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Abstract

We present an overview of the autonomous helicopter

project at Carnegie Mellon's Robotics Institute. The goal

of this project is to autonomously fly helicopters using com-

puter vision closely integrated with other on-board sen-

sors. We discuss a concrete example mission designed to

demonstrate the viability of vision-based helicopter flight

and specify the components necessary to accomplish this

mission. Major components include customized vision pro-

cessing hardware designed for high bandwidth and low la-

tency processing and 6-degree-of-freedom test stand de-

signed for realistic and safe indoor experiments using model

helicopters. We describe our progress in accomplishing an

indoor mission and show experimental results of estimating

helicopter state with computer vision during actual flight

experiments.

Introduction

Precise maneuverability of helicopters makes them use-

ful for many critical tasks including rescue and security

operations, traffic monitoring, mountain fire fighting,

and inspection of power transmission lines. The goal of

our project is to build a vision-guided helicopter capable

of performing these tasks while flying autonomously. In

addition to robust helicopter control methods, the de-

velopment of such a system requires research on vision

algorithms for helicopter positioning and object recog-

nition necessary for navigation and tracking tasks, to-

gether with real-time hardware for high speed, robust

execution of these tasks.

An autonomous helicopter's performance is critically

dependent on accurate and frequent estimates of its po-

sition and attitude. We focus on methods to provide

these estimates using on-board cameras closely inte-

grated with other sensors such as gyroscopes and ac-

celerometers.

Copyright (_)1993 American Institute of Aeronautics and
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We have dcmonstrated our first results on au-

tonomous helicopter flight. We have built an indoor cal-

ibrated testbed that allows free flight experiments with

model helicopters. We have custom designed vision

hardware which integrates data from on-board sensors

with real-time image processing and can now achieve

frame-rate (30 Hz) vision-based state estimation. Inte-

grating this vision hardware into a stable control sys-

tem will lead to outdoor autonomous helicopter flight

for performing useful, practical missions.

Motivation

A helicopter is an indispensable air vehicle for emer-

gency operations, such as rescuing stranded individuals

and spraying fire extinguishing chemicals for fighting

forest fires. Uses of helicopters in the electric power in-

dustry include inspecting towers and transmission lines

for corrosion and other defects. All of these applications

demand dangerous flight patterns in close proximity to

the ground or other objects which can risk pilot safety.

An unmanned helicopter that operates autonomously

or is piloted remotely will eliminate these risks and in-

crease the helicopter's effectiveness.

Typical missions of autonomous helicopters require

flying at low speeds to follow a path or hovering near

an object. Positioning equipment such as Inertial Nav-

igation Systems (INS) or Global Positioning Systems

(GPS) are well suited for long range, low precision heli-

copter flight and fall short for very precise, close prox-

imity flight. Maneuvering helicopters close to objects

requires accurate positioning in relation to the objects.

Visual sensing is a rich source of data for this relative

feedback.

It is difficult, however, to recover helicopter position

and attitude from vision alone. For instance, distin-

guishing between rotation and translation in a sequence
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weightgyroscopesandangularratesensorsin themar-
ketprovidereliablemeasurementof angularchangein
animagesequence.Forthisreason,weconcentrateon
low-level,closeintegrationofsuchsensorswithvision.

Related Work

The study of the helicopter control problem is not new.

Overcoming the inherent instability of helicopters has

been the focus of a large body of research, includ-

ing detailed mathematical models (eg., [10]) for con-

trol and Kalman filtering of multiple sensor data for

state estimation (eg.,[3]). The controller design meth-

ods range from linear quadratic (LQ) design to H °°

design [19] and predictive control [8]. For example, a

stable closed loop control system has been formulated

[3] by quadratic synthesis techniques for helicopter au-

tolanding.

Recently, incorporation of a pilot model has been at-

tempted based on quadratic optimal Cooperative Con-

trol Synthesis [17]. This model is used for control aug-

mentation where the control system cooperates with the

pilot to increase aircraft performance. The sophisti-

cated pilot model developed by [7] attempts to describe

the human's ability to look ahead, which is crucial to

precise low-altitude helicopter control. While it is dif-

ficult to identify and verify these models, they provide

a valuable basis for an intelligent helicopter controller,

especially in designing low-level control loops. In this

project, we employ a set of low-level controllers which

have been designed by using a simplified helicopter dy-

namics model.

Actual flight tests of helicopter controllers have also

been done. Notable implemented systems include those

at NASA Ames Research Center [17], NASA Lang-

ley Research Center [3], and military aircraft manu-

facturers [5]. Fuzzy controllers have been successfully

employed for actual helicopter flight experiments. In

Japan, Sugeno's group at Tokyo Institute of Technol-

ogy [14] has demonstrated fuzzy control of helicopters

for crop dusting.

The state feedback for the above helicopter con-

trol experiments was primarily provided by on-board

INS/GPS or ground-based beacon systems instead of

on-board computer vision. Recently, we are beginning

to see promising results in real-time vision-based pro-

cessors, visual servoing of robotic manipulators, and ac-

curate vision-based position estimation systems, some

of which are applicable to autonomous helicopter con-

trol experiments.

The development of low cost special-purpose im-

age correlation chips and new multi-processor architec-

tures capable of high communication rates has made

a great impact on image processing. Examples of vi-

sion systems built from this kind of hardware include

transputer-based image hardware for two-dimensional

object tracking [4] and real-time tracking and depth

map generation using correlation chips [9].

The high rate of image processing has made inclu-

sion of visual feedback in servo loops practical. There

is significant development in visual control of manip-

ulators carrying small cameras, eye-in-hand configura-

tion. Researchers at Carnegie Mellon's Robotics Insti-

tute [12] demonstrated real-time visual tracking of ar-

bitrary 3D objects traveling at unknown 2D velocities

using a direct-drive manipulator arm. The Yale spatial

robot juggler [13] demonstrated transputer-based stereo

vision for locating juggling balls in real time. Real-time

tracking and interception of objects using a manipula-

tor [11] has also been demonstrated based on fusion of

the visual feedback and acoustic sensing.

Controlling by vision requires position estimation rel-

ative to desired objects and extraction of 3D scene

structure based on sequence of images. RAPID and

DROID [6], developed by Roke Manor Research Lim-

ited, are systems designed for performing such tasks

in unknown environments. RAPID is a model-based

tracker capable of extracting the position and orien-

tation of known objects in the scene. DROID is a

feature-based system which uses the structure-from-

motion principle for extracting scene structure using

image sequences. Real-time implementations of these

systems have been demonstrated using dedicated hard-

ware.

Integrating efficient model-based and connectionist

techniques with powerful hardware architectures has

produced an array of autonomous land and air ve-

hicles. Significant advances in autonomous automo-

biles has demonstrated vision-based control at high-

way speeds. Most notable are Carnegie Mellon's

Navlab [16] project and the work of Dickmanns at Uni-

versity of Bundeswehn, Munich involved with European

PROMETHEUS project [2].

Dickmanns applies a 4D approach exploiting spatio-

temporal models of objects in the world to autonomous

land and air vehicle control [1]. He has demonstrated

autonomous state estimation for an aircraft in landing

approach using a video camera, inertial gyros and an

air velocity meter. Vision-based state estimation is also

pursued at NASA Ames Research Center [15] using par-

allel implementation of multi-sensor range estimation

for helicopter flight.
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Testbed System Configuration 

Figure 1: Indoor Testbed 

An electrical model helicopter is supported by six light-weight 

graphite rods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA frictionless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAair bearing couples each rod with 

two-degree-of-fkeedom joints mounted on poles secured to the 

ground. Ground truth helicopter position is calculated from joint 
angles measured by shaft encoders. 

Indoor Helicopter Testbed 

For practical, calibrated experimentation, we have de- 

signed and built an indoor helicopter testbed. It con- 

sists of an electrical model helicopter mounted on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6- 
degree-of-freedom (6-DOF) test stand (see Figure 1). 

Using the testbed, we can test each critical component 
necessary for autonomous flight before attempting po- 

tentially dangerous outdoor free flight experiments. 

Model helicopters provide an inexpensive, safe, and 

logistically manageable way to experiment with heli- 

copter control. They are faithful reproductions of full 
size helicopters with respect to the crucial rotor controls 

and configurations. Control techniques developed for 

the model helicopters can be directly applied to larger 
scale helicopters. 

The helicopter in our testbed is attached to a fric- 
tionless 6-DOF stand as shown in Figure 1. The stand 

provides ground truth measurement of the helicopter 

position and attitude, and also works as a safety de- 

vice preventing crashes and out-of-control flight. The 

helicopter on the stand can fly freely in a cone-shaped 

volume six feet wide and five feet tall without major 
inertial variations from free flight. The helicopter is 

fastened to six fixed poles by six light-weight graphite 

rods. Each graphite rod is free to move through a fric- 

tionless air bearing mounted on a two-degree-of-freedom 

joint. The joint angles are measured by shaft encoders 
and used by the computer to calculate the helicopter's 

ground truth position and attitude for experiment eval- 

uation. 

The computer system configuration, shown in Fig- 

ure 2, consists of a host computer, customized vision 

processor, a real-time processor, synchronization hard- 

ware, and interfacing equipment. A hand-held radio 

transmitter used by a model helicopter pilot is inter- 

faced to  real-time computers. Using this interface, we 

can send computer control signals to the helicopter. 

The same interface can be used for free flying heli- 
copters. 

With this testbed, we can perform controlled exper- 

iments over a wide range of conditions. We can create 

various wind conditions by using fans, terrain condi- 

tions by placing objects, and helicopter setups by ad- 

justing the mechanisms. Because of the safety provided 

by the testbed, even potentially disastrous situations 
like the failure of critical helicopter parts can be tested. 

Using a simplified helicopter dynamics model we have 

implemented a control system capable of hovering the 

helicopter using linear controllers tuned at different op- 

erating points. This control system provides us with a 
stable platform necessary for conducting low-speed and 

hovering experiments. 

One apparent limitation of the test stand is its in- 

ability to support larger model helicopters capable of 

lifting several sensors at once. On the other hand, since 
the test stand provides ground truth data, we can sim- 

ulate data from certain sensors by purposely corrupting 
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Figure 3: Vision Processor Structure

the stand data before using it. Different sensors can be

individually characterized by comparing their response

with ground truth data and their presence on-board the

helicopter can be simulated during experiments.

Low Latency Vision Hardware for

Helicopter Control

Our experience controlling model helicopters using the

test stand has shown the necessity of velocity and po-

sition feedback rates of 15 to 30 Hz. Processing image

data at these rates requires fast computers capable of

acquiring and processing images at frame-rate (30 Hz).

There are a number of new cost-effective compact CPU

platforms designed for high speed data transfer and pro-

cessing. Among the most popular are: SGS-Thomson

inmos T9000 Transputer, Intel i860, and Texas Instru-

ments TMS320C40 Digital Signal Processor (C40). Our

development is based on the C40 platform primarily

for its high speed communication ports each capable

of transferring data at 20 MB/s. Other advantages in-

clude: programmable Direct Memory Access (DMA)

well-suited for image windowing operations, flexible

memory architecture and internal bus structure, and

wide availability. The structure of our customized vi-

sion processor is shown by Figure 3.

We have achieved close integration of vision with

other on-board sensors using customized hardware de-

signed to interface with an array of C40 processors.

This low-level integration is key in providing robust ve-

locity and position estimation.

Digitizer Configuration

The helicopter has multiple on-board sensors: two

ground-pointing black and white CCD video cameras,

vertical and directional gyroscopes, and accelerometers

for each translational axis. The data from these sensors

is digitized using multiple special-purpose digitizers. In

particular, our system provides variable sampling rates

for image digitization. Typically, the NTSC video signal

is sampled at 14.3 Mttz which yields close to 1000 pixels

per line. Conventional video digitizers choose 512 or 640

of these pixels per line during digitization. Since most

CCD cameras have less than 1000 CCDs per line, we

directly control digitizer sampling to reduce image data

bandwidth and to provide more original image content.

The aspect ratio of the image changes with sampling

frequency and must be properly calibrated.

Convolution and Image Tagging

Fast convolution is essential for image preprocessing.

In addition to edge detection and smoothing, matching

and feature extraction can be performed using special

convolution masks. We use real-time convolution hard-

ware to perform Gaussian smoothing before processing

images. To reduce image data bandwidth, we subsam-

ple the image using the digitizer before performing the

smoothing operation. For the experiments described in

this paper, 8 × 8 convolution masks were used on images

sampled at 6 MHz pixel frequency.

Using similar convolution hardware, accelerometer

and gyroscope data are sampled at 120 Hz and fil-

tered by 64xl Gaussian FIR filters. The filtered data

is sampled and incorporated in the image data stream

by an image tagger. Precise temporal matching of this

data with the image is performed by using the camera's

60 Hz field vertical sync clock (VSYNC) and shutter

speed. We use 1 millisecond shutter speed for tagging

images accurately and reducing image blurring during

helicopter motion.

High Speed Data Link

Because of the camera's VSYNC frequency, the pro-

cessing time period for the sensor-tagged field images

can only be multiples of 16.7 milliseconds. Barely miss-

ing an image due to long processing time is expensive

since the processor must wait for a new image for proper

synchronization. Image field digitization alone requires

16.7 milliseconds. During this time period the image

must be transferred to the processor in order to achieve

frame-rate (30 Hz) performance. We perform this trans-

fer through a high speed data link designed to commu-

nicate with C40 processor comm-ports. This link incor-

459



poratessmallhardwarebuffersto converttheincoming
synchronousimagestreamto theasynchronouscomm-
portprotocolof theC40.In addition,sincetheimage
datais not directlyenteringa framebuffer,thehigh
speedlink providespropercomm-portsynchronization
with thecamerausinganinternalstate-machine.The
comm-portdesignreducesCPUmemorybustrafficby
usingC40'sinternaldatabusesandprovidestheability
to onlytransferregionsofinterestusingC40s versatile

DMAs. These functions are crucial in improving pro-

cessor speed.

Search Mission

As a concrete mission for an autonomous vision-guided

helicopter, we envision a task of locating a known ob-

ject in a predetermined outdoor area, for example, a

particular car in a parking lot, and tracking the object

by controlled helicopter flight.

The development of the indoor test stand allows us to

conveniently simulate search mission scenarios using a

variety of objects and terrain for visual tracking experi-

ments. By carefully choosing these indoor experiments,

we expect similar performance outdoors. The differ-

ences in flight altitude and terrain illumination can be

resolved by small modifications to camera lenses, shut-

ter speeds, and digitizing hardware.

Our mission is to search for a small car stranded

somewhere in rough terrain. Performing this task re-

quires object recognition to find the car, and visual

measurement of position and velocity for autonomous

flight. We have covered the stand base with gravel col-

lected from the outdoor mission site to provide a real-

istic scene for our vision algorithms.

Velocity and Position Measurement

To measure helicopter velocity or position based on im-

age data, we must first determine the displacement be-

tween consecutive images. This displacement in cam-

era pixel coordinates is a function of camera attitude

and distance relative to objects in the scene and cam-

era calibration parameters such as focal length. For

the indoor search experiments, camera attitude is es-

timated by gyroscopes and camera distance from the

ground is estimated using the test stand. Performing

outdoor experiments without the test stand requires al-

titude measurement by stereo vision possibly integrated

with a laser rangefinder or microwave radar system.

The apparent displacement between consecutive im-

ages is a result of camera translation and rotation. Dis-

ambiguating rotation from translation is especially im-

portant for helicopter control since helicopter transla-

m /
Figure 4: Effect of helicopter rotation

tion is directly a result of its change in attitude. Fig-

ure 4 shows the significance of this effect while the he-

licopter flares for reducing forward speed or stopping.

By carefully measuring the angular change between

templates and images, we can estimate the effect of ro-

tation and correct the image displacement to only re-

flect translational motion. This correction is useless

without precise synchronization of gyroscope data with

images. The drift common to all gyroscopes is not a

problem here, since only the change in attitude is nec-

essary from frame to frame.

Image Displacement Measurement

We use template matching to measure the displacement

between consecutive images. We use sum-of-squared-

differences (SSD) as our matching criteria. Each tem-

plate is an m x n window of image intensities selected

from the previous image. The best match of the tem-

plate in the image can be determined by minimizing the

SSD of the template and image pixels. To reduce the

amount of computation, we restrict our search area to a

small window around the template's neighboring pixels.

The size of this search area is determined by helicopter

altitude and anticipated worst case change in helicopter

motion within one frame period. As the helicopter al-

titude decreases, the same translational motion causes

a larger displacement in the image. The minimum al-

titude of the test stand is 1 meter and the on-board

camera lens has 7.8 mm focal length. If we allow max-

imum helicopter velocity to be 1.5 meters per second

during hover, our maximum image template displace-

ment is 32 pixels per frame.

A coarse to fine strategy further improves search area

and speed. We begin by using every fourth pixel to

produce a coarse match for narrowing the search to 64

possible pixel locations. This estimate is improved to

subpixel accuracy by fitting a parabolic surface to the

SSD of the 64 match candidates. Figure 5 shows an

example of a fitted parabola. A good parabola fit will

refine the best single pixel match within +1 pixel. The

parabola minimum is disregarded if it is not within one

pixel of the single pixel match.
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5:  SSD Parabola Fit 

In addition to subpixel accuracy, the fitted parabola 

provides match uncertainty information. A steep 

parabola versus a shallower one signals a more accurate 

match. Covariance matrices constructed from parabola 

coefficients will allow us to combine data from each tem- 
plate using a Kalman filter to produce the best estimate 

of image displacement. 

For experiments reported here, we use four image 

templates for velocity and one template for position es- 
timation as shown by Figure 6. The four velocity tem- 

plates are 40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 40 pixels in size and are positioned in 

each image quadrant. After each matching operation, 

the disp!accnei~t of each template is calculated and the 

templates are updated with new image data from the 
same location. 

Actual velocity measurement during flight is shown 

by Figure 7. This figure compares ground truth lateral 

and longitudinal velocity measurement (solid line) from 

the test stand with vision-based velocity estimates. The 

dashed and dotted lines in each figure represent vision- 
based velocity estimates with and without attitude cor- 

rection. The correction was performed by measuring 

the attitude change between each template-image pair. 

Assuming images are taken from a locally flat surface, 

we can construct a transform, based on helicopter alti- 

tude and camera focal length, to convert the attitude 

change to a correction vector on the image plane for 
each template location. ,The effect of this correction is 

significant: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcm/s RMS error in lateral velocity mea- 
surement without attitude correction versus 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcm/s af- 

ter correction. 

The position estimation template is 64 x 64 pixels 

in size and its location varies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the helicopter moves. 
This template is updated with image data from the best 

match in order to compensate for changes in helicopter 

Figure 6: Image Templates 

t h e  h scond. 

-1 5; 
1 2 3 4 5 6 

Imshscond. 

Figure 7: Vision-Based Velocity Measurement 

The solid lines represent ground truth helicopter velocity from 

the test stand. The dotted lines show velocity based on image 

displacement alone and the dashed lines represent vision-based 
velocity with attitude correction. 
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The solid llne represents ground truth helicopter position from

the test stand. The dotted line shows position based on image

displacement.

altitude and heading. If the best template match is

close to leaving the camera view, the position template

is loaded from the image center. A larger search area of

64 pixel displacement is used due to longer processing

time. Figure 8 shows vision-based (dashed line) and

ground truth (solid line) lateral position with respect

to camera starting point. Attitude correction is more

complicated in this case since the template changes po-

sition in the image plane. The figure shows uncorrected

position estimation.

Position and Velocity Data Flow and Synchro-

nization

We can not overemphasize the role of accurate synchro-

nization in integration of on-board sensor data with

high speed image processing. As observed above, atti-

tude correction by synchronizing image and gyroscope

data produces a significant improvement on position

and velocity measurement accuracy. Figure 9 shows

the data flow and synchronization we are performing

for above helicopter motion estimation.

The solid vertical lines represent the camera VSYNC

from the second image field (B). For high speed per-

formance, only one image field (A) is used for mo-

tion estimation. The process begins with opening the

camera shutter for 1 millisecond prior to VSYNC. Fil-

tered gyroscope and accelerometer data is sampled with

VSYNC and included in the image data stream by the

image tagger. The tagged image is transferred to C40-1

which partitions field A for other C40s. The top half

of field A is used by C40-1 and the bottom half by

C40-2 for velocity estimation. In addition, field A is

transferred to C40-3 for position estimation. Due to

the high band-width of connections between C40s, it is

,= I/_t _1_ I/_ iic :I

--=-,I 'I I

I I I

_elomm_er dm

;.r..............rT TI...................

C40-3 I I Fx_s#ion

Figure 9: Data Flow and Synchronization

possible to start image processing during image trans-

fer. The transferring is performed by DMAs which do

not interfere with data processing. C40-1 also trans-

fers synchronized gyroscope and accelerometer data to

C40-4 which is responsible for state estimation and con-

trol. The state estimation is performed by transforming

image displacement data from other C40s to helicopter

translational motion. The estimated translational ve-

locity and position in conjunction with accelerometer

and gyroscope data are used by linear control loops to

control the helicopter.

Object Search

The vision-based velocity and position estimation pro-

vides the basic capability for hovering and low-speed

flight necessary for our indoor search mission. Locating

the object of interest is the next step. We use template

matching to perform this search. A major difficulty

in this approach is that object orientation is unknown.

This requires templates of the object in all possible ori-

entation for matching. Methods such as K-L expan-

sion [18] can be used to reduce computational complex-

ity and storage of necessary templates. Another prob-

lem stems from varying helicopter altitude which will

change the size of the object in the image. Close regula-

tion and measurement of helicopter altitude is necessary

to further reduce the complexity of the search.

We are conducting the search using a set of twenty

32 x 32 templates. These twenty templates, generated

by K-L transform techniques, are sufficient for locating

objects with +40 ° orientation discrepancy as accurately

as one degree resolution. The processing frequency for

searching the entire image is 3 Hz using one C40 proces-

sor. Upon locating the object, the position estimator

can now use the object in the image as its template pro-

viding relative helicopter position necessary for object

tracking.
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Conclusions

We have successfully developed the key components

necessary for vision-guided autonomous flight. As our

experimental results demonstrate, we are achieving

real-time low latency image processing at suitable rates

to stably fly helicopters. The major elements in our de-

velopment have been custom designed vision hardware

and indoor testbed. In addition to high speed process-

ing, customized hardware provides flexible integration

of on-board sensors which significantly improves vision-

based state estimation. The indoor testbed provides

convenient calibrated experimentation which is essen-

tial in building real autonomous systems.
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