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ABSTRACT

This is an interim report which summafiigs work during
the past six months on some aspects of symmetry analysis applied
to the interaction between electron beams and electromagnetic
fields. Symmetry analysis is combined with coupled mode theory
to explore the space charge waves and their associated phase
constants for a coupled system of symmetrically located, paral-
lel, electron beams. Both confined flow and Brillouin focused

_electron beams are considered.
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I. INTRODUCTION

The objective of this research program is to explore
theoretically some aspects of the interaction between a
drifting stream of electrons and electromagnetic fields;
particular emphasis being given to the bossible}generation
and amplification of millimeter waves. This interim report
discusses an application of symmetry analysis to the study of
the interaction between electron beams and electromagnetic
fields. A system of parallel, uniform electron beams located
symmetrically around the circumference of a circle is'analyzed.
Symmetry analysils enables the number and possible degeneracy
of the space charge wave modes of the coupled system to be
specified exactly. It also provides a qualitative estimate of.
the variation of the coupled system's phase constants ﬁifh the
degree of coupling. Combining coupled mode theory with symmetfy
analysis enables a quantitative estimate of the coupling
factors to be made. Expressions are developed for both con-

fined flow and Brillouin focused electron beams.



IT. SYMMETRY ANALYSTS OF SPACE CHARGE WAVES ON

COUPLED ELECTRON BEAMS
A. Introduction

Symmetry analysis has a number of potential applications
to the study of the interaction betweenbelectron beams and
electromagnetic waves. As an example of one application of
symmetry analysis to electron beam devices, the space charge
waves for a system of symmetrically located, parallel, coupled
electron beams~will.be‘discussed. The analysis i1llustrates
how the lowest order space charge wave pair on an isolated |
electron beam can be used to approximate the space charge waves
on a symmetric system of electron beams, and how the resulting
space charge wave reduction factors can be determinedrto_good
accufacy. In the course of this symmetry analysis, some aspects
of group theory are combined with coupled mode theory.

The electron beam system considered has a number of
identical, uniform, circular electron beams of radius b, lo-
cated symmetrically around the circumference of a circle of
radius a (a >> b). These beams drift parallel to the z axis
with a d-c velocity U, Initially, confined flow electron
beams (infinite magnetic field, no transverse electron motion)’
are considered; later, electron beams ﬁith a finite focusing
magnetic field (including the case of Brillouin focusing) will
be considered briefly. As a particular example, a sjstem of

four electron beams will be analyzed (see Figure 1). However,
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FIGURE 1. Four Coupled Electron Beams of Radius' b
Symmetrically Located on a Circle of Radius a.



the method is applicable to any number of electron beams.

Coupled mode theory assumes that the modes .of the coupled
system are well approximated by a linear combination of the
modes which propaéate on the various electron beams in the
absence of coupling. It assumes, then;ithat the uncoupled
modes are perturbed only a small amount, and hence, that the
coupling is weak.

For the coupled electron beam system, the eigenvector
equation

HA = gA (1)
must be satisfied. Here H is the matrix of coupling coeffi-
cients relative to a basis which is taken to be the vector
fields of the uncoupled electron beams, A is an eigenvector
of vaiving-the coordinates of a mode of the Coupled_electron
beam system relative to the chosen basis, and B is the phase
constant (an eigenvalue) of the mode of the coupled electron
beam sSystem with coordinates given by A.

If the electron beams are symmetrically located, then a
particular group of symmetry operations will map thefsystéﬁ
onto itself. The matrix H must commute with the represen-
tation D(S) (formed from the basis functions) associated
with each symmetry operation S of the symmetry group
characteristic of the system,

D(S) H = H D(S). (2)

Symmetry, therefore, restricts the form that H can take.



B. ©Space Charge Waves on a Confined Flow Electron Beam

The solutions for the lowest order, axially symmetric,
space charge wave palr on a confined flow, cirecular electron

beam are well known.\ ?2

~ Assuming a time and z dependence of
exp(jot-jBz), all the field components,'the current density,
and the velocity can be expressed in terms of the axial electric
field EZ which must satisfy the-equations | | .

2

(Vg + E)E, = 0, 0<r<b, (32)
-(Vé - Y2)EZ = 03 r > a, (Bb)
y2 = 8% - ¥, (3c)
, 8° |
= y® [—P—-11, (3)
(8, - £)
Be ="w/uo, B, = wp/uo, (3e)

where wp is the plasma frequency for the electron beam.

The axially symmetric solution to these equations is

=
n

E, J,(er)ed®® T IB2 0 <y, (4a)
E =E JQ(Eb) - jBz

Jut
zZ o] K;T;ET KO(YP)e . r > b. (qb)

The phase constant 8 is determined from the characteristic

equation
Jl(gb) .Kl.(y.b)
(gb) EZTEBT.= (yb) K;(?ET . (5)

In these equations, Jo and Jl are Bessel functions of the
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first kind, and KO and K. are modified Bessel functions of

1
the second kind. For each set of parameters, b, Ugs W, and
wp’ there are two lowest order solutions for 8, corresponding
to the fast and slow space charge waves. The phase constant

8 can be written as

B =8, % 6, = 8, £ RB,, (6)

where R is the plasma frequency reduction factdr (R < 1).

BranchAand Mihran3

have published curves of R versus Beb for
a varilety of geometries and parameter vaiues.

A planar, confined flow electron beam, that is;’a con-
fined flow electron beam With-infiniﬁe radius,.hés R = 1.
For all confined flow electron beams with a finite radius, R
will be in the rapge»frqm Q to ;.' From (6}, 3.=‘i(6--'$e)/$p
for ‘slow and fast space chérge Waves, respectively. Thus; R
is a measure of~the deviation of the phase constant from Be’
measured relative to the magnitude of Bp. There is another
phygical interpretation of the plasma frequency reduction

factor R that can be made. If the a-c axial current density

JZ inside the electron beam is calculated, one finds that
-~ jue_ =% = R® 1)

for a confined flow electron beam. Thqs, R is a2 measure of
the square root of the ratio of the axial electric figld to
the axial current density. This result will be used later to
determine the perturbed phase constant in a multiple.electron

beam system.



It is assumed here that the magnitude of Bq is appreciable
compared to Be. In other words, the phase velocities of the

slow and fast space charge waves,

ve——8 (8)

(8o * 84)

differ appreciably. As a consequence of this assumption, in
the multiple electron beam system the fast space charge waves
of the various electron beams will couplé together, as will
the slow space charge waves. However, there will be no
significant coupling between fast and slow space charge waves.

This simplifies the analysis of the coupled system.

C. Symmetry of the Multiple Confined Flow Electron Beams

A multiple electron beam system with n confined flow
electron beams éyﬁmetrically iocated afound theicifcumfereHCe
of a circle of radius a has an associated symmetry group
designated’by Cnv (for an introduction to symmetry analysis
refer to McWeenyu). Thus the four-beam system of Figure 1
belongs to the symmetry group CHV’ This group conta;ns the
following eight symmetry operations; identity (E), rotation
by +90° about the z axis (Cu), rotation by 180° about the =z
axis (02), rotétion by -90° about the z axis (Eu), reflection
in the xz plane (cy), reflection in the yz plane (ox), re--
flection in the gz plane (op), and reflection in the pz plane
(oq). Each of these symmetry operations produces a re-
arrangement of thé electron beam system which is indistinguish-

able from the original arrangement.
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The axial electric field of the four-beam coupled
system can be expressed in terms of the axial electric fields
of the isolated electron beams. That is, the :21’ Ez2’ Ez3’
and Ezu for the isolated electron beams (given by equations
of the form of (La,b)) are used as a basis for the coupled
system. It is necessary to construct a matrix representation
of Cy, relating to this basis. This is done by determining
which of the five irreducible representations of Cuv are con=-
tained in the representation based on the EZ (refer to McWeenyu
for a discussion of representations of symmetry groups). The
five irreducible representations of qu are given in the
Appendix; there are four one-dimensional and one two—dimensional
representations. It is easiest to work with the characters,
that is, the traces, of the matrix representetions.

The character of one of the matrix representations of
CMV is determined by counting the number of basis functlons
transformed into themselves by the associated symmetry oper-
etion. Or, in what amounts to the same procedure, byfcounting
the number.of eleéctron beams which are mapped onto themselves
by the symmetry operation. For the identity operation, E, all
four electron beams are mapped onto themselves. For each of
the reflection operations, oy and cy, two electron beamg are
mapped onto themselves. For none of the other symmetry
operations are any electron beams mapped onto themselves.

Table 1 summarizes these results.



TABLE 1. Number of Electron Beams Mapped
onto Themselves by a Symmetry Operation

Symmetry
Operation E C, C, Eu g o o g

Number 4 0 0 0 2 2 0 0

Application of the orthogonality theorem for characters
(reference 4, page 122) indicates that three of the five
irreducible representatibns~of CHV wlll appear in the desired
representation, and that it can be written as the direct sum
of these,

D'(S) = D;(8) @ D,(8) @D (S). (9)
Here the Di(S) are the irreducible representations for
symmetry operation S of CHV (listed in the Appendix), and
-D'(S) is the reduced form of the desired repfésentation. This
indicates that there will be two nondegenerate modes and a
degenerate pair of modes for the coupled electron beam system
corresponding to each space charge wave of an isoléted
electron beam.

The vector fields of the coupled electron beam ;ystem
must provide a basis for any one of the irreduclble represen- _
tations that are contained in the set'{D'(S)}. These bases
give the eigenvectors of H. The bases may be constructed
using the basis function generating technique (reference I

page 128).
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22
§D5 (8) 8 E,q =
These field configurations transform according to the
irreducible representations of qu contained in'{D'(S)}.
The slow space charge wave will be discussed in detall;
a similar procedure applies to the fast space charge wave.

For the slow space charge wave, H must have the form

Bo h1 h2 hl

[n e, n, n |

H = | - (11)
hy by B, By
by by by By

Here, 8_ = B

o + sq is the phase constant of the slow space

e
charge wave of an isolated electron beam. The coupling

between nearest neighbor electron beams is denoted by h',
and between opposite electron beams by h2; these coupling

factors are evaluated in the next section. From the results

in Equations (lO),ltheAeigenvectors of H are
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1 1 1 0
_ 1 _ -1 11 _ 0 12 -1
Al - s AB - 5 A5 - s A-s - .
1 1 -1 0
1 -1 0 1
(12)

These eigenvectors have the respective eigenvalues

31 = Bo + 2h1 + h2,
By = B, - 2h, + h,,
B = B, - h, (a degenerate pair). (13)

Figure 2 shows how the phase constants for the slow space

charge waves of the coupled electron beam system will vary

as the coupling is increased from zero to a finite value.
_The,coupled'mode corresponding to the eiVeﬁvalue'sl has

axial symmetry; that is,'the fields on all four of the

electron beams are in phase. For this coupled mode,

=8, +R

is greater than By = B + Rsp of an isolated

Bl 18p e

electron beam. Thus the plasma frequency reduction factor Rl
for this mode of the coupled system is larger than tﬂe value
R for an isolated electron beam. The other plasma frequency
reductlion factors for the coupled system, R2 and R3, are both
smaller than R.

The phase constants for the fast space charge waves are

obtained by reversing the signs of Bp in Bo’ and of h, and h

1
in Equation (13). The variation of the phase constants for

2

the fast space charge waves of the coupled electron beam

11
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FIGURE 2. Qualitative Variation of Phase Constants for Space
Charge Waves on a Four-Beam Coupled System.
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system as the coupling is increased from zero to a finite
value are also shown in Figure 2. -One WayAto vary the

coupling is to vary the radius a of the coupled electron beam
system. The coupling is zero for infinite radius and increases

from zero as the radius decreases.

D. Calculation of the Coupling Factors

The calculation of the coupling factors, hl and h2, for
the coupled electron beam sysfem is discussed now. It 1is
only neceésary to consider the coupling between two electron
beams; from that result the coupling factors for an n-—-electron
beam system follow directly. The two-beam system is shbwn
in Figure 3; two identical, confined flow electrqn beams of
radius b.and separation 4 drift parallel to each other with a
d-c velocity u,-

It is assumed that the plasma frequency reduction factors
for this two-beam)coupled system are stillvproportionél to the
square root of the ratio between the axial electric field and
the axial current density, as in Equation (7). Now,.however,
for given axial current densities in the two electron beams,
the axial electric field in either beam has components pro-
duced by the axial currents in both beams. Thus, if R'ris the
plasma frequency reduction factor for the coupled system,

then in the first electron beam,

R:2 - [- ijOEZJ - Jmeo[Ezl(rl) + EZ2<r2)]]

- . (lll)>
Iy Jz1(ry)

13
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FIGURE 3. Two Coupled Electron Beams of Radius b and
Separation d.

14



Here, r, is measured from the axis of the first beam and r,

1
from the axis of the second beam.

Consistent with the weak coupling assumption inherent in
coupled mode theory, it is assumed that lEzz(ré)/Ezl(rl)l << 1,
and that this ratio does not vary appreciably over the first
electron beam cross section. This will be valid if both the
following conditions are fulfilled. First, d >> b so that
EZ2(ré) is small compared to Ezl(ri) and varies slowly, and
second, the electron beams are electrically thin (Beb/R N 1)

S0 that»Ezl(rl) varies slowly over the cross section of the

first electron beam. Then

- 'jmaoEzl(rl) %, ,Ezz(ré)
R =l [ 1+ gy
zl'*71 z1'" 1
R' ¥ R[ 1 +'J°(gb)»K ( d)]l/2 (15)
= Y s :
KO(Ybi 0

if the axial currents in the two beams are in phase (the
axially symmetric case). However, the assumptions imply that
JO(Eb)KO(Yd)/KO(Yb) << 1, so that to reasonable accuracy,

'oa , Jo(gb) |
R =R[ 1+ 2K (v K, (yd)]. (16)

For the axially symmetric slow space charge wave of
the two-beam system,

B, = B +h, (17)

from symmetry analysis. But we also have

|} 1
= B = -
Bl B, + R b B, + RBp + (R R)Bp

B+ (R'-R)Bp. (18)

15



Thus, by comparing (17) and (18),

. R8, J,(gb) ,
h = (R -R)Bp = = K_(vb) K, (yd). (19)

In Figure 4, h/Bp versus yb is shown for two values of d/b.
In the four-beam coupled system, the coupling factors

are determined by replacing the distance d in (19) by the

appropriate beam separation value; 4 = V2' a for hl and

d = 2a for h,.

2
Re_ J _(&b)
- o ; :
hl = -—2-E W KO (@ Ya), (208,)
R8 JO(Eb)
h2 = -5 KO(Yb) KO(Z va). (20b)

Note that in evaluating hl and n,, one can set

=t

-1 (21)
with Yb the value for an isolated electron beam; this 1is

consistent with the various approximations made.

E. Coupled Electron Beams:ﬁith a Finite Magnetic Focusing Field
Although confined flow focusing of electron beams can be

approximated in practice, the case of a finite magne%ic

focusing field is of considerable interest also. If a finite

magnetic focusing field is used, then, in general, to obtain

an uniform cross section as the beam drifts, it is necessary

to balance the radial space charge force In the beam by a

centripetal force produced by beam rotation. To obtain

beam rotation, the magnetic flux linking the cathode is

established at a lower value than the main focusing magnetic

16
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2 ﬁhere the

flux. The limiting case 1s Brillouin focusing
cathode flux is zero; this case also requires the least main
magnetic flux to focus an electron beam of given radius,
current density, and beam voltage.

Because of the rotation of each electron beam around its
own axis, the symmetry of an n-beam coupled system will now
be Cn rather than Cnv’ That is, reflection in a plane con~
taining the system axis will reverse the direction of rotation
of each electron beam, and hence this cannot be a symmetry
operation. In particular, the symmetry group for a four~beam
system is Cq. This group contains four symmetry operations:
identity (E), rotation by +90° (CM)’ rotation by 180° (02),
and rotation by -90° (54); The three irreducible represen-
tations of Cu are given in the Appendix. There are two one-
dimensional and one two-dimensional representations.

To obtain the characters of the matrix representations of
CH for this system, we again count the number of electron beams
mapped onto themselves by a symmetry operation. For the
identity operation E, all four electron beams are maéped onto
themselves. For none of the other symmetry operafions, 04’ 02
and 54, are any electron beams mapped onto themselves. Appli-
cation of the orthogonality theorem for characters indicates
that all three irreducible representations of Cu will appear in

the desired representation, and
D'(8) = D, (S) @ D,(8) @ Dy(s). (22)

18



Thus in this case, as in the confined flow electron beam
case, there will be two nondegenerate modes and a degenerate
pair of modes corresponding to each space charge wave of an
isolated electron beam. Therefore, by analogy with Equation
(13),

Bl=80+2h1+h2

= Bo - 2h, + h

1 2°

63 = B, - hy (a degenerate pair). (23)

The behavior of the slow and fast space charge wave phase
constants as the coupling is varied for this case has the
- form shown in Figure 2.

Although the general behavior of the phase constants for
an electron beam system with a finite magnetic focusing field
is the same as for confined flow focusing, the coupling factoré
vary with the magnetic field. For simplicity, only the case
of Brillouin focusing will be considered here. For the space
charge waves on an isolated Brillouin focused electron beam

one finds (Trevena6)

~Juwe E o
___32_5‘= R Y . (24)
Z u)p
Again considering a two beam system with a beam separation 4,
-jwe E . o I (yb)
—-—-————————-—-O Z - ! 9_ = L o iy
= =R 2 R o— [1+ FRCT] K (vd) 1, (25)
Z o} P o]
and ' ~IO(Yb)

.19



Note that Io(yb) rather than Jo(gb) appears in these equations;
this is a consequence of the somewhat different variation of
the fields inside a Brillouiln beaﬁ compared to a confined

flow beam.6

Proceeding in a manner similar to that used in the previous

section, one finds that

. I,(yb)
= (R = R) 'Bp = p '—“(——)- K, (vya) . (27)

In Figure 5, h/sp versus yb is shown for two values of 4/b.

In the four-beam coupled system,

I,(yb)
hl = R Bp ——T—-j‘ KO (F ya), (283.)
1 (Yb)

F. Conclusions.

One of the applications of symmetry analysis to the study
of the interaction between electron beams and electromagnetic
fields has been explored. Symmetry analysis was used to
determine the phase constants for the space charge waves on a
symmetric system of coupled electron beams. K

At a qualitative level, symmetry analysis is able to pre-
dict the number of modes and the occurrence of possible de-
generacies.of these modes. TFurther, it predicts the direction
in which the phase constant for each mode will shift, relative
to the isolated electron beam value, as the coupling between
the electron beams increases. It was found that the number

of modes of the coupled electron beam system, and the general

20
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Beam Radius = 4/b.
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behavior of their phase constants with the magnitude of coupling,
is independent of whether the magnetic focusing field 1is
infinite or finite, even though the associated symmetry group
is different for these two cases.

By combining coupled mode theory with symmetry analysis,
quantitative estimates of the changé in phase constant for
the various modes of the coupled system can be obtained. These
are expressed in terms of the isolated electron beam parameters
and the separation of the electron beams in the coupled system.
In particular, analytic expressions for the limiting cases:
of confined flow focusing and Brillouin focusing were de-
veloped. For the axially symmetric mode (EZ in phase in gll
the electron beams), the effective plasma frequency reduction
factor always increases relative to the value for an isolated
electron beam. This is true for any number of coupled electron
beams. At least for the four-beam case, all the other modes
have a reduced value of effective plasma frequency reduction

factor.
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APPENDIX

IRREDUCIBLE REPRESENTATIONS FOR SYMMETRY GROUPS C4 and CHV

Cy
S Dy(8) D, (8) D5 (8)
E 1 1 (1 o)
0 1
Cy 1 -1 0 1)
-1 0
C, 1 1 -1 0
0 -1
Ty 1 -1 0 -1
1 0

Note: Four one-dimensional ifreducible représentations
can be found for CM’ but two of them involve imaginary
entries and are complex conjugates. For the purpose of
this analysis, this complex conjugate pair are combined

to produce a real two-dimensional representation.
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Cllv

D5 (8)

Dp(8)  D3(8) - Dy(S)

Dy(s)

S

1 0
0 1

|

-1

0—1)
1 Q

(o 1
1 0
f 0 -1
-1 0
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