approximate solution is also increasing gradually, so it
is necessary to carry out error analysis in the balance position
of the system. If the variable ' (percentage) represents the
system’s error, the exact expression is

' = *************1 − (6�/�3) �̂21 + 4� [(�2/ (�2 − �̂2)3/2 − 1)] ************* ∗ 100%. (12)

�e sti	ness error is related to the geometric parameters,
displacement, and sti	ness ratio of the system. �erefore,
the sti	ness of the system is determined as long as the
geometric parameters and the sti	ness ratio of the system are
determined. If � = 1.375 and � = 0.92, the curve of sti	ness
error with displacement is plotted in Matlab, as shown in
Figure 8(b).

2.3. Nonlinear Damping Characteristic. �e geometric non-
linear damping characteristic is mainly analyzed in this part.
Figure 9 shows the transmission path of the damping force
from the horizontal direction to the vertical direction.
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Based on the analysis in the previous subsection, the
displacement of the le� hinge axis in the horizontal direction
is given by @ = � (1 − cos �) , (13)

where cos � = √4�2 − 
2/2�. By di	erentiating (12) with
respect to time, the velocity of the le� hinge axis in the
horizontal direction can be obtained:̇@ = 
2√4�2 − 
2 
̇. (14)

�e right hinge axis velocity is equal to that of the le� one,
but the direction is opposite. �us, the horizontal damping
force is given by B� = 2C ̇@ (15)

and at the same time B2 = 2B1 sin �,B� = 2B1 cos �. (16)

�erefore, the nonlinear damping force transmitted to the
loading support can be further written as

B2 = C
24�2 − 
2 
̇. (17)

Writing (16) in a nondimensional form yields

�22 = D�̂24 − �̂2 ̂̇�, (18)

where �22 = B2/�V
� and D = C/�

V
.

Equation (10) can be approximated by a third-order
Taylor series about � = 0 with the purpose of simplifying the
subsequent dynamic analysis:�22� = 14D�̂2 ̂̇�. (19)

3. Force Transmissibility

3.1. Considering Nonlinear Damping. �e equation of motion
of the load under harmonic force excitation is given by�
̈ + D0
̇ + B2 + B (
) = � cos (FG) . (20)

Writing (19) in a nondimensional form and replacing the
exact restoring force and the nonlinear damping force with
their approximations can yield̂̈� + 2H1 ̂̇� + 12H2�̂2 ̂̇� + &�̂3 = IJ cos (FK) , (21)

where F0 = √�
V
/�, K = F0G, H1 = D0/2�F0, H2 = D/2�F0,B = �/�

V
�, and Ω = F/F0; when the system is subjected

to harmonic force excitation, I = 1, J = �, then (20) can be

solved in the following application of the HBM.�e solution
of (20) is assumed to be of the form�̂ = N cos (FK + O) , (22)̂̇� = −NΩ cos (ΩK + O) , (23)̂̈� = −NΩ2 cos (ΩK + O) . (24)

Substituting (21), (22), and (23) into (20) yields− NΩ2 cos (ΩK + O) − 2H1NΩ sin (ΩK + O)− 12H2N3Ω cos2 (ΩK + O) sin (ΩK + O)+ &N3cos3 (ΩK + O) = IJ cos (ΩK) . (25)

�e right item of (24) can be deformed into

cos (ΩK) = IJ cos (ΩK + O − O)= IJ cos (ΩK + O) cos (O)+ IJ sin (ΩK + O) sin (O) . (26)

Combining (24) and (25) can yield−NΩ2 + 34&N3 = IJ cos (O) ,−2NH1Ω − 14H2N3Ω = IJ sin (O) . (27)

�us, the amplitude–frequency equation can be derived
with the application of sin(O) + cos(O) = 1:
(−NΩ2 + 34&N3)2 + (−2NH1Ω − 14H2N3Ω)2 = I2J2, (28)

whereΩ�01,2= 12√32&N2 − 4P12 − H1H2N2 − 116H22N4 ± √Δ, (29)

Δ = 16H14 + 8H13H2N2 + 32H1H2N4 − 12&H12+ 18H1H22N6 − 3&H1H2N4 + 1256H24N8− 316&H22N6 + JN2 .
(30)

According to the above analysis, the force transmitted to
the load is given byB� = 2H1 ̂̇� + 12H2�̂2 ̂̇� + &�̂3. (31)
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Figure 10: Force transmissibility for various H2.
�en, the amplitude of the transmitted force can be obtained
by substituting (21), (22), and (23) into (30):

�� = √(34&N3)2 + (−2NH1Ω − 14H2N3Ω)2. (32)

�erefore, the force transmissibility of the QZS system
can be written asR�0 = 20

⋅ log(√((3/4) &N3)2 + (−2NH1Ω − (1/4) H2N3Ω)2B ) . (33)

�e e	ect of the damping ratio H2 on the force transmis-
sibility is shown in Figure 10. It can be clearly observed that
increasing H2 can e	ectively suppress the transmissibility, but
it has little in�uence on the force isolation performance at
higher frequencies.

3.2. Without Nonlinear Damping. Without considering the
role of nonlinear damping, the dimensionless equations of
the system are written aŝ̈� + 2P1 ̂̇� + &�̂3 = IJ cos (ΩK) . (34)

When the system is excited by harmonic force, I = 1,J = �̂, for (33), we can obtain the amplitude–frequency
response function of the system by using the harmonic
balance method, neglecting the high-order harmonic term
and eliminating the phase di	erence:

(34&N31 − Ω2N1)2 + 4P2Ω2N12 = I2J2. (35)
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Figure 11:�e in�uence of the nonlinear term of quasi-zero sti	ness
on the N-Ω curve.

According to (34), two solutions can be solved in har-
monic force and harmonic displacement excitation; the
expression isΩ�1,2= 12√3&N21 − 8P2 ± 4N1√4P4N21 − 3&P2N41 + J2. (36)

According to the amplitude–frequency characteristic for-
mula (35) of the system, the amplitude of the response
is related not only to the frequency ratio, but also to the
damping ratio and the nonlinear term. �e relation between
the nonlinear term and the response amplitude is shown in
Figure 11. It can be seen that the vibration amplitude decreases
gradually with the increase of the nonlinear term of the
system, and the bend of the N-Ω curve is more and more
obvious in the process of nonlinear term increasing; the
nonlinear term contained in the quasi-zero-sti	ness system
can play a role in decreasing the amplitude of the response.

�e force transmitted to the foundation by a quasi-zero-
sti	ness vibration isolation system is

�̂� = √B	2 + B�2 = √(34&N13)2 + (2PN1Ω)2 (37)

and its force transfer rate is

R� = √((3/4) &N13)2 + (2PN1Ω)2�̂ . (38)

According to the above analysis, we can get the in�uence
of di	erent excitation amplitudes and damping parameters
on the vibration isolation system, as shown in Figures 12 and
13.

Figure 12 shows a force transmission rate curve, and
a green curve indicates a nonstationary solution. From
Figure 12, with the increase of the damping ratio, the force



8 Shock and Vibration

D
am

pi
ng

 r
at

io

in
cr

ea
si

ng

0.5 1 1.50

Ω

−80

−60

−40

−20

0

20

40

60

T
(d

B
)

Figure 12: Force transfer rate.

In
cr

ea
sin

g 
am

plit
ude o

f

ex
cit

at
io

n

0.5 1 21.50

Ω

−80

−60

−40

−20

0

20

40

60

80

T
f

(d
B

)

Figure 13: E	ect of di	erent excitation amplitudes on the quasi-
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transfer rate decreases. As shown in Figure 13, the green curve
is also an unstable solution. It is concluded that, with the
increase of the damping ratio, the transmission rate of the
system is also decreasing; that is, the greater the damping,
the smaller the transmissibility, which is consistent with the
common sense of life. As can be seen from Figure 13, the
range of the unstable solution of the system is gradually
decreasing in the process of increasing the damping ratio,
but in the high-frequency part, the system with relatively
large damping has no better vibration isolation than the
small system. But from Figures 12 and 13, we can 
nd that,
with the existence of geometric nonlinearity in the horizontal
direction, the rate of force transfer of the system is obviously
decreased.

4. Conclusions(1) A novel type of quasi-zero-sti	ness vibration isolation
system is designed in this paper. It is formed by the parallel

connection of the positive-sti	ness spring and the negative-
sti	ness mechanism. �e negative-sti	ness mechanism con-
sists of two horizontal tension springs and exhibits negative-
sti	ness characteristics during the movement.(2) Static and dynamic analyses of the novel quasi-zero
sti	ness are carried out. �rough the static analysis of the
system, the size of the quasi-zero-sti	ness mechanism and
the quality of the vibration isolation can be determined. In the
dynamic aspect, nonlinear damping is added and analyzed by
the theoretical formula, which can reduce the transmissibility
of the vibration isolation system.(3) �e quasi-zero-sti	ness system with an innovative
structure is very important for low-frequency vibration
isolation and has important signi
cance. In this paper, the
excellent vibration isolation capability of the system is applied
to a rehabilitation robot. �is is veri
ed theoretically and
provides guidance for practical applications.
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