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Abstract: In this paper, it was proposed to carry out a preliminary normalization of 
diagnostic parameters using the Johnson distribution, which with three basic 
distribution groups (SL, SB, SU), covers a wide class of empirical distributions. The 
mathematical description of the family allows us to find the approximating 
probability density function in an explicit form, to determine the distribution 
parameters for obtaining the corresponding function (curve), as well as the inverse 
function for finding the quantiles of the specified levels. To assess the accuracy of 
the obtained normalized data, they were compared with the data obtained by 
replacing the resulting law with a Gaussian one. Percentages of values were 
compared in the implementation under study, which concentrated in the limits of 
estimated quantiles. Implementations were obtained using the simulation method. By 
the same method, the correctness (relative systematic error) of determining the 
quantile values of the specified levels was evaluated. The error value δ was estimated 
between the conditionally true quantile value calculated from the generated pseudo-
general complex and the value estimated using the methods considered in the paper. 
Obtained data show that the relative error in the calculation of quantiles using the 
Johnson distribution does not exceed 0.07% and decreases in two orders of 
magnitude than the currently accepted procedure for replacing sample laws with 
Gaussian. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
All rights reserved. 

 
 

1. INTRODUCTION 
Products made of composite materials, in contrast 

to products made of metals, are formed from 
primary raw materials simultaneously with the 
formation of the materials [1, 2, 3]. Due to the 
complexity of their manufacturing technology, it 
becomes impossible to build a priori models 
describing the definitions of informative parameters 
of controlled objects [4, 5], and ignorance of the 
laws of probability distribution of changes does not 
allow to form the corresponding decision rule [6]. 

Among the existing methods for selecting 
informative parameters, not everything can be used 
to describe a large number of information signals 
and diagnostic parameters of composite materials 
selected on their basis [7, 8, 9]. Most of the existing 
criteria are based on the use of the normal law of 
distribution of the studied data [10]. But this creates 

certain difficulties [11, 12]. First, it is quite difficult 
to verify the laws of the distribution of the entire set 
of diagnostic parameters, and, therefore, it cannot be 
argued that they are all normal [13]. Secondly, a 
change in the mechanical properties of the studied 
zones leads to a change in the distribution laws of 
the studied informative parameters [14, 15]. 
Therefore, it is necessary to apply criteria that are 
not sensitive to changes in the distribution laws [16]. 
The quality of selection of diagnostic parameters on 
the selection criteria can only be determined after 
the construction of a decision rule and the 
assessment of the reliability of control over the 
combination of the selection method and the method 
for constructing a decision rule [17, 18, 19]. 

Normalizing transformations are highlighted in 
[7], however, all transformations are associated with 
the problem of determining the general 
transformation for all classes (in the case of 
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parametric methods, determining the general 
transformation parameters), after which the 
distributions of all classes approach the normal one 
[20, 21]. 

There are parametric and non-parametric 
distribution methods [16]. In [1], it was shown that 
on small sample volumes, parametric methods give 
more accurate results. They are divided into the 
following groups: 

1) power and logarithmic transformations from 
the Tukey series using normalization and shift [22]; 

2) transformations that use a power series 
decomposition (Cornish-Fisher transformation) [23]; 

3) Blom's functional transformation followed by 
the Cornish-Fisher transformation [24]; 

4) transformations from the Box-Cox-Tukey 
family (generalization of power and logarithmic 
transformations); 

5) transformations based on the use of a priori 
information about the distribution of a random 
variable (approximation by χ2-distribution, the 
Fisher distribution, etc., lead to a normal distribution 
with transformation) [25]; 

6) Johnson transform (approximation from a 
family of distributions followed by transformation 
into a Gaussian distribution) [26, 27]. 

The first five transformations do not allow us to 
fully cover all classes of possible distributions of 
diagnostic features, since they are mainly focused on 
the group of distributions, special cases of which are 
Gaussian [28, 29]. The use of Pearson and Fisher 
type distributions for data normalization is possible 
only for cases when an appropriate distribution is 
established with a sufficient level of significance, 
which is possible only with large amounts of 
empirical data and the application of additional 
statistical procedures. Therefore, the Johnson 
transform is used for a wider class of 
distributions [30]. 

The article describes the approach for reasonable 
choice of the “rejection level” (threshold value) in 
non-destructive testing and diagnostics using the 
approximation of the unknown distribution of the 
informative parameter by the Johnson distribution. 
Based on experimental data, estimates of the 
corresponding statistical characteristics of the 
parameter are calculated (for example, the first four 
moments of the distribution), according to which the 
corresponding Johnson distribution is adjusted. 
Then, according to the quantiles calculated by the 
fitted distribution, the “rejection level” is determined 
taking into account the errors (risks) of the first and 
second kind. 

 

2. JOHNSON NORMALIZATION 
TRANSFORM 

Among possible normalizing transformations, the 
Johnson family of distributions, with three groups of 
distributions, covers a wide class of empirical 
distributions. A sufficient mathematical description 
of the family allows one to find the approximating 
probability density function (PDF) in an explicit 
form, the distribution parameters for obtaining the 
equation of the corresponding curve, and also the 
inverse function for finding quantiles [31, 32]. This 
makes it possible both to normalize diagnostic 
parameters for their further statistical processing, 
and to apply PDF approximations to select and 
substantiate threshold levels and calculate errors of 
the first and second kind that determine the 
probability of diagnostics. Therefore, the work 
proposed and investigated the use of the Johnson 
transform to normalize diagnostic parameters. 

In general, the Johnson normalization transform 
is 

 
 , ,z x     ; 0  ;     ; 
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where τ(x,ξ,λ) is one of the three special functions; γ, 
η, ξ. λ are distribution parameters; z is the 
normalized random variable distributed according to 
the Gaussian law. 

The Johnson distribution system is described by 
the following three transformation equations: 

– Johnson family of distributions SL (log-normal 
distribution with three parameters) 
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– Johnson family of distributions SU 

 3 2 2

21
2 2

1 1( ) exp
22

exp ln 1 .

f x
x

x x

 
  

 
 

      
  

                          

 (4) 

 
For families of distributions SB and SU, the 

parameters γ, η are responsible for the shape of the 
distribution, ξ is the parameter characterizing the 
distribution center, and λ is the scale parameter. 

The equations for estimating the quantiles of the 
desired level of significance based on the inverse of 
the normalizing transformation of the function for 
each type of Johnson distribution are given in 
Table 1. 

Table 1. Equations for calculating α-quantile 
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To find estimates of the parameters of the 

normalizing Johnson transform, two methods are 
used – the quantile method and the method of 
moments. 

 
2.1 QUANTILE METHOD 

This method is based on comparing estimates of 
quantiles of an empirical distribution of x(α) with the 
values of the corresponding quantiles of Gaussian 
distributions z(α). Estimating the parameters of the 
Johnson distribution from empirical data to obtain 
the corresponding PDF is covered in [33]. Summary 
information on the estimation of parameters for each 
type of distribution is given in [34]. 

 
2.2 METHOD OF MOMENTS 

This method is based on an estimate of the 
sample moments and uses the functional relationship 
between the moments and the parameters of the 
Johnson distribution. 

The Johnson distribution system occupies large 
areas in the plane of moments, which makes it 

possible to describe various laws of the distribution 
of the studied data. The article [35] shows the 
possible values of the coefficients of asymmetry and 
excess for the corresponding types of Johnson 
distribution. 

The essence of the estimation of the distribution 
parameters by the method of moments consists in 
equating the expressions of the distribution moments 
as a function of their parameters to the sample 
values of the corresponding moments. The solution 
of the system of equations thus obtained will be the 
moment estimates of the desired values of the 
distribution parameters. The method of moments 
uses the following numerical characteristics of a 
random variable in magnitude PDF: moment of the 
first order (expectation) m, moment of the second 
order (dispersion) σ2, asymmetry sk (expressed 
through the moment of the third order), excess ex 
(expressed through the moment of the fourth order). 

Mathematically the essence of the method of 
moments is described by the system of equations (5), 
which is obtained on the basis of the definition of 
moments. 

The solution of this system of equations is the 
desired values of the parameters γ, η, ξ. λ. Numerical 
methods for solving the system involve the use of 
iterative solution methods, are rather difficult to 
implement in practice and provide an individual 
approach depending on different initial conditions 
[36]. 

To estimate the characteristics of the accuracy of 
the normalization method using the Johnson 
transform, a symmetric type distribution SS

B is 
investigated, which allows us to approximate a wide 
class of truncated symmetric distributions of 
diagnostic parameters. 
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In [37], functional dependencies between the 
parameters of distributions and sampling moments 
are presented that implement the solutions of the 
reduced system with the indicated restrictions based 
on them. A method is developed for estimating the 
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parameters of a symmetric truncated Johnson type 
SS

B distribution using the method of moments: 
1) according to the sample values of the 

indicators of asymmetry and excess the shape 
parameters γ and η are determined: for a symmetric 
distribution γ=0, the functional dependence η(β2) 
was obtained: 
 

 

(6) 

 
2) using the formulas [38], we calculate the 

corresponding values of the expected value My and 
the dispersion Dy as a function of γ and η: 
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3) for sample values of mean My x  and 

dispersion 2Dy  , the parameters of the shift ξ 
and scale λ are  determined : 
 

/ ,Dy   / 2x   , (8) 
 

4) according to the parameter estimates, the 
required quantile of the given level is calculated: 
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Thus, the obtained equations make it possible to 

calculate the value of a quantile of a given level for 
an arbitrary distribution that corresponds to the 
above conditions. 

 
3. MATHEMATICAL PROCESSING OF 

EXPERIMENTAL RESULTS 
3.1 RESEARCH OF THE ACCURACY OF 
ESTIMATING PARAMETERS BY THE 
QUANTILE METHOD 

The choice of specific percentiles according to 
the method [39] is arbitrary. However, if using 

different percentiles for the same initial data, this 
will lead to a change in the parameter estimates. 
According to the theoretical justification [40], in 
order to obtain a satisfactory approximation in the 
region of large deviations (at the ends of the 
distribution), the percentiles lying in this region 
should be chosen. Using too extreme percentiles can 
lead to a loss of overall accuracy in the selection of 
an approximating distribution due to the large 
variability of their estimates [41]. 

In Figs. 1, 2 estimates of the empirical 
distribution laws and their approximations by the 
Johnson distribution are given depending on the 
selected quantile levels: 

(a) percentiles of the level of 0.025 0.05 0.95 and 
0.975 (approximation at the ends of the distribution); 

(b) percentiles of the level of 0.025 0.15 0.85 and 
0.975 (approximation in the vicinity of the level of 
5% and 95%); 

(c) percentiles of level 0.3 0.4 0.6 0.6 and 0.7 
(approximation of the middle of the distribution). 

 

(a) (b) (c) 
Figure 1 – Approximation of the sum of the arc 

sinusoidal, triangular, and uniform distribution of 
PDFs by the Johnson type distribution 

 

   
(a) (b) (c) 

Figure 2 – Approximation of the sum of three uniform 
distribution laws (one uniform dominant) of PDF by 

the distribution of the SB Johnson type 

 
In Figs. 1, 2 ?? the choice of the values of 

empirical quantiles, for which the approximation is 
carried out, is shown, the values of distribution 
parameters are determined that affects the form of 
the calculated PDF. The choice of quantile level of 
0.025, 0.05, 0.95 and 0.975 provides the best 
approximation at the ends of the distribution, the 
choice of quantile level of 0.025, 0.15, 0.85 and 
0.975 provides approximation between the quantile 
level of 0.2‒0.4 and 0.6‒0.8. The best approximation 
of the middle of the distribution is provided by the 
choice of empirical quantiles of level 0.3, 0.4, 0.6 
and 0.7. 

Approximation of PDF from Johnson 
distributions should be used when it is necessary to 
achieve an accuracy of approximation on a certain 
set of values. Approximation should be used with 
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caution when it comes to finding the best 
approximation function in terms of the minimum 
mean-square error and additionally used statistical 
agreement criteria. In this case, the best results are 
obtained using smoothing Pearson curves. 

To assess the accuracy of finding quantiles 
depending on the Percentile partition, conditionally 
true quantiles of the required level of significance 
were calculated in aggregate, approaching the 
general (volume N = 106 values). Quantile values 
were estimated with a uniform split of percentile 
(level 0.1, 0.4, 0.6 and 0.9), as well as for the case 
when they are concentrated in the ambit of the 
quantiles sought, for example, to find the expanded 
uncertainty at P=0.95 (quantile’s levels 0.025 and 
0.975) during solving a system of four equations, 
percentiles of the level of 0.025, 0.05, 0.95 and 
0.975 were selected. In the study of the accuracy of 
quantile estimation, the considered method [42] was 
repeated N=10000 times, which made it possible to 
estimate the variation in the estimates of the 
quantiles sought. The results of the study are given 
in Table. 2. 

It can be seen in the Table 2 that a uniform 
splitting of quantiles leads to a systematic error in 
the estimate. The displacement relative to the 
conventionally true value is the greater than the 
more closely sought quantiles approach the ends of 
the distribution. At the same time, the choice of 
quantiles in the ambit does not practically contribute 
to a systematic component. This is explained by the 
fact that the choice of quantiles determines the most 
accurate approximation. The standard deviation 
(SD) of quantile estimates for different partitions is 
not significantly different, since the studies were 
conducted on the same volumes of data. 

 
3.2 RESEARCH OF THE ACCURACY OF 
ESTIMATING PARAMETERS BY 
METHOD OF MOMENTS 

Estimation of the parameters of the Johnson’s SB-
distribution by the method of moments was carried 
out according to the method described in [40]. 
However, they were derived under certain 
assumptions, so the question of investigating the 
accuracy of estimating the parameters of the Johnson 
distribution using these formulas arises. 

The calculation of the moments for symmetric 
distributions according to the available information 
in accordance with the distribution law is made 
according to the formulas given in article [1]. 

For an experimental study, data was generated 
for the general population with the Johnson’s SB-
distribution. 

The data was generated with the transformation 
(Table 3) which makes it possible to obtain a 

random variable 
BSy  with the Johnson’s SB-

distribution and arbitrarily specified distribution 
parameters using the normalized Gaussian 
distribution law zN. 

The accuracy of quantile estimation was 
investigated by approximation of the Johnson 
distribution, constructed by the method of moments 
compared to the accuracy of quantile estimation by 
replacing PDF with the Gaussian distribution as the 
most common method. 

Fig. 3 shows the histograms of the distribution of 
quantile level estimates of 0.025 and 0.05, 
respectively, for the case of the sum of Gaussian, 
triangular and uniform distribution laws, f1(x), f3 (x) 
are the distributions of estimates obtained by 
replacing the resulting law with Gaussian, f2 (x), f4 
(x) are the distributions of estimates obtained using 
the normalization procedure. 

The dotted line denotes conditionally true 
quantile values of the corresponding level, 
calculated as the quantile of the corresponding 
significance level. 

 

 
(a) 0.025 (b) 0.05 

Figure 3 – Distributions of quantile estimates of 
different levels 

 
Analysis of Fig. 3 shows that the variation of the 

calculated estimates depends on the level of 
quantile, but does not depend on the method of 
assessment. The distribution of the quantile estimate 
(average), calculated by replacing the resulting 
Gaussian distribution, has a systematic error, thereby 
overestimating the real limits of the diagnostic 
attribute values, and the average value of the 
quantile estimate, calculated using the normalization 
procedure, coincides with the conventionally true 
value. 

From above results, it can be concluded that the 
convergence of the obtained quantile estimates is the 
same (SD levels), but the correctness of the estimate 
is different. It is much better for the method based 
on the procedure of approximation by the Johnson 
distribution. 

Another approach to comparing the procedure for 
normalizing and replacing the resultant Gaussian 
law is to compare the percentage of values in the 
resulting implementation which locates within the 
estimated quantiles. Using the calculated values of 



Vitaliy Babak, Volodymyr Eremenko, Artur Zaporozhets / International Journal of Computing, 18(4) 2019, 483-494 

 

 488

quantiles, the actual percentage of values was 
calculated between them, it was compared with real 
values: S95=95%, S90=90% (between the quantile 
level of 0.025 and 0.975 should be 95% of all 
values, between the quantile of 0.05 and 0.95 ‒ 
90%). Relative error was also considered. 

As a percentage of the values between the 
estimated quintiles, it was taken an average of N 
values for calculating the percentage of values. The 
results are presented in Table 4. 

Table 4 shows that the value of the relative error 
using approximations by Johnson distribution is 
much less than with the replacement by the Gaussian 
law. The relative error in calculating quantiles, as 
well as the percentage of real values that are within 
90%-95% does not exceed 0.01%, which suggests 
that the proposed method for estimating quantiles of 
the distribution of diagnostic parameters is possible, 
because its accuracy increases in two orders of 
magnitude. 

 
3.3 RESEARCH OF THE ACCURACY OF 
THE METHOD DEPENDING ON THE 
VOLUME OF THE STUDIED DATA 

The quantile data normalization method is based 
on the use of percentiles, which are obtained for an 
ordered sample. In the case when the volume of the 
studied data is 100 values, the index of each value in 
the ordered sample corresponds to one percentile. If 
the sample size exceeds 100 values, one or several 
values in the sample will correspond to the same 
percentile level, which will not distort the result. 
However, in the case when the volume of the studied 
data is less than 100 values, the same percentile 
corresponds to several quantiles, which will 
introduce significant uncertainty in the calculations 
of the parameters of the approximating distribution. 

The study was conducted by statistical Monte-
Carlo simulation with different sample sizes, ranging 
from 20 to 500 in 10-step increments for quantiles 
starting from the level of 0.025 to 0.975 with a step 
of changing 0.025. The obtained plane of the 
calculated values of standard errors is shown in 
Fig. 4. Fig. 5 shows the dependence of standard 
errors of estimation of moments on the amount of 
sample values. 

From the data obtained, it can be concluded that 
the standard errors of the estimates of the extreme 
quantiles of the level of 0.025 and 0.975 take values 
of 0.6 for small data volumes, decrease when 
approaching the distribution center (the standard 
error is 0.33 for the quantile of level 0.5) and 
approach to 0 with increasing data. 

The error value increases for each next moment 
and asymptotically approaches to 0 with increasing 
volume. The standard errors of determining the first 

three moments do not exceed the standard errors of 
quantiles (0.6), but the error of the 4th moment  
increases in 3 times. 

The study of the correctness of quantile 
evaluation was carried out by the method of 
simulation. The relative error modulus between the 
conditionally valid quantile value (calculated from 
the general subset) and the quantiles estimated by 
the proposed method for a sample size from 20 to 
100 values was calculated. The experiment was 
conducted N =10000 times, the value of the relative 
error for each sample size was calculated as the 
average value. The results obtained for different 
volumes (from 20 to 100 values) differed slightly, 
therefore, in Table 5 the average value of the relative 
error is shown. 

 

 
Figure 4 – Standard errors of quantiles 

 

 
Figure 5 – Standard errors of moments 

 
Since the experimental study of the method has 

been carried out on samples of limited volume, the 
characteristic is convergence, which is calculated as 
SD for repeated tests and allow us to show how 
much the obtained estimates characterize the general 
population. 

The dependences of the SD of quantile estimation 
in the construction of approximating distributions by 
the method of moments with a confidence 
probability of 0.9 and 0.95 of the sample size are 
shown in Fig. 6 (for (a): X is SD of quantile 
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estimates 0.025, · is SD of quantile estimates 0.05;  
for (b): X is SD of quantile estimates 0.975, · is SD 
of quantile estimates 0.95). 

The analysis of the obtained results allowed us to 
draw the following conclusions. 

The method of estimating the parameters of the 
distribution of diagnostic parameters using the 
approximation of the Johnson distribution allows us 
to cover a wide class of distributions, including dual-
modal distributions and does not require a priori 
information about the type of law, its truncation, has 
a relatively simple implementation, the only 
mathematical complexity of which is to use 
numerical methods for solving a system of nonlinear 
equations, which in turn have a wide representation 
in various software packages. The accuracy of the 
procedure of approximation and normalization 
depends on the accuracy of the calculation of 
distribution parameters, the proximity of the 
quantiles to empirical and Gaussian law quantiles 
during solving a system of equations and practically 
does not depend on the distribution law of the 
combined uncertainty and the level of the quantile. 

 

  
(a) (b) 

The combination of Gaussian, uniform and triangular 
distribution laws (uniform is dominant) 

  
(a) (b) 

The combination of three uniform laws of distribution, 
one of which is dominant 

  
(a) (b) 

Combination of one arcsinusoidal and two uniform 
distribution laws (arcsinusoidal is dominant) 

Figure 6 – Dependence of SD of quantile estimates on 
the volume of data under study in the quantile method 

of parameter estimation 

In cases of small sample sizes (from 20 to 100 
values), the moment method of parameter estimation 
should be used, because it provides higher accuracy 
and provides satisfactory convergence. With large 
amounts of data (from 100 or more values), it’s 
possible to use both the moment and quantile 
method, the accuracy of which significantly depends 
on the type of distribution law of diagnostic 
parameters. 

The convergence of estimates of quantiles 
calculated by the method of approximation by 
Johnson distribution and the method of replacing the 
resulting law with Gaussian is not significantly 
different. However, the correctness of the proposed 
method is much higher: the relative error of the 
method of replacing the resulting law with Gaussian 
for the sum of Gaussian, uniform and triangular laws 
of distribution and the sum of three uniform laws of 
distribution takes values from 2.6% to 8.7% for a 
dual-modulated resultant law (the sum of the 
arcsinusoidal and two uniform laws) of the 
distribution of total uncertainty – from 8% to 23%. 
For the method using the procedure of 
normalization, the value of the relative error does 
not exceed 2% for critical case of dual mode. 

 
3.4 RESEARCH OF THE ACCURACY OF THE 
APPROXIMATION 

During the experimental study of the proposed 
method, situations were considered in which the 
distribution law of the regenerated samples had an 
importance of excess and asymmetry, consistent 
with the data obtained during the study of samples of 
composite panels [43]. 

An important task during carrying out a 
simulation based on the Monte Carlo method is the 
characteristics of a random number generator. In the 
course of the study, random samples were generated 
with given values of excess and asymmetry. The 
deviation of the obtained values from the values 
specified in the modeling process may affect the 
results of the study. Thus, during studying the 
characteristics of a random number generator, the 
following tasks were set: 

1. Estimation of confidence intervals for the 
values of excess and asymmetry coefficients of the 
obtained samples. 

2. Establishing the degree of repeatability of 
samples. 

Table 6 shows the calculated values of the 
confidence intervals for the estimates of asymmetry 
and excess coefficients obtained in the study of a 
random number generator. In the process of 
modeling, samples were generated with a volume of 
20000 with asymmetry and excess coefficients, 
which varied from -0.4 to +0.4 for a fixed value of 
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one of the parameters. The confidence probability 
for all cases was 0.95. 

As it can be seen from the results, the width of 
the confidence interval for the asymmetry 
coefficient remains stable throughout the entire 
simulation range, while for the excess it tends to 

expand in accordance with the shift of the planned 
value to positive values. 

Fig. 7 shows the dependence of the change in the 
quantile estimate on the value of the asymmetry 
coefficient of the distribution law of the original 
sample. 

Table 2. Correctness and convergence of quantile estimates depending on quantile partitioning 

Quantile 
level 

Quantile value SD of quantile 
estimates with uniform 

location 

SLE quantile estimates 
with located in the ambit
of the desired quantiles 

Conditionally 
true value 

Uniform location of 
percentiles 

Location in the ambit 
of the sought-for 

quantiles 
The sum of arcsinusoidal, triangular and uniform distributions 

0.025 -2.039 -1.711 -2.039 0.009 0.007 
0.05 -1.857 -1.689 -1.855 0.006 0.006 
0.95 1.887 1.714 1.890 0.007 0.005 

0.975 2.066 1.728 2.071 0.007 0.006 
The sum of a Gaussian, triangular and uniform distributions 

0.025 -2.993 -2.792 -2.989 0.199 0.010 
0.05 -2.648 -2.575 -2.648 0.011 0.008 
0.95 2.648 2.575 2.648 0.010 0.011 

0.975 2.988 2.791 2.989 0.199 0.008 
The sum of three uniform distributions laws 

0.025 -16.828 -15.787 -16.826 0.066 0.041 
0.05 -15.138 -14.658 -15.136 0.048 0.040 
0.95 15.139 14.651 15.137 0.057 0.037 

0.975 16.824 15.775 16.819 0.078 0.042 
 

Table 3. Estimations of moments for different distribution laws 

 Moments 
Distribution parameters 1st 2nd 3rd 4th 

Gaussian 
m, σ2 m σ2 0 3 

uniform 

a, b (a+b)/2   / 12b a  0 Ex·σ4 
(ex=1.8) 

triangular 

a, b (a+b)/2   / 24b a  0 Ex·σ4 
(ex=2.4) 

arcsinusoidal 

m, σ2 m σ2 0 Ex·σ4 
(ex=1.5) 

 
Table 4. The percentage of values in the sample located in the confidence interval with a given level of 

probability P 

 Р,% Normalization Gaussian Replacement δnorm., % δgaus.rep.,% 
The sum of the Gaussian, uniform and triangular distributions laws 

S, % 90 89.99 91.37 0.01 1.52 
95 95.01 97.37 0.01 2.49 

 The sum of three uniform distributions laws 

S, % 90 90.01 91.20 0.01 1.33 
95 95.01 97.30 0.01 2.45 

 The sum of two uniform and arcsinusoidal distribution laws 

S, % 90 89.95 93.96 0.01 4.40 
95 95.01 99.38 0.01 4.61 
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Table 5. Relative systematic error (in percent) of quantile estimates N = 20..100 

The combination of the laws of 
distribution 

Gaussian, uniform 
and triangular Three uniform Two uniform and 

arcsinusoidal 

Quantiles 0,025& 
0,975 

0,05& 
0,95 

0,025& 
0,975 

0,05& 
0,95 

0,025& 
0,975 

0,05& 
0,95 

Method of Gaussian replacement 9.8 2.9 8.9 2.8 27.6 15.7 
Method of moments 2.1 0.9 1.2 0.4 2.1 1.2 

 
Table 6. Confidence intervals of sample values of excesses and asymmetries 

Setpoints 
Sk and Ex 

Asymmetry coefficient Excess coefficient 
Average 

Sk 
Upper limit 
of interval 

Lower bound 
of interval 

Average 
Ex 

Upper limit 
of interval 

Lower bound 
of interval 

-0.4 -0.40 -0.44 -0.36 -0.40 -0.49 -0.31 
-0.2 -0.20 -0.23 -0.16 -0.20 -0.21 -0.08 
0.0 -0.01 -0.04 0.03 -0.00 -0.14 0.14 
0.2 0.20 0.17 0.24 0.20 0.03 0.38 
0.4 0.40 0.36 0.44 0.40 0.19 0.62 

 

  
(a) 0.05 (b) 0.1 

  
(c) 0.90 (d) 0.95 

Figure 7 – Dependencies of the assessment of the value of quantile levels on the value of the asymmetry 
coefficient 

As it can be seen in Fig. 7, the value of the 
quantile estimate obtained by replacing the empirical 
distribution law of the sample under study with 
Gaussian remains is unchanged. An increase in the 
absolute value of the asymmetry coefficient leads to 
an increase in the error in determining quantiles as a 
result of a shift in the absolute value of the estimate. 
At extreme points, with maximum values of sample 
asymmetry coefficients, for quantiles of 0.05 level, 
the determination error with the replacement by the 

Gaussian law can reach 20%, while the error of 
determination of the quantile with the Johnson 
distribution does not exceed 3%, which is essential 
in the process of forming the threshold regulations. 

To test the effectiveness of using the Johnson 
distribution, as well as assessing the possible errors 
arising from replacing the distribution law of the 
original sample with Gaussian, it simulated a 
simultaneous change in the coefficients of 
asymmetry Sk and excess Ex. The procedure of the 
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model experiment was implemented similarly to the 
one that was performed during assessing the effect 
of a change in the asymmetry coefficient on the 
quantile estimate. The results of the study are shown 
in Fig. 8. 

 

  
(a) 0.05 (b) 0.1 

  
(c) 0.90 (d) 0.95 

1 – estimation based on replacement by Gaussian law; 2 – 
estimation based on Johnson distribution approximation; 

3 – conditionally true evaluation 
Figure 8 – Dependencies of quantile estimates on 

asymmetry and excess coefficients 

 
The above dependencies show that 

approximation using the Johnson distribution causes 
significantly less error than approximation by the 
Gaussian law, therefore, for large absolute values of 
excess and asymmetry of the laws of the distribution 
of diagnostic parameters, to increase the reliability 
of diagnosis, it is necessary to apply approximations 
based on the Johnson distribution. 

 
4. CONCLUSION 

A method has been developed to study the 
statistical characteristics of diagnostic parameters, 
taking into account the type of their distribution 
laws, which made it possible to develop a method 
for normalizing the probability distribution of 
diagnostic parameters using the Johnson transform, 
as well as obtaining the density equation for the 
probability distribution of the parameters, which 
significantly expands the scope of solving diagnostic 
problems and improves the accuracy of determining 
the threshold and reliability of the assessment of the 
state of the product. 

The accuracy of determining the quantile of 
given levels of empirical laws of distributions using 
the Johnson transform approximation, which 
allowed us to justify the method of constructing 
approximations, is investigated. 
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