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We study the difference equation xn = [( f × g1 + g2 +h)/(g1 + f × g2 +h)](xn−1, . . . ,xn−r),
n = 1,2, . . . , x1−r , . . . ,x0 > 0, where f ,g1,g2 : (R+)r → R+ and h : (R+)r → [0,+∞) are all
continuous functions, and min 1≤i≤r{ui,1/ui} ≤ f (u1, . . . ,ur) ≤ max 1≤i≤r{ui,1/ui},
(u1, . . . ,ur)

T ∈ (R+)r . We prove that this difference equation admits c = 1 as the globally
asymptotically stable equilibrium. This result extends and generalizes some previously
known results.
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1. Introduction

Ladas [1] suggested investigating the nonlinear difference equation

xn = xn−1 + xn−2xn−3

xn−1xn−2 + xn−3
, n= 1,2, . . . , x−2,x−1,x0 > 0. (1.1)

Since then, it has been proved that c = 1 is the common globally asymptotically sta-
ble equilibrium of this difference equation and all of the following difference equations
(where a and b are nonnegative constants):

xn = xn−2 + xn−1xn−3

xn−1xn−2 + xn−3
, n= 1,2, . . . , x−2,x−1,x0 > 0 (see [1]), (1.2)

xn = xn−1xn−2 + xn−3 + a

xn−1 + xn−2xn−3 + a
, n= 1,2, . . . , x−2,x−1,x0 > 0 (see [6,12]), (1.3)

xn = xn−2 + xn−1xn−3 + a

xn−1xn−2 + xn−3 + a
, n= 1,2, . . . , x−2,x−1,x0 > 0 (see [6]), (1.4)
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xn = xn−1 + xn−2xn−3 + a

xn−1xn−2 + xn−3 + a
, n= 1,2, . . . , x−2,x−1,x0 > 0 (see [14]), (1.5)

xn = xn−1xn−2 + xn−3 + a

xn−2 + xn−1xn−3 + a
, n= 1,2, . . . , x−2,x−1,x0 > 0 (see [14]), (1.6)

xn = xbn−1xn−3 + xbn−4 + a

xbn−1 + xn−3x
b
n−4 + a

, n= 1,2, . . . , x−3,x−2,x−1,x0 > 0 (see [7]), (1.7)

xn = xbn−kxn−m + xbn−l + a

xbn−k + xn−mxbn−l + a
, n= 1,2, . . . , x1−max{k,m,l}, . . . ,x0 > 0 (see [8]). (1.8)

Motivated by the above work and the work by Sun and Xi [2], this article addresses the
difference equation

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)
, n= 1,2, . . . , x1−r , . . . ,x0 > 0, (1.9)

where f ,g1,g2 : (R+)r→R+ and h : (R+)r→[0,+∞) are all continuous functions, and

min
1≤i≤r

{
ui,1/ui

}≤ f
(
u1, . . . ,ur

)≤max
1≤i≤r

{
ui,1/ui

}
,
(
u1, . . . ,ur

)T ∈ (R+
)r
. (1.10)

It can be seen that (1.9) subsumes (1.1) and (1.8). For example, if we let r =max{k, l,m},
f (xn−1, . . . ,xn−r) = xn−m, g1(xn−1, . . . ,xn−r) = xbn−k, g2(xn−1, . . . ,xn−r) = xbn−l, and h(x1, . . . ,
xr)≡ a, then (1.9) reduces to (1.8).

We prove that (1.9) admits c = 1 as the globally asymptotically stable equilibrium. As
a consequence, our result includes all of the above-mentioned results.

2. Preliminary knowledge

For two functions, f (x1, . . . ,xn) and g(x1, . . . ,xn), we adopt the following notations:

[ f + g]
(
x1, . . . ,xn

)
:= f

(
x1, . . . ,xn

)
+ g
(
x1, . . . ,xn

)
,

[
f × g]

(
x1, . . . ,xn

)
:= f

(
x1, . . . ,xn

)× g
(
x1, . . . ,xn

)
,

[
f

g

](
x1, . . . ,xn

)
:= f

(
x1, . . . ,xn

)
g
(
x1, . . . ,xn

) if g
(
x1, . . . ,xn

)�=0.

(2.1)

Let R+ denote the whole set of positive real numbers. The part metric (or Thompson’s
metric) [3, 4] is a metric defined on (R+)r in the following way: for any X = (x1, . . . ,xr)

T ∈
(R+)r and

Y = (y1, . . . , yr
)T ∈ (R+

)r
, p(X ,Y) :=−log 2min

1≤i≤r
{
xi/yi, yi/xi

}
. (2.2)
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Theorem 2.1 (see [5, Theorem 2.2], see also [3]). Let T : (R+)r→(R+)r be a continuous
mapping with an equilibrium C ∈ (R+)r . Consider the following difference equation:

Xn = T
(
Xn−1

)
, n= 1,2, . . . , X0 ∈

(
R+
)r
. (2.3)

Suppose there is a positive integer k such that p(Tk(X),C) < p(X ,C) holds for all X �= C.
Then C is globally asymptotically stable.

Theorem 2.2 (see [6, page 1]). Let a1, . . . ,an, b1, . . . ,bn, c1, . . . ,cn be positive numbers.
Then

min
{
ai
bi

: 1≤ i≤ n
}
≤
∑n

i=1ciai∑n
i=1cibi

≤ max
{
ai
bi

: 1≤ i≤ n
}
. (2.4)

Moreover, one of the two equalities holds if and only if a1/b1 = a2/b2 = ··· = an/bn.

3. Main result

The main result of this article is the following.

Theorem 3.1. Consider the difference equation

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)
, n= 1,2, . . . , x1−r , . . . ,x0 > 0, (3.1)

where f ,g1,g2 : (R+)r→R+ and h : (R+)r→[0,+∞) are all continuous functions, and

min
1≤i≤r

{
ui,1/ui

}≤ f
(
u1, . . . ,ur

)≤max
1≤i≤r

{
ui,1/ui

}
,
(
u1, . . . ,ur

)T ∈ (R+
)r
. (3.2)

Let {xn} be a solution of (3.1). Then the following assertions hold:
(i) for all n ≥ 1 and j ≥ 0, one has

min
1≤i≤r

{
xn−i,1/xn−i

}≤ xn+ j ≤max
1≤i≤r

{
xn−i,1/xn−i

}
; (3.3)

(ii) there exist n ≥ 1 and j ≥ 0 such that one of the two equalities in chain (3.3) holds if
and only if (xn−1, . . . ,xn−r)= (1, . . . ,1);

(iii) c = 1 is the globally asymptotically stable equilibrium of (3.1).
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Proof. (i) For any given n ≥ 1, we prove the assertion by induction on j. By Theorem 2.2
and chain (3.3), we have

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)≥ min

{
f
(
xn−1, . . . ,xn−r

)
,

1
f
(
xn−1, . . . ,xn−r

)
}

≥ min
{

min
1≤i≤r

{
xn−i,1/xn−i

}
,

1
max 1≤i≤r

{
xn−i,1/xn−i

}
}
= min

1≤i≤r
{
xn−i,1/xn−i

}
,

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)≤ max

{
f
(
xn−1, . . . ,xn−r

)
,

1
f
(
xn−1, . . . ,xn−r

)
}

≤ max
{

max
1≤i≤r

{
xn−i,1/xn−i

}
,

1
max 1≤i≤r

{
xn−i,1/xn−i

}
}
=max

1≤i≤r
{
xn−i,1/xn−i

}
.

(3.4)

So the assertion is true for j = 0.
Suppose the assertion is true for all integer k (0 ≤ k ≤ j− 1), that is,

min
1≤i≤r

{
xn−i,1/xn−i

}≤ xn+k ≤max
1≤i≤r

{
xn−i,1/xn−i

}
, 0≤ k ≤ j− 1. (3.5)

By Theorem 2.2, chain (3.2), and the inductive hypothesis, we get

xn+ j =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn+ j−1, . . . ,xn+ j−r

)

≥ min
{
f
(
xn+ j−1, . . . ,xn+ j−r

)
,

1
f
(
xn+ j−1, . . . ,xn+ j−r

)
}

≥ min
{

min
1≤i≤r

{
xn+ j−i,1/xn+ j−i

}
,

1
max 1≤i≤r

{
xn+ j−i,1/xn+ j−i

}
}
= min

1≤i≤r
{
xn+ j−i,1/xn+ j−i

}

≥ min
{

min
1≤i≤r

{
xn−i,1/xn−i

}
,

1
max 1≤i≤r

{
xn−i,1/xn−i

}
}
= min

1≤i≤r
{
xn−i,1/xn−i

}
;

(3.6)

xn+ j =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn+ j−1, . . . ,xn+ j−r

)

≤ max
{
f
(
xn+ j−1, . . . ,xn+ j−r

)
,

1
f
(
xn+ j−1, . . . ,xn+ j−r

)
}

≤ max
{

max
1≤i≤r

{
xn+ j−i,1/xn+ j−i}, 1

min 1≤i≤r
{
xn+ j−i,1/xn+ j−i}

}
=max

1≤i≤r
{
xn+ j−i,1/xn+ j−i

}

≤ max
{

max
1≤i≤r

{
xn−i,1/xn−i

}
,

1
min 1≤i≤r

{
xn−i,1/xn−i

}
}
=max

1≤i≤r
{
xn−i,1/xn−i

}
.

(3.7)

Thus the assertion is true for j. The inductive proof of this assertion is complete.
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(ii) The sufficiency follows immediately from the first assertion of this theorem. Ne-
cessity. Suppose there exist n ≥ 1 and j ≥ 0 such that xn+ j =min 1≤i≤r{xn−i,1/xn−i}. Then
all of the equalities in chain (3.6) hold. This chain of equalities plus Theorem 2.2 yield
f (xn+ j−1, . . . ,xn+ j−r) = 1 and, hence, (xn−1, . . . ,xn−r) = (1, . . . ,1). Likewise, one can show
that (xn−1, . . . ,xn−r)= (1, . . . ,1) if xn+ j =max 1≤i≤r{xn−i,1/xn−i}.

(iii) The system of first-order difference equations associated with (3.1) is

Yn = T(Yn−1), n= 1,2, . . . , (3.8)

where T : (R+)r→(R+)r is a mapping defined by

T
((
y1, . . . , yr

)T)=
(
y2, . . . , yr ,

[
f × g1 + g2 +h

g1 + f × g2 +h

](
yr , . . . , y1

))T
. (3.9)

By chain (3.2), we have f (1, . . . ,1)= 1. Hence, C = (1, . . . ,1)T is an equilibrium of sys-
tem (3.8). Consider an arbitrary X = (x1, . . . ,xr)

T ∈ (R+)r , X �=C. Then

Tr
((
x1, . . . ,xr

)T)= (xr+1, . . . ,x2r
)T

, (3.10)

where xj = [( f × g1 + g2 + h)/(g1 + f × g2 + h)](xj−1, . . . ,xj−r), r + 1≤ j ≤ 2r. By the first
two assertions of this theorem, we induce

min
r+1≤i≤2r

{
xi,1/xi

}
> min

{
min
1≤i≤r

{
xi,1/xi

}
,

1
max 1≤i≤r

{
xi,1/xi

}
}
= min

1≤i≤r
{
xi,1/xi

}
. (3.11)

Hence,

p
(
Tr
(
X
)
,C
)=−log 2 min

r+1≤i≤2r

{
xi,1/xi

}
<−log 2min

1≤i≤r
{
xi,1/xi

}= p
(
X ,C

)
. (3.12)

By Theorem 2.1, we conclude that C is the globally asymptotically stable equilibrium of
system (3.8). This implies that c = 1 is the globally asymptotically stable equilibrium of
(3.1). �

4. Applications

Example 4.1. Consider the difference equation

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)
, n= 1,2, . . . , x1−r , . . . ,x0 > 0, (4.1)

where g1,g2 : (R+)r→R+ and h : (R+)r→[0,+∞) are all continuous functions, 1 ≤ p ≤ r,

1≤ q ≤ r, 1≤ s≤ r, f
(
u1, . . . ,ur

)= (up +uq +us
)
/3, and

(
u1, . . . ,ur

)T ∈ (R+
)r
.

As f (u1, . . . ,ur) is the arithmetic mean of up, uq, and us, we get

f
(
u1, . . . ,ur

)≤ max
{
up,uq,us

}≤max
1≤i≤r

{
ui,1/ui

}
,

f
(
u1, . . . ,ur

)≥ min
{
up,uq,us

}≥ min
1≤i≤r

{
ui,1/ui

}
.

(4.2)

By Theorem 3.1, c = 1 is the globally asymptotically stable equilibrium of (4.1).
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Example 4.2. Consider the difference equation

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)
, n= 1,2, . . . , x1−r , . . . ,x0 > 0, (4.3)

where g1,g2 : (R+)r→R+ and h : (R+)r→[0,+∞) are all continuous functions, 1 ≤ p ≤ r,

1≤ q ≤ r, 1≤ s≤ r, f (u1, . . . ,ur)= (up +uq + 1/us
)
/3, and

(
u1, . . . ,ur

)T ∈ (R+
)r
.

As f (u1, . . . ,ur) is the arithmetic mean of up, uq, and 1/ us, we get

f
(
u1, . . . ,ur

)≤ max{up,uq,1/us
}≤max

1≤i≤r
{
ui,1/ui

}
,

f
(
u1, . . . ,ur

)≥ min
{
up,uq,1/us

}≥ min
1≤i≤r

{
ui,1/ui

}
,

(4.4)

By Theorem 3.1, c = 1 is the globally asymptotically stable equilibrium of (4.3).

Example 4.3. Consider the difference equation

xn =
[
f × g1 + g2 +h

g1 + f × g2 +h

](
xn−1, . . . ,xn−r

)
, n= 1,2, . . . , x1−r , . . . ,x0 > 0, (4.5)

where g1,g2 : (R+)r→R+ and h : (R+)r→[0,+∞) are all continuous functions, 1 ≤ p ≤ r,

1≤ q ≤ r, 1≤ s≤ r, f
(
u1, . . . ,ur

)= 3
√
upuq/us, and

(
u1, . . . ,ur

)T ∈ (R+
)r

As f (u1, . . . ,ur) is the geometric mean of up, uq, and 1/us, we get

f
(
u1, . . . ,ur

)≤ max
{
up,uq,1/us

}≤max
1≤i≤r

{
ui,1/ui

}
,

f
(
u1, . . . ,ur

)≥ min
{
up,uq,1/us

}≥ min
1≤i≤r

{
ui,1/ui

}
.

(4.6)

By Theorem 3.1, c = 1 is the globally asymptotically stable equilibrium of (4.5).

5. Conclusions

This article has studied the global asymptotic stability of a class of difference equations.
The result obtained extends and generalizes some previous results. We are attempting to
apply the technique used in this article to deal with other generic difference equations
which include some well-studied difference equations such as those in [7, 8].
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