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ABSTRACT The safety and reliability of the mechanical system in the industrial process determines the

quality of products. Whether the fault can be identified and classified in time is the key to ensure the safe

operation of the system and arrange the appropriate maintenance plan to restrain the deterioration of the fault.

However, with the rapid development of manufacturing digitization, how to process large amounts of data

quickly and accurately is faced with many problems. In this paper, a pattern recognition method of cyclic

GMM-FCM (CGF) based on joint time-domain features is proposed. Firstly, the concept of joint time-domain

features based on Vold-Kalman filter (VKF) is proposed. It retains the integrity of the signal components

and avoids the problem of dimension disaster caused by anomaly detection, which laid a foundation for the

accurate classification of sensitive feature sets. Secondly, a pattern recognition method of cyclic GMM-FCM

is proposed. It can eliminate global and local outliers in sensitive feature sets and determine the number of

FCM categories adaptively. It makes the classification result more reasonable and accurate. Finally, the

effectiveness and superiority of the pattern recognition algorithm are verified by the gearbox vibration

experiments in various states. The result shows that the method is feasible in engineering practice.

INDEX TERMS Joint time-domain features, anomaly detection, GMM, FCM, pattern recognition.

I. INTRODUCTION

In the modern industrial system, with the rapid development

of manufacturing digitization, real-time recording and per-

ception of production operation state and operating environ-

ment have been realized, and a large number of industrial

timing data have been accumulated and are being gener-

ated [1], [2]. In the face of massive data, how to quickly

find sensitive feature sets and accurately identify and classify

them is the key to efficiently discover and prevent mechan-

ical system faults and avoid serious damage [3]. It is also

the key to the research object of fault diagnosis [4]. The

research on the characteristics of industrial data shows that

due to the abnormal problems in themanufacturing system [5]

(such as product quality defects, equipment failures, perfor-

mance degradation and changes in external environment [6]),
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in the analysis of a large number of data, there are abnormal

data which are far away from other observed data and may

have different production mechanisms. The existence of such

abnormal data will have a great influence on the selection and

pattern recognition of sensitive feature sets [7].

For scenarios of large rotatingmachinery data, label of data

are difficult and expensive to obtain [8]. And themarking pro-

cess of label data is very dependent on subjective judgment

of human. It will have great deviation and influence on the

final analysis result. Unsupervised anomaly detection only

relies on data without tags during training [9]. It can make use

of the overall characteristics of the data to get accurate rules

for dividing anomaly. Compared with the machine learning

method based on label, unsupervised anomaly detection algo-

rithm has a better application prospect [10].

However, unsupervised anomaly detection is faced with

the challenge of ‘‘dimensional disaster’’ [11] in process-

ing high-dimensional data, so it is necessary to select
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low-dimensional sensitive feature sets from a large number of

high-dimensional data features firstly. Common processing

methods include principal component analysis (PCA), fea-

ture mapping, competitive learning, topological mapping and

tensor analysis [12]. However, when these methods convert

high-dimensional data to low-dimensional data, some infor-

mation of the signal is often lost, which affects the global

outlier or local outlier removal of feature sets [13], [14].

In this paper, the single harmonic component signal obtained

by Vold-Kalman filter (VKF) is used to select multiple com-

bined features and independent features for experiment. The

results show that the single combined feature sets or inde-

pendent feature sets cannot be used for effective pattern

recognition. However, there is still the problem of outliers

in pattern recognition by topological mapping. In this paper,

the signal separation results of Vold-Kalman filter are used to

construct a two-dimensional joint time-domain feature sets by

taking the reconstructed harmonic signal and signal residue as

dimensions and taking the same time-domain features of each

dimension as values. The selected sensitive feature sets not

only retain the complete information of signal components,

but also reduce the feature dimension, which lays a great

foundation for the anomaly detection of feature sets.

For data sets without anomaly, the application purpose of

machine learning in fault diagnosis is to classify the fea-

ture set and to determine whether and what kind of fault

occurs [15]. The mining of data information without label

is called unsupervised learning. Cluster analysis is the main

method of unsupervised learning [16]. Compared with other

pattern recognition methods, clustering analysis has a unique

advantage in the big data scene, that is, without any known

category label, the clustering analysis algorithm realizes the

correct classification of samples according to sample simi-

larity or probability density function estimation method by

analyzing the internal structure of sample data. At the same

time, it can be used as an independent tool to obtain the data

distribution state, and can also observe the characteristics of

each cluster and analyze the required cluster. Cluster analysis

can be divided into hard cluster and soft cluster. Hard clus-

tering is a well-defined clustering, that is, each sample data

clearly belongs to a certain category. Soft clustering, known

as fuzzy clustering, is based on the membership degree of

sample data in various categories, and the category bound-

ary is fuzzy [17]. It provides a good platform for pattern

recognition of composite faults and early faults of rotating

machinery.

Fuzzy C-means (FCM) [18] algorithm is the most famous

and widely used fuzzy clustering method. It is very sen-

sitive to parameters and the number of categories deter-

mines how close the clustering result is to the real data

structure. If the number of classes is larger than the true

value, one or more good compact clusters may be broken.

If less than the true value, the clustering result merges mul-

tiple classes [17]. Therefore, how to determine the number

of categories of FCM is the key to the good application

of FCM.

To solve the above problems, this paper proposes a pattern

recognition method of cyclic GMM-FCM based on joint

time-domain features, where, cyclic GMM-FCM is named

CGF. The main contributions are as follows:

(1) A method of joint time-domain features based on the

VKF is proposed as the feature sets of pattern recognition.

This method not only ensures the integrity of the signal

component information contained in the feature sets, but also

effectively reduces the dimension of the feature set and avoids

the dimension disaster when the feature set is abnormal

detected.

(2) The abnormal detection method of cyclic GMM-EM

(Gaussian mixture model, Expected value maximization) is

proposed. This method can detect and eliminate global and

local outliers of the joint time-domain feature sets, which

makes the classification more reasonable.

(3) The pattern recognition method of CGF is proposed.

The method can determine the number of categories of FCM

adaptively by cyclic GMM-EM algorithm, which makes the

classification result more accurate.

(4) The effectiveness and superiority of joint time-domain

features based on VKF as feature sets are verified by the

gearbox vibration experiment under various states.

(5) The effectiveness and superiority of CGF pattern recog-

nition algorithm based on joint time-domain features are

verified by the gearbox vibration experiments in various

states.

II. METHODOLOGY

A. PRINCIPLE OF GMM-EM AND ANOMALY DETECTION

Gaussian mixture model (GMM) [19] is an extension of

the Gaussian model and a linear combination of several

Gaussian distribution functions. GMM assumes that all sam-

ple data obey the mixed Gaussian distribution, that is, the

probability density function of sample data sets is esti-

mated [20]. The estimated model is the linear combination

of the Gaussian model, and each Gaussian distribution is

a cluster. The clustering result of the hybrid model is that

data sets are divided into several clusters which obey the

independent Gaussian distribution function [21] based on

probability.

Suppose the random variable is X, and the mixing model

is composed of Gaussian distributions whose number is M.

GMM can be expressed as:

P(x|θ ) =
M

∑

m=1

αmφ(x|θm) (1)

where, the parameter αm represents the weight of the m-th

Gaussian distribution in GMM and satisfies
∑M

m=1 αm =
1, (αm ≥ 0);

φ(x|θm) is the probability density function of m-th Gaus-

sian distribution. At the same time, θm expressed as: θm =
(µm, 6m), µm represents the mean of the m-th Gaussian dis-

tribution, 6m represents the covariance matrix of the m-th

Gaussian distribution.
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φ(x|θm) can be expressed as:

φ(x|θm) = 1√
2π6m

exp

(

− (x − µm)
2

26m

)

(2)

This paper describes the three parameters of the GMM

for θ , namely the mixed coefficient αm, the mean µm and

the covariance matrix 6m. To divide the sample data set into

several clusters, it is necessary to know parameters’ values

of the Gaussian distribution that each part of the data in this

data set obeys, andmake the clustering results fit the observed

data as much as possible. Among them, the observed data in

the mixed model refers to the data are known in the data set

to obey the known Gaussian distribution [22]. At the same

time, the sample data set is also called the complete data,

containing the observed random data X = {x1, x2, . . . , xN }
and the unobserved random variable Z = {z1, z2, . . . , zN }.

Thus, GMM is mainly determined by the parameter θ .

In order to obtain a high quality clustering result, the optimal

sample parameters need to be solved. The most common

method is to maximize the logarithmic likelihood function

of the mixed model. Expected value maximization (EM) [23]

algorithm iteratively solves the parameters of the maximum

likelihood estimation from complete data containing implicit

variables.

The iteration of EM algorithm is accomplished by two

major steps, Expectation step (E-Step) and Maximization

Step(M-step) [24]. Because the goal is to solve the distribu-

tion parameters of GMM, and the implicit and unobserved

data is unknown, the EM algorithm of E-step first guess the

implicit data of the model to get the expected value and the

Gaussian distribution [25]. Then maximum likelihood esti-

mation is performed for complete data and the parameters of

GMM are solved, namely M-step. However, in the process of

solving the parameters of GMM, the implied data of E-Step is

obtained by guessing [26]. It is not accurate so that the model

parameters solved according to the results are not accurate.

Therefore, the above steps are repeated again [27]. In this

way, E-step and M-step are iterated continuously until the

parameters of GMM are basically unchanged. The algorithm

converges to find the optimal expectation, covariance matrix

of GMM and weight of each Gaussian distribution.

According to Bayes’ theorem [28], [29], by selecting the

initial value of parameters of GMM, the influence degree

of the m-th Gaussian distribution on the observed data

(x1, x2, . . . , xN ) in GMM, namely, the maximum posterior

probability is estimated as follows:

γ̂jm = αmφ(xj|µm, σ 2
m)

/

M
∑

m=1

αmφ(xj|µm, σ 2
m) (3)

According to the initial value of selected model parame-

ters, the expected value of the logarithmic likelihood function

of the mixed model can be expressed as:

EQ

[

log p(θ |Y ,Q)|θ (i),Y
]

=
∫

log [p(θ |Y ,Q)]p(Q|θ (i),Y )dQ (4)

where, Q represents the implicit data, θ (i) is the posterior

standard deviation of the i+1 iteration.

The conditional expectation probability of the joint distri-

bution of the mixed model can be expressed as:

L(θ, θj) =
m

∑

i=1

∑

zj

P
(

zj|xi, θj
)

logP
(

xi, zj|θ
)

(5)

Under the conditional probability constraint of E-step, the

maximum value of logarithmic likelihood function parame-

ters can be expressed as:
θj+1 = argmax

θ
L(θ, θj) (6)

After a new round of iteration, the three parameters can be

expressed as:

µ̂m =
N

∑

j=1

γ̂jmxj

/

N
∑

j=1

γ̂jm, m = 1, 2, . . . ,M

6̂m =
N

∑

j=1

γ̂jm
(

xj − µm

)2

/

N
∑

j=1

γ̂jm, m = 1, 2, . . . ,M

α̃m =
N

∑

j=1

γ̂jm

/

N , m = 1, 2, . . . ,M (7)

The above E-step andM-step are iterated until values of θ (i)

and θ (i+1) are infinitely close to each other.

After obtaining the final convergent GMM, the generation

probability Fk of each sample point xk can be expressed as:.

Fk =
m

∑

i

αip (xk |µi, σi) (8)

Fk is lower, the more likely xk is to be an outlier. Therefore,

in GMM algorithm, the derivative of Fk is taken as the score

to determine the anomaly.

B. PRINCIPLE OF FCM

FCM (Fuzzy C-means) algorithm is a classical algorithm

based on distance. The distance value between the data and

the cluster class center is calculated as the evaluation stan-

dard [17]. If they are more similar, the smaller the value is,

and the greater probability of being divided into the same

category is.

FCM algorithm is a typical clustering algorithm based on

objective function, and uses Euclidean distance as similarity

discrimination [30], [31]. It uses constraints to solve of objec-

tive function. Finally, the final solution is obtained through

continuous iteration, and different types of data are divided

into different cluster classes. Its definition is as follows [18]:

Suppose X = {x1, x2, . . . , xn} is a set of feature data sets
in space, xi = (xi1, xi2, . . . , xim) is a data sample in X,

representing a point in the space sets, and xij is the j-th

attribute value of xi.

The clustering of a given data sets X is to generate c classes

of X1,X2, . . . ,Xc. The membership degree µik represents the

membership relationship between sample xi and subset Xk .
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FIGURE 1. The algorithm flowchart of cyclic GMM-FCM pattern recognition based on joint time-domain features.

It satisfies µik ∈ [0, 1]&∀i,
c

∑

k=1

µik = 1; ∀k, 0 <

c
∑

k=1

µik < n,U = (µik ) is n × c dimension of membership

function.

The objective function of FCM is expressed as:

J = (U ,V ) =
c

∑

k=1

n
∑

i=1

(µik)
md2ik (9)

where, dik = ‖xi − Vk‖ refers to the Euclidean distance

between xi and the k-th clustering centerVk ;m ∈ (1, ∞) is the

fuzzy weighted exponent;V = (V1,V2, . . . ,Vc) is the cluster

class center set of all subsets Xk .

Combined with Lagrange multiplication
∑c

k=1 µik =
1, µik ∈ [0, 1] , i = 1, 2, . . . , n, available:

c
∑

k=1

µik =





c
∑

j=1

(

dik
/

dij
)2/(m−1)





−1

(10)

Vk =
n

∑

i=1

(µik)
mxi

/

n
∑

i=1

(µik)
m (11)

FCM algorithm steps are as follows:

(1) Given c,m, ε and initial iteration value f = 0, U is

initialized by using random number between [0, 1], satisfy

the constraint conditions
∑c

k=1 µik = 1, ∀i = 1, 2, . . . , n;

(2) According to Equation (11), cluster centers Vk are

calculated and the number is c;
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FIGURE 2. (a) is the test bench, where, 1-speed motor, 2-coupling, 3-test gearbox, 4-torque tachometer,
5-torque bar, 6/7/8/9-piezoelectric acceleration sensor, 10-main test gearbox; (b) is the schematic
diagram of sensors distribution; (c) is slight gear pitting; (d) is gear pitting; (e) is electric discharge
machined bearing outer ring.

TABLE 1. Independent features and combined features.

(3) The U (f ) of this iteration is calculated according to

Equation (10), and the J (f ) of this iteration is calculated

according to Equation (9);

(4) If the condition
∣

∣J (f ) − J (f−1)
∣

∣ ≤ ε is true, then output

the result; otherwise, f = f + 1, turn step (2).

C. ALGORITHM FLOW CHART AND MAIN STEPS

The algorithm flow chart of cyclic GMM-FCM based on joint

time-domain features is designed by the above theory, and the

results are shown in Figure 1.

Where, VKF can separate complex multi-component sig-

nals [32] into a combination of multiple single-component

signals and signal residues through the instantaneous fre-

quency curve of each component in the obtained signal.

The single component signal is related to the parts that pro-

duce vibration impact [33], while the signal residue con-

tains noise and hidden information [34]. The combination

provides the possibility to extract the features of different

components [35].

The main steps of the improved algorithm of pattern recog-

nition are as follows:

(1) An improved signal separation method of VKF is used

to decompose the input signal into harmonic reconstruction

signal and signal residual. Extract the time-domain features

as a dimension to build 2D joint time domain. The joint

time-domain feature sets of signals in different states are

regarded as feature sets. Sensitive feature sets are selected

from ten types of joint time-domain feature sets;

(2) The pattern recognition algorithm conducts prelimi-

nary training on the feature set with GMM-EM algorithm.

It obtains the initial optimal number of categories k1, and

removes the global outliers in the feature set through GMM

anomaly detection;

(3) GMM-EM training is carried out on the feature set

again to obtain the optimal number of categories k2. The

optimal category number kt was obtained by rounding the

mean values of k1 and k2. The feature set is preliminarily

labeled by kt .
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FIGURE 3. (a) is the normal signal, (b) is the slight gear-pitting signal, (c) is the gear-pitting signal and (d) is the
signal of composite faults.

FIGURE 4. Training results of GTM, where, (a) is 20 × 40 combined feature sets after GTM and (b) is 28 × 40 combined
feature sets after GTM.

(4) GMM anomaly detection is carried out for each type

of label feature data to remove local anomaly points. Then

GMM-EM training is carried out on the feature set again to

obtain the optimal number of categories k3.

(5) The optimal number of categories K was obtained by

roundness of the mean values of k1, k2 and k3, and K was

taken as the category number of FCM to carry out clustering

training for feature sets with global and local anomalies

removed.

III. SELECTION OF JOINT TIME-DOMAIN FEATURES OF

COMPONENT SIGNALS

A. THE DESIGN SCHEME OF EXPERIMENT

As shown in Table 1, in this paper, ten time-domain fea-

tures, such as variance, mean square value, root mean square
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FIGURE 5. Combined features of VKF components in different states, where, (a) is in the faultless state, (b) is
in the state of gear pitting and (c) is in the state of composite faults.
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FIGURE 5. (Continued.) Combined features of VKF components in different states, where, (a) is in the
faultless state, (b) is in the state of gear pitting and (c) is in the state of composite faults.

FIGURE 6. Combined feature sets of VKF components in different states.

value, skewness, kurtosis, waviness index, margin index,

pulse index, peak index and kurtosis index, are selected

as independent features. Select time-domain features of

mean, variance, variance coefficient, skewness and kurto-

sis, frequency-domain features of spectral flatness, spec-

tral entropy and spectral flux, and time -frequency domain

features of mean, variance, variance coefficient, skewness,

kurtosis, time -frequency entropy flatness, Shannon entropy

and time-frequency flux, such as eight group features, to con-

stitute combined features that the time-frequency domain fea-

tures correspond to the time-domain and frequency-domain

features.

In order to verify the practicability of the improved method

proposed in this paper, a closed power flow gearbox test
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FIGURE 7. Joint time-domain feature sets.

benchwas used to perform related experiments. The vibration

signals of the gearbox were collected under normal, gear pit-

ting transition, gear pitting and combined faults (gear pitting

and bearing outer ring pitting). The bench is loaded by the

internal force generated by the torsion bar. The test gear has

a transmission ratio of 1: 1 and a number of 18 teeth. The test

bench is shown in Figure 2 (a). The model of piezoelectric

sensor is CA-YD-186 (sensitivity is 10.41mV/m·s2), the sam-

pling frequency is 12000Hz, and layout positions are shown

in Figure 2 (b). Figure 2 (c) (d) (e) show the parts in three

fault states.

The signals in different states are selected, as shown in

Figure 3(a) (b) (c) (d), which are the normal signal, the slight

gear-pitting signal, the gear-pitting signal and the signal of
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FIGURE 7. (Continued.) Joint time-domain feature sets.

combined faults. They have a load of 800N ·M and a uniform

acceleration of 550r/min to 600r/min.

In view of the multi-dimensional features of signals, the

general method is to construct high dimensional sets, and

to find hidden variables in the high-dimensional feature

sets through feature mapping (such as principal compo-

nent analysis, self-organizing mapping, etc.), so as to clas-

sify feature sets and realize the pattern recognition of fault

types.

As shown in Figure 4, (a) combines 10 independent

features of reconstructed signals and signal residuals to

construct a 20 × 40 high-dimensional feature sets, and

(b) combines 8 groups of combined features and 10 indepen-

dent features of reconstructed signals and signal residuals to

construct a 28 × 40 high-dimensional feature sets. After the

labels of feature sets in (a) and (b) are marked, the sets are

classified by generative topographic mapping (GTM). The

results show that the dimension of feature sets is higher, the
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FIGURE 8. The training results of the cyclic GMM-EM algorithm for sensitive feature sets, where, (a) is
sensitive feature sets, (b) is the result of preliminary GMM-EM training, (c) is the result of GMM-EM training
after global outliers removed and (d) is the result of GMM-EM training after local outliers removed.

result of pattern recognition is better. Although it can carry

on the classification to different fault states, it has to mark

labels in advance. In the mapping results of the feature sets,

there are outliers far away from the cluster of each fault state.

And due to the problem such as ‘‘dimension disaster’’, it is

difficult to eliminate abnormal feature sets.

Therefore, it is necessary to preserve the integrity of sig-

nal information in the low-dimensional data set as much

as possible and to show the relationships hidden in the

high-dimensional data set.

B. ANALYSIS OF COMBINED FEATURES AND JOINT

TIME-DOMAIN FEATURE SETS

Previous studies have shown that the feature set composed

of single combined feature or independent feature cannot be

used for pattern recognition. Therefore, this paper attempts

to start with characteristics of VKF components and conduct

research in two ways. On the one hand, 8 pairs of com-

bined features are taken as horizontal and vertical coordi-

nates, and feature sets are constructed with the combined

eigenvalues of each component of signals in different states.

Then, 8 groups of feature sets are screened to select sensitive

feature sets for pattern recognition. On the other hand, recon-

structed harmonic signals of VKF, signal residues and origi-

nal signals are selected as dimensions, and their time-domain

independent features are taken as values to construct a

two-dimensional or three-dimensional joint time-domain

feature set.

Combined features are extracted for each component signal

and signal residual of signals after VKF. Ten sets of gear box

vibration signals are selected for each state, and the results

are shown in Figure 5.

According to Figure 5(a), (b) and (c), the eight combination

features of VKF components in different states, the four com-

bination features of group 1, group 2, group 6 and group 7 can

better distinguish each component, namely, the combined

features of the four groups of mean-TF mean, variance-TF

variance, spectral flatness-TF entropy flatness and spectral

entropy-Shannon entropy.

Each VKF component in different states is combined into

a feature set according to the above four combined features,

as shown in Figure 6. The results show that the feature set

composed of each component has no clear boundary in vision,

and there are abnormal points in some combination features,

so it is difficult to carry out clustering analysis.

Therefore, the idea that constructing a feature set from

combined features of each component is abandoned. Inde-

pendent features of reconstructed signals, signal residues and

original signals are obtained respectively to construct the

feature set, which is named as joint time-domain feature set.
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FIGURE 9. (a) is FCM after cyclic GMM-EM and (b) is k-means after cyclic GMM-EM.

Independent features are ten independent features listed in

Table 1.

Reconstructed harmonic signals of VKF, signal residues

and original signals are selected as dimensions, and their

time-domain independent features are taken as values to

construct a two-dimensional or three-dimensional joint time-

domain feature set.

As shown in Figure 7, abnormal points both exist in the

2D and 3D, and the joint time-domain feature set in (a) is

more clear than (b) to distinguish the boundaries of different

states. But due to anomaly detection of 2D feature set is the

most simple, and the sum of reconstructed signal and residual

is the original signal, that is, 2D feature set contains all the

features of vibration state information. 3D feature set increase

dimension on the basis of the original signal characteristics.

It makes part of the information redundancy. Therefore, this

paper chooses the two-dimensional joint time-domain fea-

tures to construct the feature set.

IV. EXPERIMENTAL VERIFICATION

In Figure7 (b), 1 to 3 groups of sensitive joint features,

boundary of different state is obvious, and the distribution

of three groups of joint features are similar. Therefore, Joint

time-domain feature set of variance is chosen as the sensi-

tive feature set. And train the sensitive feature set with the

improved algorithm of pattern recognition in this paper. The

results are shown in Figure 8.

k1 = 4 is obtained by preliminary GMM-EM training on

the feature set in Figure 8 (a), and the preliminary classifi-

cation result is shown in (b). It shows that the classification

result is greatly affected by abnormal points. After removing

the global outliers, the GMM-EM training result is shown

in (c) and k2 = 4. Compared with (b), the classification result

of (c) is better. But it is still greatly affected by local outliers.

The optimal number of categories kt = 4 was obtained

by rounding the mean values of k1and k2. After average

classification of feature sets, local outliers are removed. And

the result of GMM-EM training is shown in (d) and k3 = 3.

It can be found that not all the points in (d) are in the clas-

sification results. It indicates that the GMM-EM algorithm,

as a hard clustering algorithm, cannot consider all feature

points.

By rounding the mean values of k1, k2 and k3, the

optimal number of categories K=4 is obtained. The

feature sets with global and local outliers removed

were trained by fuzzy C-means clustering (FCM) and

K-means clustering, respectively. The results are shown in

Figure 9 (a) and (b). Compared with Figure 8(a), the training

accuracy of FCM is better than that of K-means cluster-

ing. It achieves the purpose of relatively accurate pattern

recognition and lays a solid foundation for subsequent fault

diagnosis.

V. CONCLUSION AND RECOMMENDATIONS

This paper proposes a pattern recognition method of cyclic

GMM-FCM based on joint time- domain features. In this

paper, according to the characteristics of VKF components,

a number of combined features and independent features

are selected to test. The results show that the sensitive fea-

ture set constructed by joint time-domain features can retain

all the information of signal features while avoiding the

‘‘dimensional disaster’’ problem faced by anomaly detec-

tion. Then, the pattern recognition method based on cyclic

GMM-FCM can effectively eliminate global and local out-

liers in the joint time-domain feature set, and determine the

number of FCM categories adaptively. It makes the result

of classification more accurate and lays a foundation for

the application of the improved method in the industrial

environment.

In future work, it is recommended to extend this improved

method to other composite faults and vibration environments,

such as composite faults of planetary gearboxes.
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