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Abstract The multi-coupled nonlinear factors exist-

ing in the giant magnetostrictive actuator (GMA) have a

serious impact on its output characteristics. If the struc-

tural parameters are not properly designed, it is easy to

fall into the nonlinear instability, which has seriously

hindered its application in many important fields. The

electric–magnetic-machine coupled dynamic mathe-

matical model for GMA is established according to J-

A dynamic hysteresis model, ampere circuit law, non-

linear quadratic domain model and structure dynam-

ics equation. Nonlinear dynamic analysis method is

applied to study the nonlinear dynamic behaviour of

the key structure parameters to reveal their influence on

the system stability. The design principle of structural

parameters is obtained by studying stability of GMA,

which provides theoretical basis and technical support

for the structural stability design.

Keywords GMA · J-A model · Nonlinear dynamic

behaviours · Stability

1 Introduction

Since the 1970s, giant magnetostrictive material

(GMM) has developed very rapidly as a kind of strate-

X. Gao · Y. Liu (B)

School of Automation Science and Electrical Engineering,

Beihang University, No.37 Xueyuan road, Haidian district,

Beijing 100191, People’s Republic of China

e-mail: lyg@buaa.edu.cn

gic functional material. It has been widely applied in

active vibration isolation, precision control, transducer

and many other fields because of its high energy con-

version efficiency, large output displacement and good

dynamic characteristics [1–3]. But, it is very easy to fall

into the nonlinear instability in high frequency because

of strong multiple nonlinear factors [4–6]. The exis-

tence of nonlinear instability and even chaotic phe-

nomena in GMA makes it difficult to predict and con-

trol, which seriously hinders its application in many

important fields. James, Lei Wang, William S and Mao

Jianqin applied robust control [7], self-adaptive con-

trol algorithm [8], optimal control [9] and H∞ con-

trol [10] to reduce the influence of nonlinear factors

and improve the tracking accuracy and stability of

GMA. The research of GMA structural design is mainly

about reducing magnetic flux leakage and improving

the magnetic field [11,12]. So far, researches about how

to improve the stability of GMA are mainly done in the

control strategies, while there are no deep studies on

the reason of nonlinear instability and the structural

stability design severely lacks theoretical guidance.

Therefore, this paper firstly establishes the electric–

magnetic–machine coupled model and then applies

bifurcation diagram, Poincaré map, time-domain wave-

form, phase diagram and spectral analysis to analyse

the GMA nonlinear dynamics behaviour characteris-

tics. Finally, the design principles of structural param-

eters based on stability are achieved and proved in

experiment.
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Fig. 1 Equivalent model of GMA

2 GMA model

GMA can be seen as a second-order quality-elastic-

damping system with one degree of freedom accord-

ing to its working principle. The equivalent mechanical

model is shown in Fig. 1, and the dynamic equation is

established according to Newton’s second law.

F = − σ S = Me ẍ + Ce ẋ + Fz (1)

Me =
MM

3
+ ML (2)

where F is the output force of GMM rod, Me is the

equivalent mass, Ce is the equivalent damping coeffi-

cient, Fz is the restoring force of disc spring, whose

computing method is in appendix A, S is the GMM

rod’s cross-sectional area, x is the output displacement

of GMA, MM is the mass of GMM rod, ML is mass of

the load.

x = εL (3)

where ε is the strain of GMM rod, and L is the length

of GMM rod.

The quadratic moment domain rotation model is

introduced into the linear piezomagnetic equation, and

the nonlinear piezomagnetic equation is achieved [13].

ε = σ/E + γ1 M2 (4)

where γ1 is GMM rod’s nonlinear magnetic elastic-

ity coefficient, E is GMM’s elasticity modulus, M is

the magnetization intensity, which can be achieved by

magnetic field intensity H . The relationship between

H and M is described in appendix A.

According to the ampere circuit theorem consider-

ing the magnetic flux leakage, when the bias magnetic

field is Hbias, the magnetic field strength H is

H = Hbias + kcoil I (5)

where kcoil is the exciting coefficient.

The nonlinear dynamic model of GMA can be

achieved by uniting Eqs. 1–5, which takes the current

I as input and displacement x as output.

Me ẍ + Ce ẋ + Ke3x3 − Ke2x2 + Ke1x = F(I ) (6)

where Ke3 = Kspr3, Ke2 = Kspr2, Ke1 = Kspr1 +
E S
L

are the equivalent stiffness coefficients, F(I ) =
γ1 E SM(I )2 is output force produced by GMM rod,

M(I ) is the magnetization when input current is I .

3 Research of nonlinear dynamic behaviour in

GMA

In order to study the dynamic behaviour of GMA,

the dynamic equation firstly is normalized and then

solved by Runge–Kutta. Qualitative analysis of non-

linear dynamics is applied to study GMA’s nonlinear

dynamic behaviour characteristics and reveal the influ-

ence of key structural parameters on the system stabil-

ity.

When the dimensionless displacement u = x/γ0

and time τ = ω0t are introduced, Eq. 6 is converted to

be Eq. 7, where γ0 =
√

Ke1/Ke3, ω0 =
√

Ke1/Me.

ü + ϕ1u̇ + u3 − ϕ2u2 + u = fϕ F(�τ) (7)

where ϕ1 = Ce/
√

Me Ke1 is dimensionless damping

coefficient, ϕ2 = Ke2/
√

Ke1 Ke3 is square stiffness

coefficient, fϕ =
√

Ke3/K 3
e1

is coupling stiffness coef-

ficient, and � = ω/ω0 is angular frequency.

The effects of sensitive parameters on the system

stability are revealed by studying the dynamics charac-

teristics for ϕ1, ϕ2 and fϕ , which provide the theoretical

foundation for GMA structure design based on stabil-

ity.
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Fig. 2 Bifurcation diagram

of ϕ1
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Fig. 3 Response

characteristics in

ϕ1 = 10−4. a Spectrum, b

poincaré mapping, c phase

diagram, d time-domain

waveform
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3.1 Research on the damping coefficient

Taking the dimensionless damping coefficient ϕ1 as the

reference variable, the bifurcation diagram is shown in

Fig. 2 when � = 3. The response characteristics are

shown in Fig. 3 when ϕ1 = 10−4. Spectrum contains

multi-frequency, Poincaré mapping is the distribution

of random points in the global scope, phase diagram

is composed of many circular curves without over-

lapping, and time-domain waveform is messy without

periodicity, which indicates that system is in chaotic

state. Figure 4 shows the response characteristics when

ϕ1 = 0.15. Spectrum shows that the main frequency

is the integer times of 1/2 � and Poincaré mapping

only has two points, which indicates that the system

goes into period-doubling bifurcation. Figure 5 shows

that the system is in the stable periodic motion when

ϕ1 = 0.25.

With the decrease of damping coefficient, sys-

tem transforms from stable periodic motion, period-

doubling bifurcation to chaos, which shows that smaller

ϕ1 can fall into the unstable chaotic state.
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Fig. 4 Response

characteristics in ϕ1 = 0.15.

a Spectrum, b poincaré

mapping
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Fig. 5 Time-domain waveform in ϕ1 = 0.25

3.2 Research on the square stiffness coefficient

Taking the dimensionless square stiffness coefficient

ϕ2 as the variable, the nonlinear dynamic behaviour

characteristics of the GMA are studied when � = 2

and � = 3. It can be seen from Fig. 6 that the system

maintains the same bifurcation characteristic when ϕ2

varies from 0 to 1 under different �. Therefore, ϕ2

has nothing to do with the dynamic behaviour in the

GMA.

3.3 Research on the coupling stiffness coefficient

Taking the coupling stiffness coefficient fϕ as the vari-

able, the bifurcation diagram is shown in Fig. 7. With

the increase of fϕ , the system goes from stable period,

period-doubling bifurcation to chaos, which indicates

that the larger fϕ makes the system enter the unstable

chaotic state.

4 Parameters design based on the stability

It is concluded from Sect. 3 that the larger ϕ1 and

smaller fϕ can improve the stability according to

nonlinear dynamic behaviour characteristics of GMA.

According to ϕ1 = Ce/
√

Me Ke1, larger Ce and smaller

Ke1 can increase ϕ1. But, smaller Ke1 leads to smaller

Fig. 6 Bifurcation diagram

of ϕ2. a � = 2, b � = 3
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Fig. 8 GMA test bed

natural frequency ω0 =
√

Ke1/Me. According to fϕ =√
Ke3/K 3

e1
, increasing Ke1 and decreasing Ke3 can

decrease fϕ .Therefore, increasing Ce, Ke1 and decreas-

ing Ke3 can improve the system stability.

According to Ke3 = Kspr3, Ke1 = Kspr1 + E S
L

and

disc spring characteristics in appendix A, the following

conclusions can be drawn.

1. Increasing the GMM rod’s S/L will increase Ke1

and enhance the stability. So, slender GMM rod is

not favourable for stability.

2. The coupling stiffness coefficient fϕ of A, B, C disc

springs increases successively in the same diameter,

and A disc spring has higher stability.

3. Increasing the diameter D of disc spring can

increase Ke1 and decrease Ke3, which can enhance

the system stability.

4. The larger number of disc springs in overlap can

reduce fϕ and improve stability, while the result of

involution is just the opposite.

5 Test verification

GMA test bed (Fig. 8) is applied to do verification

experiment for the mathematical model and stability.

It is mainly composed of GMA, laser displacement

sensor, temperature control system and control sys-

tem. V100-MS laser displacement sensor can test the

displacement of GMA, and its frequency response is

up to 20 kHz. Temperature control system is applied

to maintain a stable operating temperature for GMM

rod. The diagram of control system is shown in Fig. 9.

LabWindows and RTX are used for upper and lower

computer, respectively, and sampling period is 0.5 ms.

The control card in the industrial personal computer

(IPC) sends the introductions to the servo drivers and

then generates exciting current to activate GMA. The

data acquisition card (DAQ) is used to achieve displace-

ment through laser displacement. When doing some

experiments, some experimental conditions must be

satisfied.

1. The quiet working environment must be ensured,

and any outside noise may affect the results.

2. The laser beam should be perpendicular to the cross

section of output shaft in GMA. Otherwise, it will

affect the measurement result.

3. Temperature control system should keep working

in the experiment to maintain constant working

temperature for GMM rod.

Fig. 9 Control system

Labwindows

RTX

IPC
Shared

memory
PCI

Control

card
servo drivers

DAQ
Displacement

sensor

GMA

Temperature

control system
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Fig. 10 Simulation and

experiment. a Different

frequency, b different loads,

c different combination

methods of disc springs,

d different series of disc

springs, e different minor

loops
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1. Mathematical model verification

Figure 10 is the simulation and experiment curve of

GMA in different frequency, loads, combination meth-

ods, series of disc springs and minor loop. The good

fitting proves the correctness and validity of the GMA

model.

2. Stability verification

Figure 11 shows the spectrum of GMA output dis-

placement in different structural parameters. When C

disc springs are in involution and driving frequency is

166.7 HZ, the output displacement contains a variety of

frequency, which indicates that the system is in chaos

(Fig. 11a), while the system is in stable periodic motion

when C disc springs are in overlap (Fig. 11b). When

C disc springs are in overlap and driving frequency is

200 HZ, the system is in chaos (Fig. 11c), while the

system is in stable periodic motion when it chooses A

disc springs (Fig. 11d). Therefore, the higher structural

stiffness can improve the stability of GMA.

6 Conclusion

1. Adding structural factors to the GMA mathematical

model can effectively improve the accuracy of the

model.
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Fig. 11 Spectrum in

different structural

parameters. a Involution of

C disc spring in 166.7 HZ,

b overlap of C disc spring in

166.7 HZ, c overlap of C

disc spring in 200 HZ,

d overlap of A disc spring in

200 HZ
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2. It is possible to cause the system to fall into insta-

bility with lower structure rigidity and damping.

3. Disc spring plays an important role in stability for

GMA. The larger diameter D, higher number of nc

in overlap and A disc spring can effectively improve

the stability
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Appendix A

1. Working principles of GMA

The working principle of GMA is shown in Fig. 12. The

GMM rod drives load under the action of the magnetic

Exciting coil

Permanent 

magnet

GMM rod

Output bar

Screw

Lower cover

Holder

Shell

Disc spring

Top cover

Fig. 12 GMA

field generated by the excitation coil and permanent

magnet. GMM needs pre-pressure produced by com-

pacting disc spring to improve the magnetostriction

coefficient. The ring permanent magnet can produce

bias magnetic field to eliminate the double-frequency

property of materials and export bidirectional displace-

ment. Top and lower cover forms closed magnetic cir-

cuit to reduce magnetic leakage.
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2. GMM mode between H and M

Jiles–Atherton (J–A) model is established based on the

magnetic wall motion theory existing in ferromagnetic

material proposed by Jiles DC and Atherton DL and

has developed into a relatively mature theory [14–18].

Classical J–A dynamic H–M model can be given as

He = H + αM +
9λsσ

2μ0 M2
s

M

= H + α̃M (A1)

Man = Ms

(
coth

He

a
−

a

He

)
(A2)

M = Mrev + Mirr (A3)

Mrev = c(Man − Mirr) (A4)

Mirr = (M − cMan)/(1 − c) (A5)

M = Man − kδ(1 − c)
dMirr

dHe

− k1
dM

dt

dM

dHe

− k2

∣∣∣∣
dM

dt

∣∣∣∣
1
2 dM

dHe

(A6)

where He is the effective magnetic field intensity, H

is the magnetic field intensity, M is the magnetization

intensity, α is the average internal coupling field coeffi-

cient, σ is the stress on the GMM rod, μ0 is the vacuum

permeability, Ms is the saturation magnetization, λs is

the saturation magnetostrictive coefficient, Man is the

anhysteretic magnetization, a is the shape parameter of

anhysteretic magnetization, Mrev is the reversible mag-

netization, Mirr is the irreversible magnetization, c is

the reversible loss coefficient, δ is the direction factor,

when dH/dt > 0, δ = 1 and when dH/dt < 0, δ = − 1,

k is irreversible loss coefficient, k1 is the eddy-current

loss factor, and k2 is anomalous loss factor.

The minor loop model can be got by modifying

parameter a, α, c and k according to the parameters

characteristics and the difference between simulation

and experiment curves [19].

⎧
⎪⎪⎨
⎪⎪⎩

amin or = aeγa(λs−λm)

αmin or = αeγα(λs−λm)

cmin or = ceγc(λs−λm)

kmin or = keγk (λs−λm)

(A7)

where γk , γa , γc and γα are the local correction coef-

ficients of k, a, c and α, respectively, kmin or , amin or ,

cmin or , αmin or are the revised parameters of minor loop,

D

d

H
0

t

Fig. 13 Structure of disc spring

Table 1 Relationship between structure parameters of disc

spring

Parameter Parameter relationships

A D/t ≈ 18, D/h0 ≈ 45

B D/t ≈ 28, D/h0 ≈ 37.3

C D/t ≈ 40, D/h0 ≈ 30.8

and λm is the maximum magnetostrictive coefficient of

minor loop.

3. Disc spring model

As the main device to exert pre-pressure on GMA, disc

spring has an important influence on the output char-

acteristics of GMA. The restoring force generated by

the single disc spring is

Fd = Kspr3x3
f − Kspr2x2

f + Kspr1x f (A8)

where Kspr3 = t
2χ D2 , Kspr2 = 3th0

2χ D2 , Kspr1 = h2
0t+t3

χ D2 ,

x f is the disc spring deformation, and h0 is the maxi-

mum deformation of disc spring . The structure of the

disc spring is shown in Fig. 13.

According to literature 20, there are A, B and C

series of disc springs and the relationship between D, t

and h0 is shown Table 1.

It can been seen from Table 1 that no matter what

kind of disc spring it is, D/t and D/h0 are constants.

So, Kspr3, Kspr2, Kspr1 are converted to Eq. A9.
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Kspr1 = D
χ

(
1

Ct C
2
h0

+ 1
C3

t

)

Kspr2 = 3
2χCt Ch0

Kspr3 = 1
2χCt D

(A9)

where D/t = Ct , D/h0 = Ch0 .

The disc spring also can change its structure stiffness

by different combination methods (Fig. 14). Without

considering the friction force between the disc springs,

the calculation formula for the restoring force Fz and
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Fig. 14 Combination

methods of disc springs.

a Involution, b overlap,

c mixture

(a) (b)

(c)

Table 2 Characteristics in different combinations

Parameter Restoring force Deformation

Involution Fz = Fd x = nsxf

Overlap Fz = nc Fd x = xf

Mixture Fz = nc Fd x = nsxf

Table 3 Model parameters

Parameter Value Parameter Value

a 47704 A/m k 22643 A/m

α 0.417 c 0.1

Ms 380769 A/m k2 0.312

kcoil 16492 m−1 γ1 1.07 × 10−14

L 0.1 m d 0.02 m

γa − 10 γα 10

γk − 30 γc 1500

Hbias 62669.6 A/m λs 1500

k1 5.89 × 10−5 E 30 Gpa

MM 291 g μ0 4π × 10−7 N/A2

D 6.3 cm χ 1.36 × 10−12

total deformation x of the disc spring is shown in

Table 2, where ns and nc are the number of disc springs

in involution and overlap combination.

4. parameters

The model parameters for GMA are shown in Table 3

based on physical property and parameters identifica-

tion [21].
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