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Abstract: The traditional Marx generators based on avalanche BJTs usually use a DC voltage source
to charge the storage capacitors, and many theoretical studies have proved that the existence of
DC voltage source leads to low energy efficiency. This paper proposes a novel nanosecond Marx
generator based on avalanche BJTs, which is charged by a series-resonant power supply. This power
supply charges all capacitors with a constant average current and all BJTs avalanche breakdown stage
by stage without any triggering signals. When the resistors are replaced by inductors, the efficiency
can be further improved. The pulse repetition frequency can be adjusted by controlling the resonant
average current. The output voltage can be increased by connecting more avalanche BJTs in series or
increasing the number of stages of the Marx generators. The control method and the structure of the
circuit are simple. Experimental results show that negative pulses with an adjustable frequency of
10–60 kHz, a pulse width of 8.45 ns, and an amplitude of 4 kV were obtained on a resistive load. The
energy efficiency of the Marx generator was increased to 94%.

Keywords: nanosecond pulse; Marx generator; energy efficiency; avalanche BJT

1. Introduction

Nanosecond Marx generators are widely used in many fields, such as material pro-
cessing, biomedical engineering, high power microwave technology, and so on [1–3].
Fast semiconductor switches, such as insulated gate bipolar transistors (IGBTs), Metal-
Oxide-Semiconductor field-effect transistors (MOSFETs), and bipolar junction transistors
(BJTs) [4,5], are the key components in these Marx generators. However, the switching
speeds of IGBT and MOSFET decrease with the increase in the conduction current, then
the front edges of output pulses are limited. A nanosecond conduction velocity could be
obtained if the Collector and Emitter of the BJTs avalanche break down [6,7]. Therefore,
avalanche BJTs are often used to generate nanosecond high-voltage pulses in Marx gen-
erators. To obtain high-frequency nanosecond pulses with fast rising and falling edges,
T. Pi et al. [8] improved the traditional Marx generator based on the avalanche BJTs and in-
creased the charging speed. An output pulse with 1.08 kV and 50 kHz was obtained, and the
energy efficiency of the generator was about 26.67%. W. Zhang et al. [9] adopted multiple
Marx generators in parallel to increase the output current amplitudes. Nanosecond pulses
with a rising time of 3.4 ns, an amplitude of 2.5 kV, and a repetitive frequency of 15 kHz
were obtained over a 50 Ω resistor load. The energy efficiency was about 38%. To improve
the reliability of high-power Marx generators based on avalanche BJTs, W. Ding et al. [10]
developed an auxiliary triggering topology. The output voltage and the rise time were 4 kV
and 6 ns over a coaxial cable with 50 Ω impedance. The voltage efficiency was about 37%.

From the research mentioned above, it can be found that the energy efficiency of the
generators using avalanche BJTs is low, and the analytical method needs to be improved. So
far, all these Marx generators based on avalanche BJTs are charged by DC voltage supplies,
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which causes the energy efficiency to be lower than 50% [8,9]. The charging loops are
indicated by the blue arrow lines, and the discharging loop is indicated by the red line in
Figure 1. This paper proposes a novel nanosecond Marx generator using a series-resonant
charging power supply based on the avalanche BJTs. The energy efficiency is analyzed in
detail, and an optimization scheme is proposed to improve the energy efficiency. From the
experimental results, the charging efficiency of the capacitors and the energy efficiency of
this Marx generator have been significantly improved.
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Figure 2. The schematic of the proposed nanosecond Marx generator (circuit Ⅰ). 

Figure 1. The traditional N ×M stage Marx generator based on avalanche BJTs.

2. The Proposed Nanosecond Pulse Generator

The new topology of the nanosecond Marx generator is proposed, as shown in Figure 2.
It consists of the series-resonant charging power supply and a 3 × 5 stage Marx generator
based on avalanche BJTs.
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2.1. The Series-Resonant Charging Power Supply

Compared with the traditional DC voltage source, the full-bridge series-resonant
source has small volume and high-efficiency advantages. Lr is the resonant inductance
and Cr is the resonant capacitance. The Field Programmable Gate Array (FPGA) controls
the switches S1~S4 through the driver chips TLP5702. The switches S1~S4 are turned on
sequentially through timing control and a resonant current ir is generated. The resonant
current passes through the transformer to charge the energy-storage capacitors C1~5.

According to the relationship between the full-bridge switching frequency f s and
the resonant frequency f r, the circuit can work in three modes [11,12], one discontinuous
current mode (DCM, where f s < 0.5f r) and two continuous current modes (CCM, where
0.5f r < f s < f r or f s > f r). In the DCM mode, the switches can realize zero-current turn-on
and turn-off and reduce the switching loss. Therefore, the discontinuous current mode was
chosen in this research. The waveform diagram of the main operating points of the series
resonant capacitor charging circuit in DCM is shown in Figure 3 [13]. C′ is the equivalent
capacitance of the energy-storage capacitor C1~5. It can be seen that the voltage on the
energy-storage capacitor increases evenly.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 15 
 

2.1. The Series-Resonant Charging Power Supply 
Compared with the traditional DC voltage source, the full-bridge series-resonant 

source has small volume and high-efficiency advantages. Lr is the resonant inductance 
and Cr is the resonant capacitance. The Field Programmable Gate Array (FPGA) controls 
the switches S1~S4 through the driver chips TLP5702. The switches S1~S4 are turned on 
sequentially through timing control and a resonant current ir is generated. The resonant 
current passes through the transformer to charge the energy-storage capacitors C1~5. 

According to the relationship between the full-bridge switching frequency fs and the 
resonant frequency fr, the circuit can work in three modes [11,12], one discontinuous cur-
rent mode (DCM, where fs < 0.5fr) and two continuous current modes (CCM, where 0.5fr < 

fs < fr or fs > fr). In the DCM mode, the switches can realize zero-current turn-on and turn-
off and reduce the switching loss. Therefore, the discontinuous current mode was chosen 
in this research. The waveform diagram of the main operating points of the series resonant 
capacitor charging circuit in DCM is shown in Figure 3 [13]. C’ is the equivalent capaci-
tance of the energy-storage capacitor C1~5. It can be seen that the voltage on the energy-
storage capacitor increases evenly. 

0 t

VCr

0 t

0 t

0 t

i
r

S1，4

S2，3

t0 t1 t2 t3 t4 t5

0

S1,S4 D1,D4 S2,S3 D2,D3

t

Ts

Tr

VC' 

V1N

V1N' V1(N+1)' 

V1(N+1)' 
V1(N+2)' 

V2
N

V2N' V2(N+1)' 
V2(N+1)' V2(N+2)' 

t6  
Figure 3. The waveform of series resonant circuit in DCM. Figure 3. The waveform of series resonant circuit in DCM.



Appl. Sci. 2022, 12, 9800 4 of 16

Within a switching cycle Ts, the operation of the series-resonant charging source can
be divided into four phases [13,14]. In phase 1, the switches S1 and S4 are turned on, and
the DC source charges Cr through Lr, ir > 0. In phase 2, the switches S1 and S4 are turned
off, and Cr charges Lr through continuous diodes D1 and D4, ir < 0. Phase 3 is the same
as phase 1, except that the switches S2 and S3 are turned on, ir < 0. Phase 4 is the same as
phase 2, except that Cr charges Lr through continuous diode D2 and D4, ir > 0.

The resonant current I(t) can be derived during the charging period, as shown in
Equation (1). I(t) represents the resonant current in a switching cycle. At this point, the
effect of isolation resistance Rc can be ignored.

I(t) =



Vdc−V1N−V2N
ωLr

sin ω(t− t0), t0 < t < t1
Vdc−V1N′+V2N′

ωLr
sin ω(t− t1), t1 < t < t2

−Vdc−V1(N+1)+V2(N+1)
ωLr

sin ω(t− t3), t3 < t < t4
−Vdc−V1(N+1)′−V2(N+1)′

ωLr
sin ω(t− t4), t4 < t < t5

0, t2 < t < t3, t5 < t < t6

(1)

Here,

ω =

√
1

LrCr
+

1
LrC′

(2)

where C′ is the equivalent capacitance of the energy-storage capacitor C1~5, subscript N
represents the Nth resonant period, and ω is the angular frequency of the resonant loop.

The average charging current Iavg, which is constant in a resonant period Tr, can be
expressed by Equation (3). Ipeak is the peak current of each phase.

Iavg =
1
2
× 2

π

(
Ipeak1,3 + Ipeak2,4

)
=

2
π
× C′ − Cr

(C′ + Cr)ωLr
Vdc (3)

The average charging current I∗avg in a switching period Ts is given by Equation (4) [15].
It can be seen that the average value of resonant current in each cycle is the same and has
nothing to do with the number of cycles, which provides a basis for the stabilization of
repeated frequency discharge in subsequent experiments.

I∗avg =
IavgTr

Ts/2
=

8
(
−C2

r C′ + CrC′2
)

(
Cr + C′

)2Ts
Vdc ≈

8Cr

nTs
Vdc (4)

where n is the turns ratio of the transformer TX.
When the circuit parameters are determined, the average charging current I∗avg is

constant and has nothing to do with the resonant period [15]. Therefore, it can be regarded
as a constant current source. However, when the continued current through the reverse
parallel diode drops to zero, the average charging current is no longer constant, and the
circuit loses its constant current characteristics. At this point, the charging voltage of the
capacitor converted to the original site of the transformer is close to the voltage of the
pre-stage DC power supply.

The average charging current can be adjusted by changing Vdc or switching cycle Ts.
Compared with the DC source, the series resonant charging in DCM can realize constant
current charging, increasing the voltage of C to avalanche voltage Vbreak. Therefore, the
BJTs should break down before it enters the nonlinear charging mode.

2.2. The 3 × 5 Stage Marx Generator Based on Avalanche BJTs

Compared with the traditional Marx generators based on avalanche BJTs, each avalanche
BJT in the proposed nanosecond Marx generator turns on through self-breakdown without
any triggering signal. The principle of the novel Marx generator is that the capacitors C1~5 are
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charged in parallel by a constant average current as indicated by the blue arrowed lines, and
discharge to the load RL in series as indicated by the red arrowed line in Figure 2.

The series-resonant source charges the capacitors during the charging period, and
when the avalanche breakdown voltage Vbreak is reached, it enters the discharge period
and automatically discharges to the load. The voltage over the capacitors is related to the
number of BJTs in series. When M BJTs are connected in series, the avalanche breakdown
voltage is M times the breakdown voltage of a single BJT. Theoretically, the maximum
voltage on the storage capacitor is MVbreak, VC = MVbreak. In the experiment, MVbreak
is designed to be lower than nVdc so that the series-resonant source always charges the
capacitors with a constant current. During the discharging period, the voltage of capacitors
is higher than the C-E breakdown voltage of the avalanche BJTs Vbreak, all BJTs avalanche
break down, and all diodes are reverse biased. A negative nanosecond pulse is obtained
over the load. When the discharge current through the avalanche BJTs is lower than the
cutoff current, the BJTs turn off, and the capacitors are charged again in parallel. In this
way, repetitive negative pulses are obtained over the load. Pulses with a higher voltage
amplitude can be obtained by connecting the number M of avalanche BJTs in series or
increasing the number N of stages of the Marx generator. The theoretical waveform of
the circuit is shown in Figure 4. The pulse frequency can be adjusted by changing the
average charging current. The higher the average charging current is, the higher the pulse
repetition frequency.
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To further improve the energy efficiency of the generator, isolation inductors are used
to replace the isolation resistors, as shown in Figure 5.

The inductors store or release the energy as current changes, and the energy loss of
the circuit can be reduced. At the same time, a BJT T16 is added to ensure the first stage of
the circuit is turned on first. As shown in Figure 5, C1 is charged by the series-resonant
charging power supply through R1 as shown in the red line, and the Base current Ib can
turn on T16. The capacitors C1~C5 will be charged as indicated by the blue arrowed lines.
Since C1 is charged first, T1~T3 will breakdown first as if they are turned on first. Then, the
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other stages will rapidly break down due to the overvoltage, and the capacitors discharge
to the load in series.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 15 
 

RL

C1 C2 C4 C5

D9 D10 D12

T1 T4 T7 T10 T13

D11

C3

T2

T3

T5

T9T6

T8

T12

T11 T14

T15

GND

T16

D13 D14 D15 D16 D17

L1 L2 L3 L4 L5

R1

L6

Ib

hi
gh

-fr
eq

ue
nc

y 
re

so
na

nt
 ch

ar
gi

ng
 

po
w

er
 su

pp
ly

 
Figure 5. The nanosecond pulse generator using isolating inductors (circuit II). 

The inductors store or release the energy as current changes, and the energy loss of 
the circuit can be reduced. At the same time, a BJT T16 is added to ensure the first stage 
of the circuit is turned on first. As shown in Figure 5, C1 is charged by the series-resonant 
charging power supply through R1 as shown in the red line, and the Base current Ib can 
turn on T16. The capacitors C1~C5 will be charged as indicated by the blue arrowed lines. 
Since C1 is charged first, T1~T3 will breakdown first as if they are turned on first. Then, 
the other stages will rapidly break down due to the overvoltage, and the capacitors dis-
charge to the load in series. 

3. Energy Efficiency Analysis of the Proposed Nanosecond Marx Generator 
The energy loss can be divided into charging loss and discharging loss [16]. 

3.1. Charging Loss 
The isolation resistors Rc consume energy whenever there is current flowing through 

them, as shown in Figure 2. The energy loss comes mainly from these isolation resistors. 
The energy loss during charging can be calculated as Equation (5). 

PRc=
N
T RcI’2 dt

T

0
 (5) 

I’=
|I(t)|
N·n  (6) 

where T is the charging time. N is the number of stages in the Marx generator and the 
number of storage capacitors. n is the turns ratio of the transformer. I’ represents the 
branch current flowing through each storage capacitor CN during the charging period. 

The average current Ia is used to compare the energy WRc consumed by Rc and the 
energy Wc stored in capacitors CN in the charging period. Ignore RL (RL<<Rc), at this time, 
Ia represents the average charging current on each energy storage capacitor CN. 

Ia=
Iavg
*

N =C
duc

dt  (7) 

WRc and Wc can be calculated by Equations (8) and (9). When T > 2RcC, Wc will be 
higher than WRc, and the charging energy efficiency of the storage capacitor will be higher 
than 50%. In this case, the charging efficiency is greater than that of the DC source. How-
ever, many practical problems were not considered, so the specific situation needs further 
experimental exploration. 

WRc = NIa
2RcT (8) 

Figure 5. The nanosecond pulse generator using isolating inductors (circuit II).

3. Energy Efficiency Analysis of the Proposed Nanosecond Marx Generator

The energy loss can be divided into charging loss and discharging loss [16].

3.1. Charging Loss

The isolation resistors Rc consume energy whenever there is current flowing through
them, as shown in Figure 2. The energy loss comes mainly from these isolation resistors.
The energy loss during charging can be calculated as Equation (5).

PRc =
N
T

∫ T

0

(
Rc I′2

)
dt (5)

I′ =
|I(t)|
N·n (6)

where T is the charging time. N is the number of stages in the Marx generator and the
number of storage capacitors. N is the turns ratio of the transformer. I′ represents the
branch current flowing through each storage capacitor CN during the charging period.

The average current Ia is used to compare the energy WRc consumed by Rc and the
energy Wc stored in capacitors CN in the charging period. Ignore RL (RL<<Rc), at this time,
Ia represents the average charging current on each energy storage capacitor CN.

Ia =
I∗avg

N
= C

duc

dt
(7)

WRc and Wc can be calculated by Equations (8) and (9). When T > 2RcC, Wc will
be higher than WRc, and the charging energy efficiency of the storage capacitor will be
higher than 50%. In this case, the charging efficiency is greater than that of the DC source.
However, many practical problems were not considered, so the specific situation needs
further experimental exploration.

WRc = NI2
aRcT (8)

Wc =
1
2

Ncu2
c =

NI2
aT2

2C
(9)
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3.2. Discharging Loss

During the discharging period, as indicated by the red arrowed line in Figure 6, the
energy loss comes from the avalanche BJTs and the isolation resistors. After the avalanche
BJTs are turned on, all the storage capacitors are discharged to the load resistor RL. The
avalanche BJT can be equivalent to a small resistor ro. The instantaneous current iL in the
discharge circuit can be expressed by Equation (10) in the case of all the avalanche BJTs
being turned on.

iL =
Vpeak

RL
e−t/τ (10)

where
τ = (NTro + RL)C/N (11)
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Vpeak is the peak voltage of the output pulses, τ is the time constant of the discharge
circuit expressed by Equation (11), and NT is the number of avalanche transistors.

The potential at the right end of the “mth” capacitor is shown in Equation (12), where
u1~um are shown in Figure 6.

um =
−m
Nc

Vpeake−t/τ (12)

Take Rc1 as an example. As shown in Figure 6, at the beginning of discharge, the
potentials at two pins of Rc1 are RcI′ and 0, respectively. Because the discharge duration is
very short, RcI′ can be considered as a constant. The discharge loss on resistance R1 can be
expressed by Equation (13).

PRc1 = f
∫ A

0

(Rc I′ − 0)2

R1
dt (13)

where A is the turn-on time of the BJTs, f is the discharging frequency, which is also the
pulse repetition frequency.

The energy consumed by the isolation resistors is shown in Equation (14). In this case,
the influence of ro on um can be ignored.

PRdischarge = f
∫ A

0

N−1

∑
m=0

(Rc I′ − um)2

Rc
dt (14)
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The power consumed on the avalanche BJTs is shown in Equation (15).

PT = fN
∫ A

0
i2Lrodt (15)

3.3. Efficiency Analysis

To analyze the energy efficiency of the circuit more intuitively, the charging efficiency
ηc and discharge efficiency η of the circuit can be calculated by Equation (16).

ηc =
Pc

Pin
× 100%, η =

Po

Pin
× 100% (16)

Pc =
1
2

f NCu2
c (17)

Po = f
∫ T

0
U2

o/RLdt (18)

Pin = f Vdc

∫ T

0
idt (19)

where Pc is the power of the storage capacitors expressed by Equation (17), Po is the output
power of the generator, Pin is the input power as shown by Equations (18) and (19).

Because the output waveform of the generator can be regarded as a zero-order Gaus-
sian waveform, and the normalized zero-order Gaussian function can be expressed by
Equation (20) [17,18]. Then, Equation (21) can be obtained from Equations (18) and (20).

f0(t) = Ue exp
(
−α0t2

)
, α0 =

4 ln 2
T2

e
(20)

Po = f e

∫ ∞

−∞

[
U2

e
RL

exp
(
−2·4 ln(2)

T2
e

t2
)]

dt =

√
π

2
√

2 ln(2)
Te feU2

e
RL

(21)

where Ue is the amplitude of the output voltage and Te is the full-width at half-maximum
(FWHM) of the output voltage. Fe represents the repeatable frequency of the circuit and RL
is the load resistance.

4. Experiments

To verify the energy efficiency of the novel generator, a 3 × 5-stage Marx generator
based on the avalanche BJTs (circuit I) is built, as shown in Figure 7. It mainly consists
of an FPGA controller, a full-bridge circuit, a rectifying circuit, and a 3 × 5-stage Marx
generator. The DC source is a Hanshenpuyuan-5000 (HS-5000). The input voltage and
power can be read directly from the DC source. The switches of the full-bridge circuit are
IXYX120N120C3, the resonant inductor Lr is about 5 µH, the resonant capacitor Cr is about
1.5 µF, the turns ratio of the booster transformer TX is about 60, the model of the diodes
from D1 to D12 is DSEP12-12A, the BJTs are C1815GR, the energy-storage capacitors are
1nF ceramic capacitors, the isolation resistors RC are 5 kΩ cement resistors, and the load
resistor RL is 50 Ω.

Because of series resonant charging, the voltage of the storage capacitors will increase
until the avalanche voltage is reached. When the voltage is higher than the breakdown
voltage of the Collector and Emitter, the avalanche BJTs will automatically turn on. When
Vdc is 40 V, and f s is 25 kHz, the voltage waveform of the load is shown in Figure 8. The
nanosecond output pulses with a repetitive frequency of 50 kHz, a pulse FWHM width
of 12.68 ns, and an amplitude of 2.9 kV are obtained over a resistive load. According to
Equation (21), Po is about 80.27 W.
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Figure 8. The voltage waveform of the load (circuit I): (a) discharge waveform with a repeatable
frequency of 50 kHz; (b) enlarged view of load voltage.

The voltage waveform of the energy-storage capacitors and the waveform of the
resonant current ir are shown in Figure 9. It can be seen that a resonant current charges the
capacitors in the circuit. When the resonant current is zero, the voltage of the capacitors
remains unchanged. The peak voltage of the capacitors is about 750 V in a charging period
(Vdc is 40 V, n is about 60, and the theoretical maximum voltage of C1~5 is about 2400 V).
However, due to the series BJTs, when the capacitor voltage is about 750 V, the Marx
generator will enter the discharge period. At this time, the avalanche breakdown voltage
of the three BJT connected in series is about 750 V which is much lower than 2400 V, the
series-resonant power supply will always charge the capacitors with a constant average
current. According to Equation (17), Pc is about 70.31 W. The power stored in the capacitors
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is even lower than the power of the load 80.27 W, because the series-resonant power supply
still operates during the discharge period and releases energy to the resistive load, which
further improves the energy efficiency. The input power can be read from the parameters
of HS-5000 (here, Pin is about 105.04 W). According to Equation (16), ηc is calculated to be
66.94% and η is 76.42%.

The improved nanosecond Marx generator using isolating inductors build the circuit
as shown in Figure 5. When Vdc is 40 V, and f s is 25 kHz, the voltage waveform of the
load is shown in Figure 10. The nanosecond output pulses with a repetitive frequency of
50 kHz (as shown in Figure 10a), a pulse width of 8.45 ns, and an amplitude of 4.0 kV are
obtained on a resistive load. According to Equation (21), Po is about 101.81 W. Moreover,
the discharge frequency f can be continuously adjusted in a particular range by changing
the switching frequency f s. The discharge voltage on the load is very stable and will not be
affected by the switching frequency, as shown in Figure 10b.

The voltage waveform of the energy storage capacitors and the waveform of the
resonant current ir are shown in Figure 11. The maximum voltage of the capacitors is about
850 V in a charging period. According to Equation (17), Pc is about 90.31 W. The voltage
of capacitors in circuit II is higher than that in circuit I because of the boost effect of the
inductors. As shown in Figure 11, when the capacitors discharge to the load in series, the
charging current decreases. These charging currents in the isolating inductors also flow
into the resistive load and the capacitors. Therefore, the voltage in capacitors increases
and the energy efficiency also increases. The input power is about 108.03 W. ηc and η
are calculated as 83.60%, 94.24% according to Equation (16). Compared with circuit I, the
capacitor charging efficiency and energy efficiency of circuit II are increased by 24.89% and
23.32%, respectively. The calculation formula is shown in Equation (22).

ηincrease =
ηII − ηI

ηI
× 100%. (22)
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5. Discussion

As shown in Table 1, compared with the energy efficiency below 30% in the generators
in references [6,8], the energy efficiency of the proposed nanosecond Marx generator in this
paper is greatly improved to 76% and 94%.

Table 1. Efficiency comparison of nanosecond Marx generators based on avalanche BJTs.

Reference [6] Reference [8] Circuit I Circuit II

η/% 21.55 26.67 76.42 94.24
ηc/% 52.38 61.52 66.94 83.60

Reference [6], a traditional nanosecond pulse generator with avalanche BJTs charged by a DC source. Reference
[8], an improved Marx generator with avalanche BJTs using an isolation BJT.

As shown in Figure 12, considering the effect of switching frequency on discharge
frequency and amplitude of the pulse, the discharge frequency can be adjusted continuously
from 10 to 60 kHz. When the discharge frequency is below 50 kHz, the output voltage
amplitude Um is about 4 kV. The voltage amplitude declines when the discharge frequency
is higher than 50 kHz, as shown by the red line in Figure 12 demonstrating the effect of
switching frequency on discharge frequency and amplitude of the pulse. With the increase
in discharging frequency, the generator’s input power and output power increase, as
shown in Figure 13. When the frequency is greater than 50 kHz, the input power reaches
the maximum power of HS-5000, and the pulse amplitude will decrease as the discharge
frequency of the generator continues to increase to maintain the output power. The energy
efficiency of the generator remains very high with different discharging frequencies as
shown in Figure 14. The comparison of theoretical and practical energy efficiency values is
very close, and the error rate is less than 5%, which verifies the reliability of the calculation.
According to the analysis above, the maximum energy efficiency of the generator is 94.24%.
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In fact, in addition to the energy efficiency used in this paper, some researchers also
use voltage efficiency ηvoltage to compare the performance between circuits, as shown
in References [19,20]. The equation of voltage efficiency is shown in Equation (23). The
key parameters are summarized in Table 2. The new generator proposed in this paper
significantly improves the voltage efficiency of the circuit from 50% to 90%. Compared with
the traditional structure, the number of BJTs required to achieve the 4 kV repetition output
is significantly reduced to 16. In addition to substantially improving voltage efficiency,
the proposed generator in this paper also achieves a high repetition frequency which is
adjustable from 10 to 60 kHz.

ηvoltage =
Vpeak

Nc · uc
× 100% (23)

where Vpeak is the peak voltage of the output pulses, Nc is the number of energy storage
capacitors, and uc is the voltage of the energy-storage capacitors.

Table 2. Parameter comparison of nanosecond Marx generators based on avalanche BJTs.

Reference [10] Reference [19] Reference [20] Reference [21] Circuit I Circuit II

Amplitude/kV 4.0 6.5 4.0 3.9 2.9 4.0
Front edge time/ns 6 3.65 0.24 0.3 7.7 5.7

Pulse width/ns 20 / 5.2 1.8 12.68 8.45
Repetition

frequency/kHz 2 1 0.01 30 10~60 10~60

Number of transistors 36 60 24 80 15 16
Load/Ω 50 75 50 50 50 50

Voltage efficiency/% 37 56.5 55.6 16.3 77.33 94.12

6. Conclusions

A novel nanosecond Marx generator based on avalanche BJTs is proposed in this paper.
No triggering signal is required since avalanche BJTs breakdown automatically as long as
the Collector-Emitter voltage over BJTs exceeds the breakdown voltage. The frequency
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of the output pulses can be adjusted by controlling the average charging current of the
full-bridge circuit. The output voltage can be increased by connecting more avalanche
BJTs in series or increasing the number of stages in this nanosecond Marx generator. A
full-bridge series-resonant charging power supply is used to charge the energy stored
capacitors instead of the DC voltage source, which considerably improves the energy
efficiency. Replacing the resistors with isolation inductors can further improve efficiency. A
3 × 5-stage nanosecond Marx generator was built, and the nanosecond output pulses with
a pulse width of 12.68 ns, a voltage amplitude of 2.9 kV, and a repetitive frequency 50 kHz
were obtained over a 50 Ω load. The charging energy efficiency of the capacitor ηc and
the energy efficiency of the circuit η improved to 66.94% and 76.42%, respectively. When
isolation inductors are used to replace the resistors, the peak voltage of the output pulses
increased to 4 kV, and the energy efficiency η was increased to 94%. From the results, the
frequency of the output pulses is adjustable from 10 to 60 kHz.
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