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	e importance of dye sensitized solar cells (DSSCs) as a low-cost and environmentally friendly photovoltaic (PV) technology
has prompted many researchers to improve its e
ciency and durability. 	e realization of these goals is impossible without taking
into account the importance of the materials in DSSCs, so the focus on the preparation/deposition methods is essential. 	ese
methods can be either chemical or physical. In this study, the chemical applied methods that utilize chemical reaction to synthesize
and deposit the materials are covered and categorized according to their gas phase and liquid phase precursors. Film processing
techniques that can be used to enhance the materials’ properties postpreparation are also included for further evaluation in this
study. However, there is a variety of consideration, and certain criteria must be taken into account when selecting a speci�c
deposition method, due to the fact that the fabrication conditions vary and are unoptimized.

1. Introduction

Dye sensitized solar cells (DSSCs) as a novel photovoltaic
(PV) technology have the potential to compete with other
traditional solar cell because they are low-cost and an
environmental friendly solar cell. 	eir low weight, �exi-
bility, transparency, varied color, and superior performance
in darker conditions make them more popular and have
attracted considerable company investment and government
funding.

	e power conversion e
ciency of a DSSC is highly
reliant on its materials, which puts them at the forefront
of research. However, it is not alone in its importance, as
other areas are equally crucial in the quest to realize a stable,
e
cient, and low-cost dye sensitized solar cells [1–3].

Although there are many interesting research �ndings
based on the development of nanomaterial and new hybrid
materials [4, 5], there is still room for progress and the solving

of di
erent issues dealing with dye sensitized solar cells. 	e
preparation and deposition methods are critical vis-à-vis the
properties of DSSC.

Weerasinghe et al. [6] have reviewed the technological
development of DSSC on �exible polymer substrates, paying
attention to factors that are imperative to the preparation of
the slurry, �lm deposition, and electrode processing intended
to enhance the mechanical and photovoltaic properties of a
device.

	e aim of this review is to demonstrate the di
erent
preparation and deposition methods, which have been used
in DSSC, emphasizing their advantages and disadvantages, in
order to allow a researcher to carefully choose and optimize
a given method. Chemical methods are further categorized
according to their reaction medium or precursors, such as
gas and liquid. We tried to categorize these methods by
considering this concept, although overlapping does occur
from time to time.
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2. Gas Phase Precursors

2.1. Chemical Vapor Deposition (CVD). 	e process that is
called chemical vapor deposition (CVD) of �lms and coatings
is the result of chemical reactions that occur between the
gaseous reactant close to or adjacent to the surface of a heated
substrate (Figure 1). 	e �exible nature of CVD makes it one
of the preferredmethods of thin �lmdeposition and coatings.
	e applications of CVD coated thin �lms are, but not limited
to, semiconductors for microelectronics; optoelectronics,
energy conversion devices; dielectrics for microelectronics;
refractory ceramic materials for hard coatings, corrosion
protection, oxidation, or as di
usion barriers; metallic �lms
for microelectronics and for protective coatings; and �ber
production and coating [7].

2.1.1. Advantages and Disadvantages of CVD. On top of its
complex chemical system, some of the advantages of CVDs
are [7] as follows.

(a) Being able to produce extremely dense and pure
materials and allowing manipulation at the atomic or
nanometer scales.

(b) 	e �lms are highly uniform and have good repro-
ducibility and adhesion, with acceptable deposition
rates.

(c) Due to its good throwing power and nonline of sight
nature, it can be used to uniformly coat complex-
shaped components and deposit �lmswith reasonable
conformal coverage, which is signi�cantly advanta-
geous compared to the physical vapor deposition
(PVD) processes.

(d) Properties such as crystal structure, surface mor-
phology, and orientation of the products can be
manipulated and customized via the CVD’s process
parameters.

(e) It is capable of producing a variety of coatings, such
as single layer, multilayer, composite, nanostructured,
and functionally graded coating materials, along with
well-controlled dimension and unique structure at
low processing temperatures.

(f) 	e rate of deposition can be readily adjusted. Low
deposition rates are favored for the growth of epitaxial
thin �lms formicroelectronic applications, while high
deposition rates are preferred for the deposition of
thick protective coatings.

(g) 	e processing cost for the conventional CVD tech-
nique is quite low.

(h) 	e CVD technique allows the usage of a wide variety
of chemical precursors, such as halides, hydrides, and
organometallics, which enables the deposition of a
large spectrum of materials that encompasses metals,
carbides, nitrides, oxides, sulphides, III–V, and II–VI
materials.

(i) 	e low deposition temperatures allow the desired
phases to be deposited in-situ at low energies via
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Figure 1: A schematic diagram of the CVD coating [7].

vapor phase reactions, or nucleation and growth
on the substrate’s surface. 	is, in turn, allows the
deposition of refractorymaterials at a fraction of their
respective melting temperatures.

However, the drawbacks of this technique include the follow-
ing:

(a) the inherent chemical and safety hazards that might
be instigated by the use of toxic, corrosive, �ammable,
and/or explosive precursor gases. Recently however,
these issues have been mitigated by using variants
of CVD methods such as electrostatic spray-assisted
vapor deposition (ESAVD) and combustion chemical
vapor deposition (CCVD) methods, which employ
more environmental-friendly precursors;

(b) the di
culty encountered when trying to deposit
multicomponent materials with well-controlled stoi-
chiometry via multisource precursors, due to the fact
that di
erent precursors adhere to di
erent vaporiza-
tion rates. However, this limitation can be negated via
the utilization of single source chemical precursors;

(c) the high level of sophistication in the reactor or
vacuum system in CVD variants such as low pressure
or ultrahigh vacuumCVD, plasma-assistedCVD, and
photo-assisted CVD tends will inevitably increase the
cost of production. However, there are exceptions
to this case, such as aerosol assisted chemical vapor
deposition (AACVD) and �ame-assisted chemical
vapor deposition (FACVD), where it might be a
viable alternative that guarantees low production
costs [7].

2.1.2. Variants of CVDMethods. Both the conventional CVD
and thermal activated CVD (TACVD) rely upon thermal
energy to activate chemical reactions. However, other sources
of energy are also viable for this purpose. 	e advancements
and uniqueness of di
erent variants of the CVD method are
discussed and detailed by Choy [7], while Figure 2 represents
the relationship between di
erent parameters and coating
properties.

In all of the CVD processes, several basic functions must
be provided. 	is includes free movement of the reactants
anddiluents gases to the deposition surface, utilizing di
erent
source to provide reactant’s activation energy, and maintain



International Journal of Photoenergy 3

Process parameters

∙ Type of precursor

∙ Gas ratio

∙ Substrate T/deposition T

∙ Pressure

∙ Flow rate

∙ Deposition time

∙ Reactor geometry

Coating properties

∙ Nucleation and growth

∙ Deposition rate

∙ Composition/stoichiometry

∙ Uniformity and adhesion

∙ Physical/chemical/electrical/
optical/magnetical/mechanical
properties

CVD phenomena

∙ �ermodynamics

∙ Chemical kinetics (gas

phase/surface)

∙ Mass transport

∙ Microstructure

∙ Coating thickness

Figure 2: A schematic representation of the relationship of process parameters, CVD phenomena, and coating properties [7].

a speci�c system pressure and temperature, optimizing the
chemical deposition method, and the complete removal of
by-product gases.	e provisions of these functions, however,
require adequate control, high e
ectiveness, and foolproof
safety.

Atmospheric-pressure CVD (APCVD) uses the low-
temperature (below 600∘C) rotary vertical-�ow reactors and
a continuous, in-line conveyorized reactors with various gas
distribution features,mostly for depositing oxides, binary and
ternary silicate glass coatings for solid-state devices. Low-
pressure CVD (LPCVD) (typically 0.1–10 torr) in the low-,
mid-, or high-temperature range uses resistance-heated hot-
wall reactors of tubular, bell-jar, or close-spaced designs.
	e advantage and wide usage of LPCVD over APCVD are
attributed to the fact that, in LPCVD, no carrier gases are
needed, particle contamination is reduced, and �lm unifor-
mity and conformity are superior in conventional APCVD
reactor systems [8].

In a metalorganic chemical vapor deposition (MOCVD),
the copyrolysis of various combinations of organometallic
compounds and hydrides is employed for the growth of
thin epitaxial layers of compound semiconducting materials.
Composite layers of accurately controlled thickness and
dopant pro�le are required to produce structures of optimal
designs for device fabrication [9].

Photo-enhanced chemical vapor deposition (PHCVD)
uses electromagnetic radiation, usually short-wave ultraviolet
radiation in order to activate the reactants in the gas or
vapor phase. 	e selective absorption of photonic energy

by the reactant molecules or atoms initiates the process by
forming reactive free-radical species that will then interact to
form a desired �lm product. In laser-induced chemical vapor
deposition (LCVD), a laser beam prepares a highly localized
heat in a substrate, which will then induce �lm deposition via
CVD surface reactions [8]. Table 1 presents some of research
results on materials’ preparation using CVD methods for
DSSC application.

2.2. Atomic Layer Deposition (ALD). 	e atomic layer depo-
sition (ALD) method is considered a self-imposed �lm
growth method that is de�ned by the alternating exposure
of the chemical species in a layer-by-layer manner. ALD
is divided into four crucial steps: (1) the exposure of the
metal precursor, (2) evacuation or purging of the precursors
and any by products from the chamber, (3) exposure of the
other reactant species (nonmetal precursor), for example,
nitrogen containing reducing agents for nitrides or reduc-
ing agents for metals, and (4) evacuation or purging of
the reactants and by product molecules from the chamber
(Figure 3). 	e most imperative requirement in the initial
step is self-imposed limitation on the precursor molecule’s
adsorption process. In most cases, this requirement is met
via the ligands that are linked to the metal atoms present
in the precursors, which includes halogen or organic lig-
ands. 	is will inevitably curtail further adsorption by
the metal precursor via the passivation of the adsorption
sites on the saturation coverage of one monolayer or less
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Table 1: Some research results on DSSC using di
erent CVD methods.

Materials Method E
ciency (�)% Reference

Graphene-based multiwalled carbon
nanotubes (GMWNTs)

Drop casting and low pressure chemical vapor
deposition (LPCVD)

3.0 [130]

Nanostructured TiO2 Flat-�ame chemical vapor deposition >4 [131]

Graphene-CoS
Low pressure thermal chemical vapor
deposition (LPCVD)

3.42 [78]

ZnO/TiO2

	ermal chemical vapor deposition
— [132]

ZnO nanostructures coated on vertically
aligned carbon nanotubes (CNTs)

	ermal chemical vapor deposition 1.94 [133]

MWNTs (multiwall carbon nanotubes)
	ermal chemical vapor deposition

0.99 [134]

TiO2 thin �lm
Metalorganic chemical vapor deposition
(MOCVD)

— [135]

InN deposited over TiO2 nanoparticle
(NP) �lms

Metalorganic chemical vapor deposition
(MOCVD)

7.07 [136]

Mesoporous TiO2 with polymer
electrolyte

Initiated chemical vapor deposition (iCVD) 2.8 [137]

TiO2 thin �lms
Atmospheric pressure chemical vapor
deposition (APCVD)

— [138]

Nanocrystalline TiO2 thin �lms Chemical vapor deposition 0.17 [139]

Precursor

Byproduct

Reactant

Step 1: precursor exposure Step 2: purge

Step 3: reactant exposureStep 4: purge

1 cycle

Figure 3: Atomic layer deposition (ALD) [10].

that is achieved. 	e current trend of downscaling devices
has propelled ALD to the forefront as one of the pri-
mary methods of nanoscale device fabrication, due to its
superiority over conventional techniques such as PVD or
CVD.

2.2.1. Advantages and Limitations. ALD is sequential, self-
limiting surface reaction process that enables atomic layer
control (angstrom or monolayer level) and excellent confor-
mal deposition [11].	is aspect results in excellent step cover-
age and conformal deposition on high aspect ratio structures.
ADL can produce continuous, smooth, and pinhole-free

�lm. It is possible to obtain high quality materials and low
processing temperatures with the ALD method.

ALD processing also includes enormous substrates and
parallel processing of multiple substrates as well. Due to the
fact that the precursors to the ALD are gas phase molecules,
the entire space will be �lled with it regardless of the
substrate’s geometry. 	e line-of-sight to the substrate vis-à-
vis the substrate in this process is also unimportant, along
with problems such as unpredictable vaporization rates of
solid precursors. ALD possesses excellent reproducibility and
is capable of producing multilayer structures in a continuous
process [12, 13]. ALD is also capable of producing sharp
interfaces and superlattices, allowing for the possibility of
interface modi�cation.

One major limitation of the ALD method is its lack of
speed, resulting in only a fraction of a monolayer being
deposited in a single cycle. However, the recent developments
help the commercial ALD tools in realizing cycle times of
<5 seconds, resulting in the deposition of a 100 nm �lm in
less than an hour. Recent advances in roll-to-roll ALD are
allowing for an even faster throughput.

	e materials for the �lms grown by ALD are numerous,
which also includes technologically strategic materials such
as Si, Ge, and Si3N4. However, certain multicomponent
oxides and metals cannot be grown or deposited by ALD
in an economical manner, which renders their deposition
unfeasible.

Another limitation of ALD is that it is con�ned by the size
of its reaction chamber. In addition, due to the fact that it is a
chemical technique, there is always a chance that chemical
residues from the precursor might remain in the chamber.
Table 2 presents the results of DSSC prepared using ALD
methods.
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Table 2: Results of DSSC using ALD method.

Materials Method E
ciency (�)% Reference

Al2O3-coated TiO2 (core–shell)
Atomic layer deposition (ALD)

8.4 [140]

Hafnium oxide (HfO2) and aluminum
oxide (Al2O3) on mesoporous TiO2

Atomic layer deposition (ALD) 7.1 [141]

Al2O3overlayers on porous TiO2 Atomic layer deposition (ALD) — [142]

Highly ordered and vertically oriented
TiO2 nanotube arrays

Template-assisted method using atomic layer
deposition (ALD) and reactive ion etching (RIE)

1.17 [143]

Resistance heated furnace

Silicon
wafers

Exhaust

Quartz tube

HCl H2
N2

O2

Flowmeters
Quartz boat

Figure 4: Schematic of a thermal oxidation furnace [14].

2.3. �ermal Oxidation. 	e method of thermal oxidation
produces a thin layer of oxide on a wafer’s surface. It forces
the di
usion of an oxidizing agent into the wafer at high
temperatures and induces a reaction within it. 	e Deal-
Grove model predicts the rate the oxide growth. Figure 4
shows a thermal oxidation furnace.

ZnO nanobelts and nanotetrapods are fabricated via the
thermal oxidation reaction technique. 	e process begins by
heating the zinc paste that was prepared from zinc powder
(purity 99.9%), which was then mixed with a hydrogen
peroxide solution (30wt.%) at a temperature of 1000 ∘Cunder
normal atmosphere for a few minutes. 	e best results of
DSSCs were the short circuit current (�sc) of 1.25mA/cm2,
the open circuit voltage (�oc) of 0.45V, a �ll factor (FF) of
0.65%, and the overall energy conversion e
ciency (�) of
0.68% [15].

ZnO nanonetwork structures with high porosities were
fabricated for use in the photoelectrodes of binder-free dye-
sensitized solar cells (DSSCs) by the PVD method of DC
sputtering, followed by thermal oxidation.	e nano-network
of Zn was successfully transformed into ZnO without under-
going a morphological change through annealing in open
atmosphere [16].

Moreover, Ti–TiO2 structure has been used in the fabrica-
tion of numerous TiO2-based devices, such as solar cells, elec-
trocatalytic electrodes, and noble metal–TiO2–Ti chemical
sensors. Hossein-Babaei and Rahbarpour [17] fabricated Ti–
TiO2–Ti and Ag–TiO2–Ti structures on a thermally oxidized
titanium chip and analyzed their electronic behaviors at
di
erent biasing, thermal, and atmospheric conditions.

3. Liquid Phase Precursor

Due to the fact that the liquid phase chemical methods are
considered a bottom-up approach, the morphology of nano-
materials in the thin �lm can be tuned in order to allow for
better control of particle size, shape, size distribution, particle
composition, and degree of particle agglomeration, while the
chemical deposition methods are inexpensive, which allows
the synthesis of thin �lms materials containing complex
chemical compositions. Lokhande et al. [18] investigated
the deposition of nanocrystalline metal oxide thin �lms,
using chemical methods, and the relation of their respective
morphology in their various applications.

3.1. Electrochemical Deposition (ECD). 	e electrochemical
deposition ofmetals and alloys revolves around the reduction
of metal ions from aqueous, organic, and fused-salt elec-
trolytes (see Figure 5). 	is process is represented by (1)

M�+solution + �e �→ Mlattice (1)

	is is achievable via two di
erent processes: (1) an electrode-
position process, where � electrons (e) are provided by an
external power supply, and (2) an electroless (autocatalytic)
deposition process, where a reducing agent in the solution
is the electron source (sans an external power supply). Both
processes are representative of electrochemical deposition
[19].

	e electrochemical method counts among the simplest
and most e
ective method of fabricating 1D semiconduc-
tor nanostructures. Among variants of the electrochemical
method in preparing oriented 1D �lm are template-assisted
electrochemical synthesis and direct electrochemical growth
via capping reagents [20]. Among the advantages of the elec-
trochemical methods is the ability to customize and control
the compositions andmorphologies of nanostructuredmate-
rials. Di
erent types of electrochemical deposition such as
electroplating, electrolytic anodization, and electrophoretic
deposition can be used for the synthesis of materials. In
Electrophoretic Deposition, dissociated colloidal cations and
anions disperses onto a conductive substrate. A�er applying
an electric �eld, the colloidal charged particles migrate to
the substrate, get discharged, and form a �lm. Similar to
thermal oxidation in Electrolytic anodization, an oxide �lm
is formed on the substrate; the di
erence is that the anode is
oxidized because of the negative ions in the electrolyte and
forms a nonporous and well-adhering oxide or a hydrated
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Potentiostat/galvanostat

Reference electrode

Working electrode
Counter electrode

Figure 5: 	e schematic representation of the electrodeposition
system [21].

oxide coating on semiconductors and on a few speci�c
metals. During oxidation, the hydrogen gas evolves at the
cathode. Electroplating can be used for the deposition of
metallic coatings on the cathode’s substrate when applying
an electrical current to an electrolytic cell consisting of an
anode, cathode, and an electrolyte solution (containing the
metal ions) [8]. Table 3 summarizes the di
erent type of
electrochemical synthesis that is employed for DSSC.

3.2. Solvothermal/Hydrothermal Methods. Both the solvo-
thermal and hydrothermal methods are e
ective tools in
the generalization and systematic control of the syntheses of
nanomorphologies. Figure 6 shows the typical autoclave for
solvothermal/hydrothermal synthesis.

	e solvothermal/hydrothermal methods are important
technologies with regard to the production of semicon-
ductor nanowires at low temperatures. Zou et al. [22]
discussed nanowire growth from mainly four aspects in
the solvothermal/hydrothermal processes (1) materials with
highly anisotropic crystal structures, (2) coordination direct-
ing/mixed solvents, (3) surfactants/capping reagents, and (4)
reactions at relatively high temperatures.

Both the hydrothermal and solvothermal methods have
some poignant di
erences. 	ese di
erences include the fact
that the solvothermal method (using non-water as a solvent)
can practically halt oxidization, a factor that is especially
imperative to the synthesis of a variety of nonoxides [22].

“Hydrothermal synthesis” is de�ned by the heteroge-
neous reactions in aqueous media above 100∘C, at 1 bar
of pressure [24]. It remains one of the preferred methods
in fabricating pure �ne oxide powders. Figure 7 details the
schematic of the hydrothermal synthesis.

For hydrothermal experiments, the prerequisites for the
starting materials are (i) knowing the composition, (ii) being
as homogeneous as possible, (iii) being as pure as possible,
and (iv) being as �ne as possible [26]. Sōmiya and Roy [26]

Spring

Stainless steel

lid

Teflon liner

Precursor
solution

Stainless steel
autoclave

Figure 6: Schematic diagram of the autoclave used in solvother-
mal/hydrothermal synthesis [23].

described some of di
erent types of hydrothermal synthesis
methods (see Table 4).

3.2.1. Advantages and Disadvantages of Hydrothermal/Solvo-
thermal Synthesis. 	e advantages include the following.

(1) Most of thematerials that are involved can be induced
to solubility via heat and pressure applied to the
system up to its critical point.

(2) It o
ers a signi�cant enhancement to the chemical
activities of the reactant, the possibility to replace the
solid-state synthesis, andmaterials, whichmay not be
obtained via solid-state reaction but may be prepared
through hydrothermal/solvothermal synthesis.

(3) Products of intermediate state, metastable state and
speci�c phase may be easily produced, and novel
compounds of metastable state and other speci�c
condensed state may be synthesized.

(4) Simpli�ed and precise control of the size, shape
distribution, and crystallinity of the end product via
the adjustment of parameters such as reaction tem-
peratures and time, the types of solvents, surfactants
and precursors can be achieved.

(5) Substances that are low in melting points and high in
vapor pressures and tendency towards pyrolysis will
be obtained.

	e disadvantages of hydrothermal/solvothermal synthesis
are as follows:

(1) the need of expensive autoclaves;

(2) safety issues during the reaction process;

(3) impossibility of observing the reaction process
(“black box”) [27].

Researchers have used both the hydrothermal and solvother-
mal methods extensively. Some of most recent researches
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Table 3: Di
erent electrochemical deposition methods used in DSSC.

Materials Method E
ciency (�)% Reference

Porous ZnO on carbon nanotube (CNT)
coated polymer

Electrochemical deposition 2.5 [144]

Vertical ZnO nanotube (ZNT)
Electrochemical deposition followed by a selective
etching process

1.01 [145]

Well-crystallined ZnO-eosin Y hybrid thin
�lms

Two-step cathodic electrodeposition 0.21 [146]

Crystalline nanoporous layers of ZnO Gas template electrodeposition 2.1 [147]

ZnO/dye hybrid thin �lms
Cathodic electrodeposition (electrochemically
self-assembled)

— [148]

ZnO nanobelt array �lms
Electrodeposition method with liquid crystal
template

2.6 [149]

ZnO porous �lm on a plastic substrate
Electrophoresis deposition (EPD) process with
UV-O3 treatment

4.04 [150]

ZnO photoanode on plastic Electrophoretic deposition method 4.17 [151]

Nanowires and hierarchical ZnO
nanostructures

Anodization and subsequent electrochemical
deposition

— [152]

Branched hierarchical ZnO nanowire arrays Two-step electrochemical deposition process 0.88 [153]

Mesoporous platinum Electrochemical deposition 7.6 [154]

Platinum/graphene hybrid �lm Electrochemical deposition 7.88 [155]

Graphene-Pt/ITO (ITO-PG) Electrochemical deposition 7.57 [156]

Platinum nanoparticle Electrochemical deposition 6.4 [157]

	in Pt counter electrode Pulsed electrodeposition method 6 [158]

Platinum nanoparticles on plastic substrates Electrophoretic deposition 5.8 [159]

Platinum (Pt) layer on ITO Electroless deposition 6.46 [160]

Composite (PProDOT-Et2/Pt) Electropolymerization 6.65 [161]

Closely packed titania nanoparticles Electrochemical deposition 6.27 [162]

Coaxial TiO2/ZnO nanotube arrays Electrochemical deposition 2.8 [163]

(�	
4−-PEDOT/TiO2/FTO) Electrochemical deposition 4.78 [164]

Nanocrystalline anatase TiO2 Reductive electrodeposition 5.1 [165]

TiO2/dye hybrid �lms Anodic electrodeposition — [166]

Ordered titanate nanotube (TNT) �lms Electrophoretic deposition 3.79 [167]

Titanate nanotubes Hydrothermal process and electrophoretic deposition 6.71 [168]

Mesoporous TiO2 �lm on a titanium (Ti) foil Electrophoretic deposition 6.5 [169]

Mesoporous TiO2 photoanode �lm on
plastic substrate

Electrophoretic deposition 4.37 [170]

TiO2-B nanoribbon �lms Electrophoretic deposition 0.87 [171]

Highly ordered TiO2 nanotube arrays Electrophoretic deposition 6.28 [172]

Titanium oxide (TiO�) thin �lms Cathodic electrolysis 2.33 [173]

Nanostructured TiO2 �lms
Plasma electrolytic oxidation combined with
chemical and thermal post-treatments

2.194 [174]

Combined TiO2 structure with nanotubes
and nanoparticles

Electrochemical anodization 5.75 [175]

Titanium dioxide (TiO2) nanotube arrays Anodizing 4.38 [176]

Non-annealed anatase TiO2 �lm Anodizing and sputtering — [177]

Titania nanotube arrays Electrochemical anodization — [178]

TiO2 nanotube arrays Anodizing, detachment and transfer method 1.78 [179]

Aligned high-aspect ratio TiO2 nanotube
bundles

Rapid breakdown anodizing (electrochemical) — [180]

Well-aligned TiO2 nanotube arrays Electrochemical etching 2.13 [181]
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Table 3: Continued.

Materials Method E
ciency (�)% Reference

TiO2-nanotube array electrode
Arc ion plating (AIP) deposition and anodically
oxidizing

1.88 [182]

Nanocrystalline TiO2 �lms
Microplasma oxidation (MPO) method (process
combines electrochemical oxidation with a
high-voltage spark treatment in an electrolyte bath)

0.092 [183]

Nanostructured TiO2 �lms
Plasma electrolytic oxidation (PEO)combined with
chemical and thermal posttreatments

2.194 [174]

Functionalized and nonfunctionalized
fullerene thin �lms on ITO glasses

Electrolytic micelle disruption method (the
electrolysis method)

— [184]

Arborous structure SnO2 porous �lms on Ti
substrate

Pulse-potential technique (electrodeposition) 0.47 [185]

Crystalline CuSCN �lms Cathodic electrodeposition — [186]

(PProDOT-Et2)
Electrochemical polymerization
(electropolymerization)

7.88 [187]

High conductive transparent substrates were
fabricated with nickel grids

Electroplating process 4.3 [188]

Polyaniline nano�ber/carbon �lm Electrochemical deposition 6.85 [189]

Polyaniline nano�bers Pulse electropolymerization 5.13 [190]

MineralizerMineralizer Mineralizer

Solid

phase
Solid

phase

Solid

phase

SolventSolventSolvent

Starting materials

Heating Pressure

⇌
Dissolution

Doposition

Figure 7: Schematic of the hydrothermal synthesis procedure [25].

[28–32] have used the hydrothermal method for the prepa-
ration of nanoparticles of TiO2 and ZnO and their com-
posites for DSSC application. Feng et al. [33] employed
the hydrothermal method, followed by a fast dip coating
for the synthesis of ZnO@TiO2 core-shell long nanowire
arrays. 	eir DSSC achieved an e
ciency of 3.8. Other
researchers used mix solvents for the hydrolysis of TiCl4.
	e experimental test of prepared DSSC from the resulted
nanocrystalline TiO2 showed the high value e
ciency (� =
9.13%) [34]. Capping agents-assisted hydrothermal method
has been employed for the preparation of ZnO nanostruc-
tures for DSSC application [35]. 	e application of the
solvothermal method using templates for the synthesis of
mesoporous titania hollow spheres resulted in a DSSC with
3.16% e
ciency.

3.2.2. Microwave Irradiation. 	e hydrothermal method
plays a de�ning role in the shaping of the microstructures

of TiO2. However, conventional hydrothermal processing is
usually reliant upon high temperatures and pressures, along
with extended processing times and complex procedures
for the synthesis of TiO2 nanocrystals [36, 37]. 	is paves
the way for microwave processing of inorganic compounds,
which forms an attractive �eld inmodernmaterial science. To
this end, many inorganic materials had been synthesized via
microwave ovens [38–42], mostly through rapid microwave-
material interactions. 	is technique is also viable for the
synthesis of nanosized TiO2 powder possessing high degrees
of crystallinity and monodispersed crystallites [43–45].

It has also been reported that the integration of
microwave irradiation has e
ectively enhanced the e
ciency
of the hydrothermal method vis-à-vis the preparation of
inorganic materials [46–53]. Microwave-assisted method has
the unique advantage of uniform, rapid, and volumetric
heating compared to its conventional counterpart. More-
over, microwave-assisted hydrothermal method signi�cantly
reduces both the processing time and temperatures, which
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Table 4: Hydrothermal synthesis.

Hydrothermal crystal growth

Hydrothermal treatment

Hydrothermal alternation

Hydrothermal dehydration

Hydrothermal extraction

Hydrothermal reaction sintering

Hydrothermal sintering

Corrosion reaction

Hydrothermal oxidation

Hydrothermal precipitation—hydrothermal crystallization

Hydrothermal decomposition

Hydrothermal hydrolysis—hydrothermal precipitation

Hydrothermal electrochemical reaction

Hydrothermal mechanochemical reaction

Hydrothermal + ultrasonic

Hydrothermal + microwave

results in rapid crystallization and the simpli�cation of
the whole process [37]. In most cases, TiO2 nanoparticles
are produced via the hydrothermal treatment. A multi-
mode microwave heating system, operating at a frequency
of 28GHz, is utilized in order to induce rapid process-
ing [45]. 	e synthesis of ZnO nanorods electrodes uti-
lizing microwaves also demonstrated marked performance
improvements [54].

It has been determined that the usage of organometallic or
inorganic precursors inmicrowave-assistedmethods resulted
in remarkable improvements in all aspects. 	is is demon-
strated in the work of Bhatte and coworkers [55], where they
employed Zn (CH3COO)2 as an additive-free synthesis of
nanocrystalline zinc oxide via themicrowave technique.Also,
Brahma and Shivashankar [56] reported the utilization of
the microwave method for depositing thin �lms and thick
coatings of metal oxides via a liquid medium involving the
microwave irradiation of an inorganic complex solution and
zinc acetylacetonate in a dielectric solvent. In this work,
ZnO nano�owers and ZnGly micro- and nanoplates are
synthesized via a very rapid and convenient microwave-
assisted polyol method. ZnO nano�ower based solar cell
sensitized with N719 dye demonstrated the maximum con-
version e
ciency of 1.03% [57].

Meanwhile, it must be considered that microwave tech-
nique can be used with other methods such as chemical bath
deposition, which requires heating and calcination.

3.2.3. Ultrasonic Technique. 	e method of sonochemical
processing has proven itself useful in fabricating novel
materials with unique properties [58, 59]. 	e working
principle behind the chemical e
ect of ultrasound is derived
from acoustic cavitation, which is the formation, growth,
and implosive collapse of bubbles in a liquid. 	is in turn
generates localized hot spots via adiabatic compression or
shock wave formation within the gas phase of the collapsing

bubble.	ese formed hot spots are demonstrated to possess a
transient temperature of about 5000K, pressure of 1800 atm,
and cooling rates exceeding 108Ks−1 [59]. 	e speci�c appli-
cation of ultrasound in the synthesis of a variety of materials
has been analyzed by Suslick and Price [60].

Wang et al. [61] employed ultrasonic waves to fabricate
mesoporous TiO2 under di
erent conditions for DSSC appli-
cations.

3.3. Chemical Bath Deposition (CBD). 	e chemical bath
deposition (CBD) method, also known as controlled precip-
itation or solution growth method, or quite simply, chemical
deposition, has recently been vaunted as a viable method for
the deposition of both metal chalcogenide and metal oxide
thin �lms. CBD is essentially a simplemethod, requiring only
a hot plate with a magnetic stirrer. 	e precursor chemicals
are widely available and cost little. 	e CBD method allows
the coating of a large number of substrates in a single cycle,
provided that a proper jig is designed to do so. In the context
of this method, the electrical conductivity of the substrate is
unimportant. Any part of the surface that is insoluble and can
be accessed by the solution will make a suitable deposition
substrate. 	e deposition process happens at low tempera-
tures, which circumvents the occurrence of oxidation and
corrosion of metallic substrates. Chemical deposition usually
results in the absence of pinholes, and uniform deposits are
easily obtained, since their basic building blocks are ions
instead of atoms.	e parameters are easily controlled, which
allows us to gain better orientations and grain structures.
	e formation of the �lm occurs when the ionic product
dominates the solubility product [8, 9]. 	e whole setup of
this process is detailed in Figure 8.

	e chemical bath deposition (CBD) method has been
employed for the preparation of nanostructures ZnO [62],
garland like ZnO nanorods [63], nanobeads of zinc oxide
[64], cauli�ower-like ZnO Films [65], mesoporous F-doped
ZnO prism array [66], ZnO nanorod arrays [67], ZnO
nanocomposites [68], and ZnO nanoarray [69].

Zumeta et al. and Vigil et al. [50, 70] used microwave-
activated chemical-bath deposition (MW-CBD) for the
preparation of TiO2 forDSSC.	ey claimed that the resulting
TiO2 has superior electrical and mechanical properties.

PVP capped Pt nanoclusters on ITO glass and platinum
on metallic sheets were both prepared using the chemical
deposition method, and have been used in DSSC as counter
electrodes [72, 73].

Li et al. [74] have synthesized SrSnO3 nanoparticles and
employed them for the �rst time as electrode materials
in DSSC using CBD. 	e prepared DSSC has achieved an
e
ciency of 1.02%.

3.4. Successive Ionic Layer Adsorption and Reaction (SILAR)
Method. Successive ionic layer adsorption and reaction
(SILAR) is a recently developed method for the deposition
of metal chalcogenide thin �lms, although it has undergone
less scrutiny by researchers [75, 76]. 	e method is based
on the immersion of a substrate into anionic and cationic
precursors, followed by rinsing of the substrate between every
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Figure 8: Schematic representation of chemical bath deposition
method [71].

immersion in double distilled water in order to circumvent
homogeneous precipitation. Figure 9 graphically summarizes
this method. During the immersion into a cationic precursor,
cations are adsorbed onto the substrate’s surface. 	e act
of rinsing a�er immersion will separate the unabsorbed or
excess ions, while simultaneously preventing homogeneous
precipitation. Similarly, when immersed in an anionic pre-
cursor solution, the anions will react with the preadsorbed
cations. 	e remaining unreacted/powdery material can be
expelled via rinsing. 	e whole process of immersion and
rinsing in both the cationic and anionic precursor is regarded
as one full cycle. A�er a few repetitions of these cycles, a
multilayer �lm of desired thickness would be formed. 	e
quality and thickness of these respective �lms are highly
dependent on the preparation parameters. A review by
Pathan and Lokhande [77] outlines the advantages of SILAR
over the CBD method. In the former, the deposition of a
su
ciently thick �lm requires an extended period of time,
whichmakes it crucial that it is operated withmicroprocessor
or computer [18].

Das et al. [78] have prepared CoS-implanted graphene
(G-CoS) �lm electrode using chemical vapor deposition and
SILAR for DSSC. 	e prepared electrode was characterized
in a dye sensitized solar cells (DSSCs). It reached better

e
ciency � = 3.42%, while �sc (mA/cm2), �oc (V), and FF
(%) was 12.8, 0.72, and 36.4, respectively.

	in ZnSe layers were deposited on ZnOnanowires using
SILARmethod byChung et al. [79] forDSSC application.	e
facilitation of electron transfer increased the �sc, which was
followed by improved e
ciency.

3.5. Spray Pyrolysis Method. Spray pyrolysis is regarded as
one of the most attractive and promising �lm preparation
methods. It basically mirrors a �lm processing technique
called thepyrosol technique, where a source solution is

Cations

Anions

Figure 9: Schematic representation of SILAR method [71].

sprayed onto a heated substrate for it to be deposited in the
form of a �lm. 	e mechanism of the process is as follows.
	e source solution is atomized, where small droplets splash
and vaporize on a substrate, which results in the formation of
a dry precipitate and thermal decomposition [80]. Figure 10
shows a schematic of the whole process.

3.5.1. Advantage and Disadvantages. Advantage and Disad-
vantages are as follows:

(i) does not require high quality targets or substrates;

(ii) being of low cost;

(iii) does not require a UHV system;

(iv) continuously produces the material;

(v) chemical reaction occurs within the created micron
to submicron sized liquid droplets—a microcapsule
reactor.

	e technique is quite empirical, with a number of variables
that can a
ect the �nal product such as solute concentration,
atomization technique, temperature, temperature gradient,
residence time in furnace, and carrier gases [80]. Table 5
represents research results using SPD method in preparation
of DSSC. Figure 11 represents the comparison between spin
coating and spray pyrolysis methods.

3.6. Sol-Gel Coating. 	e sol-gel process is also known as
the chemical solution deposition, and it is classi�ed as a wet
chemical technique that is widely being applied in �elds of
materials science and ceramic engineering (Figure 12). It is
mostly used for materials’ synthesis (typically a metal oxide),
initiated from a chemical solution that acts as the precursor
for an integrated network (or gel) of discrete particles or
network polymers. Some common precursors include metal
alkoxides and chlorides, which are pegged to undergo mul-
tiple forms of hydrolysis and polycondensation reactions.
Metal oxides are formed via the linkage of metal ions
with oxo (M–O–M) or hydroxo (M–OH–M) bridges, which
results in a metal-oxo or metal-hydroxo polymers forming in
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Table 5: SPD methods in preparation of DSSC.

Materials Method E
ciency (�)% Reference

Fluorine-doped tin oxide (FTO)
�lms coated on indium-tin oxide
(ITO) �lms

Spray pyrolysis deposition (SPD) 3.7 [191, 192]

ITO-Pt semiconductor powder
containing nanoscale noble metal
particles

Spray pyrolysis — [193]

TiO2 blocking layer Spray pyrolysis — [194, 195]

Porous TiO2 �lms Spray pyrolysis deposition 3.2– 5.1 [81, 196]

TiO2 nanocrystalline electrode Atomized spray pyrolysis (ASP) 8.2 [197]

Nb2O5 blocking layer Spray pyrolysis 3.35 [198]

Boron-doped zinc oxide (B�ZnO)
electrode

Spray pyrolysis deposition 1.53 [199]

ZnO nanostructures Spray pyrolysis 4.7 [200]

a solution.	us, the sol gravitates towards a gel-like diphasic
system of both liquid and solid, whose morphologies ranges
from discrete particles to continuous polymer networks. 	e
sol-gel technique is considered as a bridge for nanoparticles
in the DSSC working electrodes such as TiO2 nanoparticles
(P25 and P90) on polyethylene naphthalate (PEN) plastic
sheet [82] and metal oxide semiconductor nanostructured
such as zinc titanate (ZT), zinc oxide (ZO), and titanium
dioxide (TD).	e highest loading amount of dye and the best
interaction between the semiconductor and dye are related to

ZO,which has higher e
ciency than the other cells. Due to its
high electron conductivity, ZnO has the potential to enhance
dye adsorption and highlight transmittance of a composite
�lm [83]. Generally, the sol-gel process results in a highly pure
product, homogenous, high adhesion, and strength and low
temperature processing.

	e Sol-gel method is one of the most used meth-
ods for materials preparation in DSSC. Certain recent
research achievements using the sol-gel methods include
TiO2 �lm and nanoparticles, ZnO, ZT preparation for DSSC
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application [82, 83, 85–90]. Some researchers employ the sol-
gelmethod in combinationwith physical depositionmethods
such as dip coating, spin coating, and electrospinning in
order to synthesis TiO2, doped TiO2, and TiO2 composites
[90–95].

Kwon et al. [96] used the sol-gel combustion method for
the preparation of nanoporous F-doped tin dioxide �lms.	e
resulting DSSC managed to achieve an e
ciency of 1.2%.

3.7. Template Method. Among the many methods that can be
used to fabricate ordered porous �lms (sputtering, chemical
vapor deposition (CVD), spray pyrolysis and sol-gel process),
the template method is the one that is mostly used, due to
the fact that the pore’s dimensions are determined by the size
of the ordered template beads [97–100]. 	e result of this
method is a material that is homogenous, pure, possessing
novel morphology, structure, and properties.

However, it is commonly acknowledged that without
being combined with another physical and chemical method,
the end product of the template method is not up to par.
	e combination of template growth and sol-gel coating
results in the fabrication of �ne nanostructure of desired
features [101–110]. Jiu et al. [102] reported template growth
of porous TiO2 �lms with mixed polymers of Pluronic F-
127 and cetyltrimethylammonium bromide. Zukalová et al.
[111] reported a similar structure with Pluronic P-123. Both
works produce end products with very high surface areas
but small pore diameters of 4–7 nm [102] and 6–8 nm [101],
respectively.

Dionigi et al. presented a colloidal composite consisting
of monodispersed polystyrene (PS), coated with a titanium
oxide precursor named TALH that acts as a “structure
director” for the fabrication of TiO2 �lms [112]. Meanwhile,
Meng et al. assembled a highly ordered three-dimensional
porous structurewith commercial nanosized crystalline TiO2
particles via a cooperative method, where the fabrication of
the template and the in�ltration of its voids occur simulta-
neously [113]. Also, highly ordered TiO2 porous �lms were
synthesized via a single-step assembly method, where the
porous structures were prepared using polystyrene micro-
spheres, with diameters [114]. Liu et al. prepared porous ZnO
thin �lms that are assembled by multilayer PS templates,
achievable by repeatedly employing the dip coating method
[115]. Table 6 shows the result for DSSC prepared using
template method.

3.8. Self-Assembly. Self-assembled nanosphere monolayers
form the templates of nanosphere lithography and can usually
be fabricated with techniques such as drop coating or spin
coating [116–118] of polystyrene (PS) latex nanospheres.
However, the di
culty in producing a low-defect and large-
area nanosphere monolayer using this method is also noted
[119].

Jhang et al. [119] have used spin-coating that in com-
bination with the water transfer technique produced self-
assembled layer for preparation of nanostructured Pt counter

electrodes.	is electrode achieved�oc (V), �sc (mA/cm2), FF,
and � of 0.71, 14.45, 0.70, and 7.18, respectively. Template-free

chemically induced self-transformation (CIST) method has
employed by Yu et al. [120] for preparation of hollow anatase
TiO2 spheres. 	e fabricated DSSC has been reached at �sc
(mA/cm2), �oc (V), FF (%), and � (%) of 14.7, 0.599, 0.547,
and 4.82, respectively.Mesostructured titania thick �lms have
been synthesized employing of evaporation-induced self-
assembly using nonionic triblock copolymers as templating
agents by Malfatti et al. [121].

3.9. Mechanical Methods. 	ere are many mechanical tech-
niques such as spraying, spinning, dipping and draining, �ow
coating, and roller coating, which are done for depositing
coatings from a liquid media that subsequently reacted
chemically to form the inorganic thin �lm product. 	ese
techniques are also classi�ed in di
erent ways compared to
the physical depositionmethod, which requires a whole other
discussion.

4. Film Processing Techniques

	ere are some techniques which can be used to enhance
the materials’ properties a�er their preparation, as well as
their application for the preparation mix with some other
preparation methods, namely, microwave or ultrasonic.

	e deposited electrode materials on �exible substrate
like polymers require an additional processing step to
improve the necessary interparticle contact for their e
ective
performance as an electrode material, as well as to improve
the mechanical stability, namely, good �lm-substrate adhe-
sion. Organic binders were used in making �exible DSSCs,
but the absence of high temperature sintering of the metal
oxide �lmonpolymer substrates resulted in incomplete neck-
ing of the particles due to the presence of residual organics in
the �lm [122]. UV/ozone and UV radiation treatments of the
deposited metal oxide �lms were used by several groups as a
method for eliminating adsorbed organic impurities on the
surface of metal oxide �lms and improving the interparticle
connection as another low temperature sintering method for
�exible DSSCs [6, 123–127].

In order to realize the selective heating of organic-
inorganic composite �lms, microwave processing seems to
be the most promising choice. Uchida et al. [128] used a
28GHz microwave irradiation process to produce a �exible
DSSC. 	is particular technique is also applicable in the
fabrication of PET-ITO �lm electrodes. A photoelectron
energy conversion e
ciency of 2.16% is realized for all-plastic
cell fabricated by the 28GHzmicrowave irradiation, at 1.0 kW
for 5 minutes.

Gan et al. [129] succeeding in fabricating a hybrid ZnO
nanowire/TiO2 nanoparticle photoanodes for DSSCs using
an ultrasonic irradiation assisted dip-coating method. 	e
gap-�lling e
ciency of TiO2 nanoparticles into the interstice
voids of the ZnO nanowires was enhanced with the assis-
tance of ultrasonic irradiation, which results in an increase
of the total surface area, along with the light harvesting
e
ciency for the hybrid electrode. 	e e
ects of the ultra-
sonic treatment on the microstructure, the sensitization, and
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Table 6: Some research work on DSSC that used template method.

Materials Method E
ciency (�)% Reference

High-crystalline TiO2

nanoparticles as a thin-�lm
Mixed template of copolymer and surfactant 8.24 [102]

Mesoporous titania nanocrystals Sol-gel synthesis using surfactant as template 4.08 [201]

Organized mesoporous TiO2

�lms
Supramoleculartemplating with an
amphiphilictriblock copolymer

— [111]

Multilayered mesoporous TiO2

�lms
Supramolecular templating and layer-by-layer
deposition

5.12 [202]

Nanocrystalline
mesoporoustitania

Surfactant-assisted templating method and
doctor-blading technique

8.06 [203]

Ordered nanoporous TiO2

Di
erent silica templates and the squeeze
printing technique

3.6 [204]

Hollow spherical TiO2 Colloidal carbon spheres as templates 5.64 [205]

Mesoporous anatase-TiO2 Sol-gel using so� template and a hard template 6.71 [206]

Anatase TiO2 hollow spheres Chemical template method 3.79 [207]

Ordered porous TiO2 thin �lms Colloid crystal template 1.269 [208]

Mesoporous TiO2

Sol-gel using water miscible ionic liquid
template

— [209]

Porous TiO2 �lms Templated sol-gel method — [210]

Mesoporous nanocrystalline
TiO2 �lms

Hydrolysis-limited sol–gel process using block
copolymer as template

0.31 [211]

Center hollow ZnO and TiO2

nanotubes arrays
Electrodeposition, chemical etching, and
sol-gel process assisted by templates

1.2 [212]

Ferrocene-derivatized ordered
mesoporous carbon

Hard template method 7.89 [213]

Ordered mesoporous carbon
(OMC)

Evaporation-induced triconstituent coassembly
method using so�-template method employing
triblock copolymer

7.46 [214]

MWCNT/mesoporous carbon
nano�bers composites

Electrospinning, template etching, and thermal
process

6.35 [215]

Nanoporous NiO �lms
NiCl2 in water/ethanol mixed solution, using
triblock copolymers as template

— [216]

Hollow silver microspheres
Chemical deposition using sacri�cial
templating method

— [217]

the performance of hybrid ZnO NW/TiO2 NP electrodes
were thoroughly analyzed.

5. Lessons Learned

Taking into account the contents that are presented, it can be
surmised that choosing an appropriate method is incumbent
upon its parameters. For example, if the deposition rate is
the primary parameter being considered, then the ALD and
SILAR methods are ruled out, as they are detrimental in the
context of deposition rates. If safety is of vital importance,
then the use of CVD, ALD, and solvothermal/hydrothermal
methods is not recommended. Furthermore, if one needs
to synthesize materials that are unobtainable via solid-state
reaction, the usage of solvothermal/hydrothermal method
might be most suitable.

	e preparation of thin �lms is highly reliant on the
minute control of the materials at a molecular and atomic
level, which encompasses surface modi�cations, deposition,
and structuring. 	e preparation techniques and methods of

thin �lm preparation have been signi�cantly enhanced in the
past decade due to better understanding of the physics and
chemistry of thin �lms, alongwith their fundamental aspects,
microstructural evolution, and their respective properties.

6. Conclusion

	e selection of a speci�c deposition method needs variety
of consideration and criteria such as thin �lm application,
material characteristics, and process technology. It is found
that there is no general guideline for choosing the best
deposition method. However, di
erent preparations and
deposition technologies with materials’ and substrates’ type,
speci�ed application, cost, and requested e
ciency allow
the researchers to select a more appropriate technique for
their research. Future work focuses more on the fabrication
conditions and accounts for more parameters in order to
compare the available chemical preparationmethods in terms
of their e
ect onDSSC e
ciency, stability, durability cost, and
optimization of the working conditions.
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