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Abstract: Digital farming is the practice of modern technologies such as sensors, robotics, and data analysis for shifting from 

tedious operations to continuously automated processes.  This paper reviews some of the latest achievements in agricultural 

robotics, specifically those that are used for autonomous weed control, field scouting, and harvesting.  Object identification, 

task planning algorithms, digitalization and optimization of sensors are highlighted as some of the facing challenges in the 

context of digital farming.  The concepts of multi-robots, human-robot collaboration, and environment reconstruction from 

aerial images and ground-based sensors for the creation of virtual farms were highlighted as some of the gateways of digital 

farming.  It was shown that one of the trends and research focuses in agricultural field robotics is towards building a swarm of 

small scale robots and drones that collaborate together to optimize farming inputs and reveal denied or concealed information.  

For the case of robotic harvesting, an autonomous framework with several simple axis manipulators can be faster and more 

efficient than the currently adapted professional expensive manipulators.  While robots are becoming the inseparable parts of 

the modern farms, our conclusion is that it is not realistic to expect an entirely automated farming system in the future. 
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1  Introduction
 
 

Modern farms are expected to produce more yields with higher 

quality at lower expenses in a sustainable way that is less 
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dependent on the labor force.  Implementation of digital farming 

and site-specific precision management are some of the possible 

responses to this expectation, which depends not only on the sensor 

technology but the continuous collection of field data that is only 

feasible through proper utilization of agricultural robots.  

Agricultural scientists, farmers, and growers are also facing the 

challenge of producing more food from less land in a sustainable 

way to meet the demands of the predicted 9.8 billion populations in 

2050[1].  That is equivalent of feeding a newly added city of 

200 000 people every day.  Integration of digital tools, sensors, 

and control technologies has accelerated design and developments 

of agricultural robotics, demonstrating significant potentials and 

benefits in modern farming.  These evolutions range from 

digitizing plants and fields by collecting accurate and detailed 

temporal and spatial information in a timely manner, to 

accomplishing complicated nonlinear control tasks for robot 

navigation.  Autonomous guided tractors and farm machinery 

equipped with local and global sensors for operating in row-crops 

and orchards have already become mature.  Examples include the 

John Deere iTEC Pro (Deere & Company, Moline, Illinois) which 

uses Global Navigation Satellite System for steering control, and 

the Claas autonomous navigation (Harsewinkel, Ostwestfalen- 

Lippe, Germany) which offers Cam Pilot steering and 3D computer 

vision in addition to the GPS-based control to follow features on 

the ground.  Agricultural field robots and manipulators have 

become an important part in different aspects of digital farming[2] 
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and precision agriculture[3].  With the advances in controls theory, 

applications of these robots in digital farming have shown growing 

interest towards automation, changing the traditional field activists 

to high-tech industrial tasks that are attracting investors, 

professional engineers, and companies.  While many are still in 

the prototype phase, these robots are now capable of performing 

various farming operations, including crop scouting[4], pest and 

weed control[5], harvesting[6-10], targeted spraying[11,12], 

pruning[13,14], milking[15,16], Phenotyping[17,18], and sorting[19].  

Unlike the industrial case, these applications can be extremely 

challenging to be fully automated.  An agricultural robot is 

subjected to an extremely dynamic environment, and yet expected to 

touch, sense, or manipulate the crop and the surroundings in a 

precise manner which makes it necessary to have the minimal 

amount of impact while increasing efficiency[20].  Although 

industrial robotic platform with precision accuracy and speed are 

available, their application in agriculture is limited due to what we 

refer to as unstructured environments and uncertain tasks which 

impose great challenges.  For example, the demand for off-season 

cultivation of fruits and vegetables require different aspects of 

automation and robotics in closed-field plant production 

environments like greenhouses[21].  A field robot with spraying, 

de-leafing, and harvesting manipulator and end-effector for such 

tasks in a dynamic, complex, and uncertain environment should 

take into account the different arrangements of plant sizes and 

shapes, stems, branches, leaves, fruit color, texture, obstacles, and 

weather influences in order to operate efficiently in the real world 

condition.  In the case of harvesting for example, the sensing 

mechanism has to identify the ripeness of fruits in the presence of 

various disturbances in an unpredicted heterogeneous environment, 

while the actuation mechanism should perform motion and path 

planning to navigate inside the plant system or tree canopy with 

minimum collisions for grasping and removing the soft fruit 

delicately.  This is by far more challenging compared to an 

industrial robot in charge of picking and placing a solid bolt in an 

assembly line. 

The organization of this paper is as follow: In Section 2 we 

have provided a literature review on the research and development 

in agricultural robotics followed by separated discussions focused 

on weed control, field scouting, and harvesting robots.  Section 3 

highlights the perspective of agricultural robotics and the 

opportunities for digital farming and virtual orchards.  Section 4 

extends our discussion on the challenges of digitalization, 

automation, and optimization of robotics for precision agriculture.  

A summary of findings and conclusions are presented in section 5.  

2  Research and development in agricultural robotics 

Research works on agricultural robotics cover a wide range of 

applications, from automated harvesting using professional 

manipulators that are integrated with custom designed mobile 

platforms and innovative grippers such as the one shown in Figure 

1, or autonomous targeted spraying for pest control in commercial 

greenhouses[22], to optimum manipulator design for autonomous 

de-leafing process of cucumber plants[23], and simultaneous 

localization and mapping techniques for plant trimming[24].  Most 

of the published literatures in this context are focused on (i) 

vision-based control, advanced image processing techniques, and 

gripper design for automated harvesting of valuable fruits (see for 

example the published literatures on sweet pepper[7,25-28], oil 

palm[29-31], mango[32], cucumber[23,33-38], almond[39,40], apple[41-43], 

strawberry[44-46], cherry fruit[47], citrus[48–50], vineyard[51-53], and 

tomato[54-57]), or (ii) navigation algorithms and robust machine vision 

systems for development of field robots that can be used in yield 

estimation[42,58,59], thinning[60], weeding and targeted spraying[61-64], 

seedling and transplanting[65,66], delicate handling of sensitive 

flowers[67,68], and multipurpose autonomous field navigation 

robots[18,69-75].  In addition to these, several virtual 

experimentation frameworks have been developed for agricultural 

robots.  An example includes the work of [76] in which a generic 

high-level functionality was provided for easier and faster 

development of agricultural robots.  In another attempt, a 

customized software platform called ForboMind[77] was introduced 

to support field robots for precision agriculture task with the 

objective to promote reusability of robotic components.  

ForboMind is open-source, and support projects of varying size and 

complexity, facilitate collaboration for modularity, extensibility, 

and scalability.  In order to experiment with vision sensors and 

agricultural robots[7], created a completely simulated environment 

in V-REP (Coppelia Robotics)[78], ROS[79], and MATLAB 

(Mathworks, Natick, MA, USA) for improvement of plant/fruit 

scanning and visual servoing task through an easy testing and 

debugging of control algorithms with zero damage risk to the real 

robot and to the actual equipment.  Example solutions addressing 

robotic harvesting included eye-in-hand look-and-move 

configuration for visual servo control[49,80-82], optimal manipulator 

design and control[29,38], end-effector and gripper design[8,83], 

stability tests for robot performance analysis in the dense obstacle 

environments[84], motion planning algorithms[85], and orchard 

architecture design for optimal harvesting robot[6].  Improvements 

in vision-based control system[7,48,49,86,87] have enabled several 

applications of robotic manipulators for greenhouse and orchard 

tasks and have contributed to the decrease in workload and labor’s 

fatigue while improving the efficiency and safety of the operations.  

These achievements were considered a challenge in the earlier 

agricultural robotics works[88-90].   

Agricultural field robots[91] on the other hand contribute to 

increasing the reliability of operations, improved soil health, and 

improved yield.  They are generally equipped with two or 

multiple sensors and cameras for navigation control, simultaneous 

localization and mapping, and path planning algorithms[92-94].  

Some of the earlier attempts for developing agricultural field robots 

prototypes can be found in the works of [95-98].  The automated 

harvesting platform shown in Figure 1 is one of the most recent 

achievements in the field of agricultural robotics.  It was 

introduced by the SWEEPER EU H2020 project consortium – 

(www.sweeper-robot.eu) on July 4, 2018.  It is an assembly of an 

autonomous mobile platform with Fanuc LRMate 200iD robot 

manipulator (Fanuc America Corporation, Rochester Hills, MI) 

holding an end-effector and catching device for fruit harvesting.  

The ultimate goal of the Sweeper project is to put the first working 

sweet pepper harvesting robot on the market.  Using the camera 

system mounted on the end-effector, the SWEEPER scans plants 

looking slightly upwards for detecting mature fruits (the robot 

observe the bottom part of the peppers to determine the fruit 

maturity).  The camera and sensors setup is completely 

independent of the surrounding light conditions and provide 

information about color images and distance maps that are used for 

fruit detection, localization, and maturity classification.  The 

SWEEPER robot has been trained to detect obstacles such as leaves 

and plant stems in the images.  The training process was 

accelerated using simulated artificial pepper plant models and deep 
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learning network algorithms.  Once the robot detects a pepper 

fruit, information about its location is used to perform path 

planning for the robotic arm trajectory.  Because of the limited 

moving space between the planting rows calculation of this 

trajectory can be very complex.  The robot then employs visual 

servo control to reach the peduncle of the spotted peppers.  The 

robot camera takes images from different angles so that the arm 

approaches the pepper in such a direction that the stem is always on 

the back side of the pepper.  A small cutting tool is positioned just 

above the pepper which cuts the peduncle while the cutting tool is 

moving downward.  This separates the pepper from the plant’s 

stem and drops it into a catching device which is moved toward the 

pepper bin by the robotic arm.  It is notable that the SWEEPER 

can only harvest fruits that are located on the front side of the 

plants and stems. A conveyer belt is said to be added to the robot in 

order to convey harvested peppers to a standard pepper trolley.  

Multiple robots and trolley will be parts of a fully automated 

post-harvest logistic management system.  The robot will exploit 

its harvesting skill in full in a single stem row cropping system.  

The most suitable yellow existing variety was used during the 

SWEEPER test.  According to the project website, for single row 

growing system, the performance of SWEEPER evaluated with 

only fruits that were on the front side of stems was respectively 

62% and 31% in the modified and commercial crop.  In general, 

SWEEPER has a success rate of 49% in harvesting ripe fruits with 

modified crop, and only 20% with the commercial (current 

greenhouse growing) system.  The average time to harvest one 

fruit with SWEEPER is between 18 and 25 seconds compromising 

4.73 s for platform movement, 3.71 s for fruit localization, 3.02 s 

for obstacle localization, 4.03 s for visual servoing, 2.22 s for fruit 

detaching, and 7.77 s for dropping fruit in container (data extracted 

from SWEEPER website).  The SWEEPER project team has 

announced in their website that they have also achieved a harvest 

time of less than 15 seconds (excluding platform movement) in 

laboratory experiments.  It is expected that results of projects like 

this will serve as input for the development of a new fully 

optimized and automated fruit production system for the 

greenhouse horticulture sector.    
 

 
Source: Sweeper EU H2020 project consortium – www.sweeper-robot.eu. 

Figure 1  SWEEPER robot in action: The world first fully automated sweet pepper harvesting platform 
 

For the purpose of this paper we provide a general review of 

the recent advances in agricultural robotics, with focus on those 

that employ high-tech sensors, artificial intelligence, machine 

learning, and simulation environments for (i) weed control and 

targeted spraying, (ii) field scouting and data collection, and (iii) 

automated harvesting.  We then extend our discussion to introduce 

some of the most widely used simulation software and virtual 

platforms that can be adapted to accelerate the design of 

agricultural robots, improve operational performances, and evaluate 

control capabilities of the actual hardware.   

2.1  Weed control and targeted spraying robots 

One of the main aspects of agricultural robotics is concerned 

with the substitution of the human workforce by field robots or 

mechanized systems that can handle the tasks more accurately and 

uniformly at a lower cost and higher efficiency[6,99-103].  Weed 

control and precise spraying are perhaps the most demanded 

applications for agricultural field robots.  In this regard, targeted 

spraying[104] with robots for weed control application has shown 

acceptable results and reduced herbicide use to as little as 5%-10% 

compared to blanket spraying[105].  While still not fully 

commercialized, various promising technologies for weed robots 

have been introduced and implemented over the past 10 years as 

the results of interdisciplinary collaborative projects between 

different international research groups and companies.  Some of 

the well-known names that are actively involved in the research 

and development for various types of weed control robots are the 

Wageningen University and Research Center (The Netherlands), 

Queensland University of Technology, the University of Sydney, 

Blue River Technologies (Sunnyvale, CA, USA), Switzerland’s 

ecoRobotix (Yverdon-les-Bains, Switzerland), and France’s Naio 

Technologies (Escalquens, France).  For example a flexible 

multipurpose farming and weeding robot platform named 

BoniRob[18,106] (shown in Figure 2a) was developed as a joint 

project between the University of Osnabrueck, the DeepField 

Robotics start-up, Robert Bosch company, and the machine 

manufacturer Amazonen-Werker.  The available time, labor, 

equipment, costs, and types of weeds and the areas infested need 

to be considered when planning a weed control program.  For 

such a robot to be efficient, it should be able to not only substitute 

the tedious manual weed removal task, but also decreases the use 

of spraying agrochemical and pesticide on the field.  Figure 2 

shows: (a) BoniRob[18,106]: an integrated multipurpose farming 

robotic platform for row crops weed control developed by 

interdisciplinary teams which is also capable of creating details 

map of the field, (b) AgBot II[107]: an innovate field robot 

prototype developed by the Queensland University of Technology 

for autonomous fertilizer application, weed detection and 

classification, and mechanical or chemical weed control, (c) 

Autonome Roboter[108]: a research effort robot developed by 

Osnabrück University of Applied Sciences for weed control, (d) 

Tertill[109]: a fully autonomous solar powered compact robot 

developed by FranklinRobotics for weed cutting, (e) Hortibot[110]: 

a robot developed by the Faculty of Agricultural Sciences at the 

University of Aarhus for transporting and attaching a variety of 

weed detection and control tools such as cameras, herbicide and 

spraying booms, (f) Kongskilde Robotti[111]: a robotic platform 

equipped with drive belt operating based on the FroboMind 

software[77] that can be connected to different modules and 
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implements for automated and semi-automated mechanical weed 

control, precision seeding, furrow opening and cleanings, (g) 

RIPPA[112]: a solar-powered Robot for Intelligent Perception and 

Precision Application developed by the Australian Centre for 

Field Robotics at Sydney University, and (h) spray robot 

developed by HollandGreenmachine for smart chemical 

application in greenhouses.  Some of these robots can reduce 

weed chemical use by 80%-90%[18,107,112].  
 

 
a. BoniRob[18,106] b. AgBot II[107] c. Autonome Roboter[108] d. Tertill[109] 

Source: Deepfield Robotics Source: Queensland University of Technology Source: Osnabrück University Source: franklinrobotics.com 

  
e. Hortibot[110] f. Kongskilde Robotti[111] g. RIPPA[112] h. Spray robot 

Image credit: technologyreview.com Image credit: conpleks.com Source: The University of Sydney Source: Hollandgreenmachine

Figure 2  Example of weed control and targeted spraying robots 
 

In order to apply chemical directly to the weed’s vascular 

tissue, a direct chemical application end effector is required to cut 

the weed’s stem and spread the chemical on the cut surface.  An 

example of such an application can be found in [113] where a 

proto-type weed control robot was developed to spray weeds in 

cotton plants in the seed line.  A real-time intelligent weed control 

system was introduced in [114] for selective herbicide application 

to in-row weeds using machine vision and chemical application.  

A mini–robot to perform spraying activities based on machine 

vision and fuzzy logic has been described in [115,116].  More 

examples of autonomous vehicle robot for spraying the weeds can 

be found in [117–119] and [90] and [114].  Development of an 

autonomous weeding machine requires a vision system capable of 

detecting and locating the position of the crop.  Such a vision 

system should be able to recognize the accurate position of the 

plant stem and protects it during the weed control[120].  A 

near-ground image capturing and processing technique to detect 

broad-leaved weeds in cereal crops under actual field conditions 

has been reported in the work of [121].  Here the researchers 

proposed a method that uses color information to discriminate 

between vegetation and background, whilst shape analysis 

techniques were applied to distinguish between crop and weeds.  

Shape features of the radish plant and weed were investigated by 

[122].  They proposed a machine vision system using a charge 

coupled device camera for the weed detection in a radish farm 

resulting 92% success rate of recognition for radish and 98% for 

weeds.  A combined method of color and shape features for sugar 

beet weed segmentation was proposed by [98] with a 90% success 

rate in classification.  This rate increased to 96% by adding two 

shape features.  Another approach extracted a correlation between 

the three main color components R, G and B which constitute 

weeds and sugar beet color classes by means of discriminant 

analysis[123].  Their method resulted in different classification 

success rates between 77 and 98%.  The segmentation of weeds 

and soybean seedlings by CCD images in the field was studied by 

[124].  Texture features of weed species have been applied for 

distinguishing weed species with grass and broadleaf classification 

accuracies of 93% and 85%, respectively[125].  Textural image 

analysis was used to detect weeds in the grass[126].  Gabor wavelet 

features of NIR images of apples were extracted for quality 

inspection and used as input to kernel PCA[127].  Kernel PCA first 

maps the nonlinear features to linear space and then PCA is applied 

to separate the image Gabor wavelet (5 scales and 8 orientations) 

combined with kernel PCA had the highest recognition rate 

(90.5%).  Spray robots for weed control have been developed with 

vertical spray booms that increase the deposition in the 

canopy[128-130].  Some of the emerging technologies are the 

self-propelled vehicles such as Fumimatic® (IDM S.L, Almería, 

Spain) and Tizona (Carretillas Amate S.L., Almería, Spain), or 

autonomous field robots such as Fitorobot (Universidad de Almería, 

Cadia S.L., Almería, Spain) that have been designed specifically to 

navigate inside fields that has loose soil and operate in situations 

where a large number of obstacles are present[130].  Some of these 

robots are based on inductive sensors for following metal pipes that 

are buried in the soil.  Studies that reports autonomous robot 

navigation inside greenhouse environments are slim[116,118,131,132].  

A fixed—position weed robot was presented by [133] which is 

interfaced to a standard belt—conveyor displacement system and 

provides the robot with pallets containing the crops.  Artificial 

neural networks have also been used by many researchers to 

discriminate weeds with machine vision[134,135].  For example, 

BoniRob[18,106] uses AI to differentiate between weeds and plants 

and then mechanically destroys the detected weeds using a 

custom-built mechanism called “ramming death rod”.  Different 

control modules of BoniRob are connected by Ethernet and 

communicate using TCP/IP.  This platform has 16 degrees of 

freedom (DOF) realized by different electro-motors and hydraulic 

cylinder actuation.  Each of the 4 wheels is driven by separate 

motors and can be steered independently (motor controllers are 

connected by a CAN bus).  These reviews indicate that a fully 

commercial robotic platform for the elimination of weeds has not 

been realized yet.  In addition, most of the research works in the 
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area of robotic weed control are applicable prior to the plant growth 

or in some cases when the main plant height is between 0.2-0.3 m. 

2.2  Field scouting and data collection robots 

Field scouting robots face various interdisciplinary challenges 

for providing reliable data and measurements that can be used and 

processed by precision agriculture and crop models.  Other than 

the challenges of inherent physical and biological variability 

involved with farm fields and orchards, scouting robot platforms 

are expected to be flexible, multipurpose and affordable to be 

considered viable for use in commercial scale.  If successfully 

integrated and implemented, these robots can play a key role in 

reducing production cost, increasing productivity, quality, and 

enabling customized plant and crop treatments.  Development of 

scouting robots for the purpose of data collection and modern 

farming incorporates extensive use of advanced sensors for 

precision agriculture[136,137] in order to generate valuable results 

while performing automatic and accurate navigation control, 

manipulator control, obstacle avoidance, and three-dimensional 

environment reconstructions.  For example, an autonomous field 

survey mobile robot platform with custom manipulator and gripper 

was proposed[138] to carry imaging sensors and GPS devises for 

autonomous navigation and data collection inside greenhouses and 

open-field cultivation environments (Figure 3a-3c).  Various 

multi-spectral imaging devices and LiDAR sensors are reported to 

have been installed and used with modified mobile robot platforms 

for automated monitoring and building reconstructed 3D point 

clouds for generating computer images of trees and plants[69,139-141] 

such as those shown in Figure 3d.   
 

Actual Simulated  Actual Simulated 

a. A prototype surveillance field  

robot[138], AdaptiveAgroTech.com 

 

b. OSCAR field survey 

robot, Inspectorbots.com

 

c. Husky UGV for field scouting and 

3D mapping, Clearpathrobotics.com

 

d. Point cloud and detected maize plants [69], and 3D 

point clouds of vineyard created by VinBotRobotnik 

Automation (www.robotnik.eu)[140] 

Figure 3  Examples of a prototype and professional field robots for scanning and 3D reconstruction of plants and environment 
 

Some of the most advanced robotic technology for automated 

field scouting and data collection are shown in Figure 4 including 

(a) Trimbot2020[142], an outdoor robot based on a commercial 

Bosch Indigo lawn mower platform and Kinova robotic arm for 

automatic bush trimming and rose pruning, (b) Wall-Ye[143], a 

prototype vineyard robot for mapping, pruning, and possibly 

harvesting the grapes  (wall-ye.com), (c) Ladybird[144,145], an 

autonomous multipurpose farm robot  for surveillance, mapping, 

classification and detection for different vegetables, (d) 

MARS[146,147]: the mobile agricultural robot swarms are small and 

stream-lined mobile robot units that have minimum soil 

compaction and energy consumption and aim at optimizing plant 

specific precision agriculture, (e) SMP S4: a surveillance robot for 

bird and pest control developed by SMP Robotics 

(smprobotics.com), (f) Vine agent, a robot equipped with advanced 

sensors and artificial intelligence to monitor the field for plant’s 

health assessment developed at the Universitat Politècnica de 

València, (g) HV-100 Nursery Bot, a light weight robot developed 

by Harvest Automation for moving of plants and potted trees in 

greenhouses and small orchards developed by Harvest Automation 

(harvestai.com/), (h) VinBot[59,148]: an all-terrain mobile robot with 

advanced sensors for autonomous image acquisition and 3D data 

collection from vineyar for yield estimation and information 

sharing, (i) Mantis, a flexible general purpose robotic data 

collection platform equipped with RADAR, liDAR, panospheric, 

stereovision, and thermal cameras[32], and (j) GRAPE, a Ground 

Robot for vineyard monitoring and ProtEction funded by the 

European Union’s for smart autonomous navigation, plant 

detection and health monitoring, and manipulation of small 

objects[149]. 
 

   
a. TrimBot[142] b. Wall-Ye vinyard robot c. Lady bird[144]  j. MARS[146,147] e. SMP S4 

trimbot2020.org  wall-ye.com Univ. of Sydney echord.eu/mars smprobotics.com 
 

    
f. VineRobot g. HV-100 Nursery Bot h. VinBot[59,148] i. Mantis [32] d. GRAPE 

vinerobot.eu harvestai.com vinbot.eu/ Univ. of Sydney grape-project.eu 

Figure 4   Examples of general purpose robots for field scouting and data collection 
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2.3  Harvesting robots 

Traditional harvesting of fruits and vegetables for fresh market 

is a labor-intensive task that demands shifting from tedious manual 

operation to a continuously automated harvesting.  Increasing the 

efficiency and reducing labor dependents of harvesting will ensure 

high-tech food production yield and competitiveness.  In spite of 

the advances in agricultural robotics, million tons of fruits and 

vegetables are still hand-picked every year in open-fields and 

greenhouses.  Other than the high labor cost, the availability of the 

skilled workforce that accepts repetitive tasks in the harsh field 

conditions impose uncertainties and timeliness costs.  For robotic 

harvesting to be cost-effective, fruit yield needs to be maximized to 

compensate the additional automation costs.  This leads to 

growing the plants at higher densities which make it even harder 

for an autonomous robot to simultaneously detect the fruit, localize 

and harvest it.  In the case of sweet pepper fruit, with an estimated 

yield of 1.9 million tons/year in Europe, reports indicate that while 

an average time of 6 seconds per fruit is required for automated 

harvesting, the available technology has only achieved a success 

rate of 33% with an average picking time of 94 seconds per fruit[25].   

For cucumber harvesting, a cycle time of 10 seconds was proven to 

be economically feasible[38].  Only in Washington State, 15-    

18 billion apple fruits are harvested manually every year.  An 

estimated 3 million tons of apples is reported to have been 

produced in Poland in 2015[150], out of which one-third are delicate 

fruits and are less resistant to bruising from mass harvester 

machines.  Also in Florida, where the current marketable yield of 

sweet pepper fruits in open-field cultivation is 1.6 to 3.0 with a 

potential yield of 4 lb/ft2 in passive ventilated greenhouses[151], 

manual harvesting is still the only solution.  Therefore, 

development of an automated robotic harvesting should be 

considered as an alternative method to address the associated labor 

shortage costs and timeliness.  A fully automated robotic harvester 

will contribute to solving some of the today’s major grower issues, 

such as labor costs, labor availability, food safety and quality. It 

also plays an essential role in improving the interactions between 

human, machine, and plants[131].  For example, the prevention of 

musculoskeletal disorders in manual harvesting operations in Dutch 

greenhouses has motivated various researchers for replacement of 

human labor by automatons robot for picking cucumber[33] and 

sweet pepper[7] fruits.  A functional model was then introduced[23] 

in the field test of an autonomous robot for de-leafing cucumber 

plants grown in a high-wire cultivation system.  Field results 

showed that the de-leafing robot spent an average time of      

140 seconds for two leaves plants, which was 35 times longer than 

manual leaf picking per plant[23].    

Research and development in robotic harvesting date back to 

the 1980s, with Japan, The Netherlands, and the USA as the 

pioneer countries.  The first studies used simple monochrome 

cameras for fruit detection inside the canopy[152].  Other than the 

visible light RGB cameras[41,153] and the ultrasonic radar sensors 

that are commonly used for object detection due to their affordable 

cost[154], advances in the sensing and imaging technology have led 

to the employment of sophisticated devices such as infrared[47], 

thermal[155], hyperspectral cameras[156], LiDAR[32,39,40,157], or 

combination of multi-sensors[158] that are adopted with novel 

vision-based techniques for extracting spatial information from the 

images for fruit detection, recognition, localization, and tracking.  

A common approach in fruit detection and counting[153] is by using 

a single viewpoint, as in the case of a cucumber harvesting robot[23], 

or multiple viewpoints [32] with additional sensing from one or 

multiple vision sensors that are not located on the robot[159].  

Examples of the recent achievements include automatic fruit 

recognition from multiple images[160] or based on the fusion of 

color and 3D feature[161], multi-template matching algorithm[162], 

symmetry analysis[163], combined color distance method and 

RGB-D data analysis for apples[164] and sweet-peppers[41], stereo 

vision for apple detection[165,166], and the use of convolutional 

neural networks[167] and deep learning algorithms for fruit detection 

and obstacle avoidance in extremely dense foliage[54,168].  Some of 

the challenges to be addressed in designing of a complete robotic 

harvesting are the simultaneous localization of fruit and 

environment mapping, path planning algorithms, and the number of 

detectable and harvestable fruits in different plant density 

conditions.  Significant contributions have been made by various 

research groups to address these challenges, however there is 

currently no report of a commercial robotic harvesting for fresh 

fruit market[169], mainly due to the extremely variable 

heterogeneous working condition and the complex and unpredicted 

tasks involved with different fruit and plant scenario.  The 

function of a harvesting robot can be separated into three main 

sections as sensing (i.e., fruit recognition), planning (i.e., 

hand-and-eye coordination) and acting (i.e., end-effector 

mechanism for fruit grasping)[170].   

Theoretical and applied research on robotic harvesting of fruits 

and vegetable are huge.  Figure 5 shows some of the efforts that 

resulted in building actual robotic harvesting platforms, including 

(a) Harvey[28]: an autonomous mobile robot platform with UR5 

manipulator for harvesting sweet peppers grown in greenhouses 

and other protect cultivation systems, (b) the CROPS harvesting 

platform for sweet pepper[27,171], (c) the SWEEPER platform 

(developed by the Sweeper EU H2020 project consortium, 

www.sweeper-robot.eu) with a Fanuc LRMate 200iD robot 

manipulator (Fanuc America Corporation, Rochester Hills, MI) and 

a custom-built gripper and catching mechanism for sweet pepper 

harvesting, (d) the Energid robotic citrus picking system (Bedford, 

MA), (e) the citrus harvesting robot[48,49,155] developed at the 

University of Florida which uses a custom built gripper mounted 

on the Robotics Research manipulator model 1207 (Cincinnati, 

Ohio), (f) the DogTooth strawberry robot (Great Shelford, 

Cambridge, UK), (g) the Shibuya Seiki robot that can harvest 

strawberry fruits every 8 seconds, (h) a tomato harvesting robot 

from Suzhou Botian Automation Technology Co., Ltd (Jiangsu, 

Suzhou, China), (i) a cucumber harvesting robot developed at the 

Wageningen University and Research Center[35,38], (j) an apple 

harvesting robot[172] with custom built manipulator mounted on top 

of a modified crawler mobile robot, (k) one of the first 

manipulators developed for the CROPS project[171] and modified 

for apple harvesting, (l) a linear actuator robotic system for apple 

picking developed by ffrobotics (Gesher HaEts 12, Israel), (m) a 

vacuum mechanism robot for apple picking from 

AbundantRobotics (Hayward, CA, USA), (n) the UR5 manipulator 

with a soft robotic universal gripper for apple harvesting developed 

at the University of Sydney, and, (n) an apple catching prototype 

robot[173-175] developed at the Wachington State University.  Most 

of these projects have used eye-in-hand look-and-move 

configuration in their visual servo control.  Other than the issues 

with frame transformation, this solution is not promising if the fruit 

is heavily occluded by the high-density plant leaves[176].  

Obviously, the final robot prototype needs to be relatively faster for 

mass-harvest, with an affordable cost for greenhouse growers.  

Swarms of simple robots with multiple low-cost cameras and 
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innovative soft robotic grippers[177], or human-robot collaboration 

are the research topics to solve the facing challenges in robotic 

harvesting that current technology cannot overcome.  These 

approaches can significantly improve the processing time of 

multiple fruit detection in the high-density plants, and provide 

ground truth results over time for machine learning algorithms 

based on human-operators experience.  In fact, a promising 

solution to efficient robotic harvesting is not through a single robot 

manipulator.  Results of simulation studies have revealed that 

single arm robots for rapid harvesting are still far beyond 

realization, and failed mainly due to the “sensing and moving” 

action in high vegetation density.  In this approach, even if the 

fruit localization is accurate, and the robot control calculates an 

optimum trajectory to reach the fruit without receiving additional 

sensing feedback from the camera, the moment it enters into the 

dense plant canopy it disrupts the exact location of the target fruit. 
 

   
a. Harvey[28]  b. CROPS[27,171] c. SWEEPER d. Energid citrus picking system e. Citrus robot[48,49,155] 

Queensland Univ. of Technology crops-robots.eu sweeper-robot.eu Energid technologies University of Florida 

  
f. DogTooth g. Shibuya Seiki h. Tomato harvesting robot i. cucumber robot[35,38] j. Apple harvesting robot[172] 

www.dogtooth.tech shibuya-sss.co.jp szbotian.com.cn Wageningen UR  

   
k. Apple harvesting[178] l. Apple picker m. Apple picking vacuum n. UR5 apple robot o. Apple catching[173-175] 

crops-robots.eu FFRobotics.com abundantrobotics.com Univ. of Sydney Washington State University

Figure 5  Examples of harvesting robots for different fruits 
 

3  Agricultural robotics and digital farming 

Agricultural robotics is a promising solution for digital 

farming and for handling the problems of workforce shortage and 

declining profitability.  Initial tests with one of the most recent 

technologies available for automated harvesting (the Harvey[28] 

robot) has already shown a success rate of 65% and detachment 

rate of 90% for sweet pepper harvesting in real planting scenario 

where no leaves and occluded fruits were trimmed or removed.   

Field agent robots that autonomously monitor and collect data 

empower growers with real-time detailed information about their 

crops and farms, revealing upstream images for making 

data-driven decisions.  Agricultural robotic is taking farming 

practices to a new phase by becoming smarter, detecting sources 

of variability in the field, consuming less energy, and adapting 

their performances for more flexible tasks.  They have become an 

integral part of the big picture in the future production of 

vegetable and crops, i.e., growing plants in space or development 

of robotized plant factories for producing vegetables in Antarctica.  

The trend in food production is towards automated farming 

techniques, compact Agri-cubes, and cultivation systems that have 

the minimum human interface where skilled workforce are being 

replaced with robotic arms and mobile platforms.  In this context 

digital farming have integrated new concepts and advanced 

technologies into a single framework for providing farmers and 

stakeholders with a fast and reliable method of real-time 

observations at the plant level (i.e., field data collection and crop 

monitoring) and acting at a more precise scale (i.e., diagnostics, 

strategic decision-making, and implementing).  Digital farming is 

about collecting high-resolution field and weather data using 

ground-based or aerial based sensors, transmitting these data into a 

central advisory unit, interpreting and extracting information, and 

providing decisions and actions to the farmers, field robots, or 

agro-industries. Examples include thermal-RGB imaging 

system[179] for monitoring of plant and soil for health assessment, 

creation of information maps (i.e., yield and density maps), and 

data sharing.  Implementation of digital farming practices result 

in a sustainable, efficient, and stable production with a significant 

increase in yield.  Some of the technologies involved in digital 

farming include the Internet of Thing[180], big data analysis[181], 

smart sensors[182], GPS and GIS, ICT[183], wireless sensor 

networks[184,185], UAV[186-188], cloud computing[189-191], simulation 

software[192-195], mapping applications[196,197], virtual farms[198-200], 

mobile devices[201-204], and robotics.  A conceptual illustrating of 

digital farming and its relationship with agricultural robotics is 

provided in Figure 6, showing that the collected data by the robot 
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agents are sent to a cloud advisory center for decision makings.  

The actions are then implemented quickly and accurately by the 

use of robots or other automated machinery, sending operational 

updates and notification feedbacks to the farmers and 

agro-industry sections.  This system of computer-to-robot 

communication combined with the sophisticated simulation 

software, analytics applications, and data sharing platforms offers 

a much smoother control over farming operations.  In addition, it 

provides farmers with details of historical field data for improving 

their performances and optimizing crop yields for specific plots, or 

even developing new business models.    

 

 
Source: www.AdaptiveAgroTech.com 

Figure 6  A conceptual illustration of digital farming and virtual orchards with emphasize on the role of agricultural robotics 
 

A key consideration before utilization of field robots in 

large-scale farms is to take into account the cost-benefit analysis 

for selecting the number and size of the robots that are required for 

a specific operation.  Digital farming can address this by having 

simulated robots work in the 3D reconstructed field, orchards, or 

plantations that have been created using UAV imagery and 

photogrammetry software.  With this approach, even people with 

limited experience or knowledge about crop production, data 

collection, and analytical methods could connect their farms to a 

network, share their field information, and receive prescriptions.  

Using digital farming, growers can collect valuable information 

about their fields that were previously ignored or used to be 

measured by the use of traditional scouting methods.  For example, 

detailed measurements about height and size of each tree in a citrus 

orchard, nutrient stress, the required time for robot navigation 

inside the orchard, estimated time for robotic harvesting of a tree, 

and much more can be extracted from a virtual orchard.  While 

this integration might still seem too ambitious to be widespread in 

many regions, it can serve as a prophetic awareness for a perceptive 

outlook, offering new insights that enhance the ability for a modern 

farming system.  Developments of a new generation of 

agricultural robots that can easily and safely cooperate to 

accomplish agricultural tasks become necessary. Heavy tractors 

and machinery used today compacts the soil, which over time 

severely deteriorates the fertility of the soil. This is a significant 

threat to soil in Europe. Compacted soils require more than a 

decade of expensive treatment to recover its fertility. The 

problem can be solved by replacing heavy tractors with a number 

of smaller vehicles that can treat crop fields just as well and 

without compacting of the soil. However, that scenario requires a 

human supervisor/operator for each vehicle that is very expensive. 

A technology is then required to enable a single farmer to 

supervise and operate a team of these automated vehicles. This 

includes the development of a mission control center and 

intelligent coverage path planning algorithms to enable team 

members to communicate and cooperate, and solve a range of 

agricultural tasks in a safe and efficient way. One of the topics 

that have been proposed by many researchers for a long time is 

the exotic concept of Multiple Robots that can work together to 

accomplish a specific farming task.  The idea is to employ 

artificial intelligence and genetic algorithms where multiple 

robots are programmed to collaborate with each other and form 

an ecosystem.  This approach becomes even more useful when 

robots begin learning from each other and improve their 

performance over time.  For example, a swarm of robots can 

contribute to the creation of nutrient maps by collecting soil 

samples and communicating with a cloud advisory center for 

executing proper action on the go.  The efficiency of this 

process may not be great in the beginning, but the performances 

can be improved over time by having deep learning algorithms 

that emphasize the so-called good-behavior and punish the 

bad-behavior of each robot.  These robots have great 

advantageous for digital farming.  For example, a heterogeneous 

Multi-Robot system compromising a ground mobile platform and 
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an aerial vehicle (Figure 7) for mapping environmental variables 

of greenhouses has been simulated in the Unity3D 5.2.1 game 

engine[205].  This robot can measure the temperature, humidity, 

luminosity and carbon dioxide concentration in the ground and at 

different heights.  Some of the relevant challenges in developing 

multi-robot sensory systems are mission planning and task 

allocation, obstacle avoidance, the guidance, navigation and 

control of robots in different farming scenarios. 
 

   
a. Air-ground Multi-Robot platform and its simulation in Unity3D[205] b. Project MARS[146,147] c. A Swarm of Nano Quadrotors

    Source: TheDmel Youtube channel

Figure 7  Examples of Multi-Robot systems for digital farming 
 
 

4  Challenges of robotics for precision agriculture: 

Digitalization, Automation, and Optimization 

After 20 years of research in precision agriculture there are 
nowadays many types of sensors for recording agronomically 
relevant parameters, as well as many farm management systems.  
Electronically controlled machines and robots are state of the art.  
In fact, technology is now capable of automating cyber-physical 
systems by networking between different machines.  This is what 
we call “agriculture 4.0”.  However, it still cannot be claimed that 
precision agriculture has been widely established in crop 
production.  Why not? Data alone are not enough.  Automatic 
data recording only helps farm results where the analysis of the 
collected material takes less time and allows more profit to be 
made compared with good management decision based on gut 
feeling and experience.  Today, the largest portion of added value 
deriving from the new technology lies with the machinery and not 
the agricultural products.  For instance, futures’ trading on the 
commodity market has a much faster and more direct influence on 
value development of agricultural products than does, e.g., the 
quality of the product, or its yield, being increased in single-figure 
percentages through the application of site-specific management 
techniques.  There remains the advantage of time savings.  
Hereby, the task of agricultural robotic engineering development is 
the creation of intelligent and simple to operate, so-called “smart” 
systems.  We call smart products those that appear cleverer than 
the user in that they deliver answers even before the question has 
been asked.  An example: so-called fitness bracelets that record 
and analyze the wearer’s movements.  The smartness of the 
equipment lies in the analysis of the values.  Step count and heart 
frequency are below average.  This finding leads to a treatment 
recommendation: exercise more! But the user still has to carry out 
these recommendations.  The second example, this time from 
precision agriculture.  Easily the most successful crop plant 
sensors systems are those, that analyze, recommend, and then apply 
a treatment in one go, such as the so-called N-Sensors.  Although 
the analytical procedure within the system is highly complex, such 
sensors are very easy to operate.  In contrast to that, for instance 
yield mapping is an off-line approach which requires additional 
processing steps analyzing the data on the PC.  On top of 
everything else, the yield information gained from one harvest can 
only be set to use in the next growing season, representing a 
long-term investment with much manual input and benefits that are 
difficult to assess. 

Challenges for sensor development and agricultural robotic 

technology lie in the required high temporal and spatial resolution 

data which are very different and difficult to measure parameters 

under most unfavorable conditions.  The aim of new analysis 

methods is to combine the data and to fuse the different 

information layers in order to derive new knowledge.  

Additionally, automation of the data collection tasks is a 
requirement in the development of “smart sensor” systems for 

agricultural application in the sense that the decision making is 

embedded in the sensor so that the results are directly applicable to 

the robot for carrying out precise management actions.  But what 

exactly has the fitness bracelet mentioned above to do with the 

N-Sensor as far as content is concerned? Both sensors analyze data 

and process the material up to the point where recommendations 

for direct action can be deduced from the result.  Additionally, 

both analytics are based on indicators not directly related with the 

actual target values.  The “fitness” of the plant can be efficiently 

assessed through foliage chlorophyll content or green color.  But 

where the cause of the problem is not poor nitrogen supply but 

instead lack of moisture, then the system must have this additional 
information available.  In this respect, intuitive interaction 

between man and robot is necessary, a point that also represents a 

great development challenge for sensors and automation 

technology in crop production.  The more we appreciate the 

importance of the comprehension of detailed agronomic 

relationships, the greater the need for information towards a better 

understanding of these relationships.  The more information 

available, the deeper the understanding and this requires, in turn, 

more data collection.  The situation is therefore a loop within 

which, especially in recent years, more and more data was collected 

and increasingly intensified agronomic knowledge has been 

developed.  Hereby, however, the practical application of directly 
usable agronomic knowledge has stagnated.  Nowadays it still 

requires a considerable mass of statistics and software expertise for 

comprehensive application of precision agricultural technology.  

For further development of smart sensors, relevant information 

must be integrated into multi-causal decision-making systems in 

order to generate knowledge.  The targets are complex systems 

that are easy to operate solutions with systemic, comprehensive and 

transparent concepts, with good “usability” and simple application.  

There must also be a way for practical experience to flow into these 

integrated systems so that farmers, with the help of the technology, 

can develop their expertise further.  A core theme in the 

development of Ag-robotics decision support systems is the step 

from data storage over information retrieval to knowledge 
management involving large amounts of data.  Currently, 

possibilities for the analysis of agricultural data and sensor data 

fusion are being expanded through the application of multivariate 
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statistical methods and machine learning techniques.  Hereby, the 

system limits are increasingly expanded and nowadays holistic 

concepts for complete added-value networks are already in focus, 
whereby the mobile transmission of data is a basis technology for 

the establishment of fully integrated systems enabling real-time 

data fusion from different sources.   

What we have discussed here are knowledge management and 

intelligent systems.  But, with all this “high-tech”, are we able to 

concentrate clearly on our target? The crux of all the technical 

developments is creating a more efficient crop production.  

Automation and networking should serve the systemic control of 

the agronomic processes, not vice versa.  This is the environment 

in which the Leibniz Research Alliances’ “Sustainable Food 

Production and Healthy Nutrition” innovation initiative “Food and 

Agriculture 4.0” focuses on the agricultural production process - 

intelligently connected, of course.  The aim of the initiative is the 

interdisciplinary development of process technology basics for 

Agriculture 4.0.  Where knowledge-based decision making shall 

ensure the satisfaction of social demands as well as individual 

producer’s and consumer’s requirements, in terms of yields and 

profits, while still taking into account the local, spatial, 

environmental heterogeneities as well as global climate phenomena.  

For this purpose the research goal is to develop on one hand models 

of the agricultural production processes, adjusted to meet the 

specific conditions, and on the other hand automation technologies 

with which the processes shall be controlled such that the natural 

resources can be retained or even improved and at the same time 

the product quality will be maintained.   The interoperability and 

digital networking of agriculture will enable new process control 

systems and new sales models such as online slurry sales points, 

exchange platforms where data is traded for advice or online direct 

marketing.  However, even with Agriculture 4.0, only what is 

sown can be driven home from the field.  For instance, the 

weather risk will not be any the less, although the harvesting 

window might be better positioned by setting information 

technology to use.  Hereby we finish with the summary that even 

Agriculture 4.0 will show only modest results if we do not take 

care that some of the value added through the new technologies is 

actually being associated with the agricultural products.    

5  Conclusions 

Research efforts for development of agricultural robots that 

can effectively perform tedious field tasks have grown significantly 

in the past decade.  With the exception of milking robots that were 

invented in the Netherlands, robotics has not reached a commercial 

scale for agricultural applications.  With the decrease of the 

workforce and the increase of production cost, research areas on 

robotic weeding and harvesting have received more and more 

attention in the recent years, however the fastest available 

prototype robots for weeding and harvesting are not even close to 

being able to compete with the human operator.  For the case of 

picking valuable fruits using robots, the technology is now 

becoming closer to a commercial product with the emerging of the 

SWEEPER.  For other fruits such as citrus and apples that can be 

mass harvested for juice industry, modifications of the existing 

mechanical harvesting systems with some robot functionalities may 

be more promising than using single robot system.  Increasing the 

speed and accuracy of robots for farming applications are the main 

issues to be addressed for generalization of robotics systems, 

however, compared to the industrial and military cases, the lack of 

abundant research funding and budgets in agriculture has 

decelerated this process.  For the case of robot harvesting, 

improving sensing (fruit detection), acting (manipulator movement, 

fruit attachment, detaching, and collecting), and growing system 

(leave pruning and plant reshaping) are suggested to increase the 

efficiency. It should be noted that development of an affordable 

and effective agriculture robot requires a multidisciplinary 

collaboration in several areas such as horticultural engineering, 

computer science, mechatronics, dynamic control, deep learning 

and intelligent systems, sensors and instrumentation, software 

design, system integration, and crop management.  We 

highlighted some of the facing challenges in the context of utilizing 

sensors and robotics for precision agriculture and digital farming as: 

object identification, task planning algorithms, digitalization, and 

optimization of sensors.  It was also mentioned that for an 

autonomous framework to successfully execute farming tasks, 

research focus should be toward developing simple manipulators 

and multi-robot systems.  This is in fact one of the academic 

trends and research focuses in agricultural robotics for building a 

swarm of small-scale robots and drones that collaborate together to 

optimize farming inputs and reveal denied or concealed 

information.  As of the conclusion, some forms of human-robot 

collaboration as well as modification of the crop breeding and 

planting systems in fields and greenhouses might be necessary to 

solve the challenges of agricultural robotics that cannot yet be 

automated.  For example, in a collaborative harvesting system 

using human-and-robot, any fruit that is missed by the robot vision 

will be spotted by the human on a touchscreen interface.  

Alternatively, the entire robot sensing and acting mechanism can be 

performed by a human operator in a virtual environment.  

Nevertheless, an agricultural robot must be economically viable 

which means it must sense fast, calculate fast, and act fast to 

respond to the variability of the environment.  
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