
Research on Architecting Microservices: Trends,

Focus, and Potential for Industrial Adoption

Paolo Di Francesco∗, Patricia Lago†, Ivano Malavolta†

∗Gran Sasso Science Institute, L’Aquila, Italy - paolo.difrancesco@gssi.it
†Vrije Universiteit Amsterdam, The Netherlands - {p.lago | i.malavolta}@vu.nl

Abstract—Microservices are a new trend rising fast from the
enterprise world. Even though the design principles around
microservices have been identified, it is difficult to have a clear
view of existing research solutions for architecting microservices.

In this paper we apply the systematic mapping study method-
ology to identify, classify, and evaluate the current state of
the art on architecting microservices from the following three
perspectives: publication trends, focus of research, and potential
for industrial adoption. More specifically, we systematically define
a classification framework for categorizing the research on
architecting microservices and we rigorously apply it to the 71
selected studies. We synthesize the obtained data and produce
a clear overview of the state of the art. This gives a solid
basis to plan for future research and applications of architecting
microservices.

Index Terms—Microservices, Software Architecture, System-
atic Mapping Study

I. INTRODUCTION

Netflix, Amazon, The Guardian and other companies have

evolved their applications towards a microservice architecture

(MSA). Lewis and Fowler define the microservice architectural

style as an approach for developing a single application as a

suite of small services, each running in its own process and

communicating with lightweight mechanisms, often an HTTP

resource API [4].

MSA arises from the broader area of Service Oriented

Architecture (SOA) and focuses on specific aspects, such as

componentization of small lightweight services, application

of agile and DevOps practices for development, usage of

infrastructure automation with continuous delivery features,

decentralized data management and decentralized governance

among services. There are many differences between SOA and

MSA. For example, the design of services in MSA is driven by

a share-nothing philosophy in order to support agile methods

and promote isolation and autonomy. Instead, SOA adopts a

share-as-much-as-you-can philosophy to promote a high de-

gree of reuse [17]. Another significant difference is that MSA

mainly focuses on service choreography, while SOA relies on

both service orchestration and service choreography [17].

Even though the design principles around the microservice

architectural style have been identified, many aspects are

still unclear or unexplored. This makes it difficult for both

researchers and practitioners to have a clear view of existing

research solutions for architecting microservices, their charac-

teristics, and their potential for broad industrial adoption. The

goal of this paper is to characterize the current state of the art

for understanding what we know about scientific research on

architecting microservices.

For achieving this goal we applied the systematic mapping

study methodology, which is a research methodology intended

to provide an unbiased, objective and systematic instrument

to answer a set of research questions by analysing all of the

relevant research contributions in a specific research area. In

our study we identified, classified, and evaluated the current

state of the art on architecting microservices from differ-

ent perspectives. We selected 71 primary studies from over

three hundred potentially relevant papers; then, we rigorously

defined a classification framework for precisely categorizing

research results on architecting microservices, and we applied

it to the 71 primary studies. Finally, we synthesized the

obtained data to produce a clear overview of the state of the

art in architecting microservices. Also, we assessed how re-

search results on architecting microservices can be potentially

transferred and adopted in industrial projects. This assessment

can play the role of reference framework for acting towards

a smoother transfer of research results to practice, which is

one of the goals of an applied research field such as software

engineering [5].

The main contributions of this study are: (i) a reusable

framework for classifying, comparing, and evaluating architec-

tural solutions, methods, and techniques (e.g., tactics, patterns,

styles, views, models, reference architectures, or architectural

languages) specific for microservices; (ii) an up-to-date map

of the state of the art in architecting microservices and its

implications for future research; (iii) an evaluation of the

potential for industrial adoption of existing research results

on architecting microservices;

The audience of this study is composed of both (i) re-

searchers interested to further contribute to this research area,

and (ii) practitioners interested to understand existing research

on architecting microservices and thereby to critically adopt

those solutions that best fit with their business goals.

The rest of the paper is organized as follows. In Section II

we set the stage by giving the basic concepts around archi-

tecting microservices. The design of the study is presented in

Section III, whereas its results are elaborated in Sections IV,

V, and VI, where they are also put in a broader perspective

and their potential implications for both researchers and prac-

titioners are presented. Threats to validity and related work

are described in Sections VII and VIII. With Section IX we

close the paper and discuss future work.

II. ARCHITECTING MICROSERVICES

Common characteristics to the microservice architectural

style are: (i) organization around business capability, (ii)

automated deployment, (iii) intelligence in the endpoints, and

(iv) decentralized control of languages and data. This style

allows to design architectures that result flexible, modular

and easy to evolve over time. Microservice architectures

can provide significant benefits. Among the important ones,

there is the possibility to design, develop, test and release

services with great agility. Infrastructure automation allows to

reduce the manual effort involved in building, deploying and

operating microservices, thus enabling continuous delivery.

Decentralized governance and data management allow services

to be independent, and avoid an application to standardize on a

single technology. Microservice architectures are particularly

suitable for cloud infrastructures, as they greatly benefit from

the elasticity and rapid provisioning of resources. Architecting

microservices, however, is not an easy task as it requires to

manage a distributed architecture and its challenges (e.g., net-

work latency and unreliability, fault tolerance, data consistency

and transaction management, communication layers, load bal-

ancing). Cloud infrastructures and new technologies play a

fundamental role for realizing microservice architectures and

managing the associated challenges and complexities.

III. STUDY DESIGN

In this research we follow the well-established guidelines

for systematic mapping studies [7, 16], in the following we

present the key aspects of the design of our study.

A. Research Questions

We refined our research goal into three research questions:

RQ1 – What are the publication trends of research studies

about architecting microservices? By answering this research

question we aim at characterizing the intensity of scientific

interest on architecting microservices, the relevant venues

where academics are publishing their results on the topic, and

their contribution types over the years.

RQ2 – What is the focus of research on architecting mi-

croservices? By answering this research question we aim

at providing (i) a solid foundation for classifying existing

(and future) research on architecting microservices and (ii)

an understanding of current research gaps in the state of the

art on architecting microservices.

RQ3 – What is the potential for industrial adoption of existing

research on architecting microservices? By answering this

research question we aim at assessing how and if the current

state of the art on architecting microservices is ready to be

transferred and adopted in industry.

B. Search and Selection Process

As shown in Figure 1, our search and selection process

has been designed as a multi-stage process in order to have

full control on the number and characteristics of the studies

considered during the various stages.

Fig. 1. Overview and numbers of the search and selection process

1. Initial search. As suggested in [7, 16], we performed

automatic on four of the largest and most complete scientific

databases and indexing systems in software engineering -

ACM Digital Library, IEEE Xplore, Web of Science, and

Scopus. The selection of these electronic databases and in-

dexing systems is guided by: (i) the fact that they have been

recognised as being an effective means to conduct systematic

literature reviews in software engineering [16], (ii) their high

accessibility, and (iii) their ability to export search results to

well-defined, computation-amenable formats.

(a r c h i t e c t ∗ OR d e s i g n ∗ OR s y s t e m OR s t r u c t u r ∗)

AND (m i c r o s e r v i ∗ OR micro−s e r v i ∗ OR ” micro s e r v i ”∗)

Listing 1. Search string used for automatic research studies

Our search string is shown Listing III-B, in order to cover as

much relevant studies as possible we kept it very generic and

considered exclusively the object of our research (i.e., existing

research on architecting microservices). For consistency, the

search string has been applied to title, abstract and keywords

of papers in all the data sources considered in this research.

2. Impurity removal. Due to the nature of the involved data

sources, search results included also elements that were clearly

not research papers, such as international standards, textbooks,

etc. In this stage we manually removed these results in order

to have a coherent set of potentially relevant research studies.

3. Merging and duplicates removal. Here we combined all

studies into a single dataset. Duplicated entries have been

matched by title, authors, year, and venue of publication.

4. Application of selection criteria. We considered all the

selected studies and filtered them according to a set of well-

defined selection criteria. In this stage it was crucial to select

studies objectively and in a cost-effective manner. To this

purpose we used the adaptive reading depth [15], as the full-

text reading of clearly excluded studies was not necessary. The

inclusion and exclusion criteria of our study are:

I1 - Studies focussing on architectural solutions, methods or

techniques (e.g., tactics, styles, reference architectures, or

architectural languages) specific for microservices.

I2 - Studies providing an evaluation of the architectural so-

lution, method or technique (e.g., via formal analysis,

experiment, exploitation in industry, simple examples).

I3 - Studies subject to peer review.

I4 - Studies written in English.

E1 - Studies that, while focusing on microservices, do not

explicitly deal with their architecture (e.g., studies fo-

cussing only on technological aspects, inner details of

microservices).

E2 - Studies where microservices are only used as an example.

E3 - Secondary or tertiary studies (e.g., systematic literature

reviews, surveys, etc.).

E4 - Studies in the form of tutorial papers, editorials, etc.

because they do not provide enough information.

E5 - Studies not available as full-text.

5. Combination. If there were multiple papers on the same

study, we kept a record of all of them and pointed them to

a single study. This was necessary for ensuring completeness

and traceability of our results [20].

6. Snowballing. We complemented the previously described

automatic search with a snowballing activity [16]. The main

goal of this stage is to enlarge the set of potentially relevant

studies by considering each study selected in the previous

stages, and focusing on those papers either citing and cited

by it. More technically, we performed a closed recursive

backward and forward snowballing activity [19].

C. Data Extraction

In this activity we (i) create a classification framework and

(ii) collect data for each primary study. When going through

the primary studies in detail for extracting information we

agreed that 8 studies were semantically out of the scope of

this research, so they have been excluded (see Figure 1). In

order to have a rigorous data extraction process and to ease the

management of the extracted data, we systematically designed

a structured classification framework; it is composed of three

facets, one for each research question of our study.

Publications trends (RQ1). The parameters we considered

to collect data about publication trends are: publication year,

publication venue (e.g., conference, journal, etc.), and re-

search strategy (e.g., solution proposal, opinion paper, etc.).

Focus of research (RQ2). We followed a systematic process

called keywording for defining the categories of this facet.

Goal of the keywording process is to effectively develop a

classification framework so that it fits the primary studies and

takes their research focus into account [15]. The following

details each step of the keywording process:

1. Identify starting set of studies. Two researchers randomly

extracted 5 studies from the set of all primary studies; they

have been used as pilot studies during the keywording process.

2. Identify keywords and concepts. Two researchers collected

keywords and concepts by reading the full-text of each starting

study. When all starting studies were analyzed, we combined

all keywords and concepts to clearly identify the emerging

context, nature, and contribution of the research on architecting

microservices.

3. Cluster keywords and form categories. Two researchers

performed a clustering operation on collected keywords and

concepts in order to cluster them according to emerging

categories. The output of this stage is the initial classification

framework. Examples of emerging categories include: sup-

ported architecting activities, scope in the software lifecycle,

considered quality attributes (e.g., reliability), etc. Next steps

have been performed for each primary study.

4. Extract data from current study. A researcher extracted in-

formation about the current study to be analysed by collecting

(i) information according to the parameters of the classification

framework and (ii) any additional relevant information that did

not fit within any parameter of the classification framework. If

the collected information fit completely within the classifica-

tion framework, then we proceeded to analyze the next study,

otherwise the classification framework was refined.

5. Refine comparison framework. Two researchers discussed

together on the collected additional information. This discus-

sion could result either in the correction of the performed clas-

sification or in the refinement of the classification framework.

The above described process ended when there were no pri-

mary studies to analyze left. The specific parameters emerging

from the keywording process are described in Section V.

Potential for industrial adoption (RQ3). This facet is com-

posed of four different parameters: (i) readiness level for as-

sessing the maturity of the involved technologies, (ii) industry

involvement for understanding how academic and industrial

researchers collaborate on the topic, (iii) tool support for

distinguishing between software-based or knowledge-based

contributions, and (iv) open-source test system for identi-

fying existing benchmarks for microservice architectures.

D. Data Synthesis

The data synthesis activity involves collating and summaris-

ing the data extracted from the primary studies [8, § 6.5] with

the main goal of understanding, analysing, and classifying

current research on architecting microservices. Specifically, we

performed a combination of content analysis (for categorizing

and coding the studies under broad thematic categories) and

narrative synthesis (for explaining in details and interpreting

the findings coming from the content analysis).

E. Replicability of the Study

Due to page limitations we do not include all the details

of the design of our study. To allow easy replication and

verification of our study, a complete replication package1 is

publicly available to interested researchers. Our replication

package includes: the detailed research protocol, the detailed

description of all the parameters of the classification frame-

work, the list of all selected studies, raw data for each phase

of the study, and the R scripts for summarizing extracted data.

IV. RESULTS - PUBLICATION TRENDS (RQ1)

Publication years. Figure 2 presents the distribution of pub-

lications on architecting microservices over the years. Here

we have a clear confirmation of the scientific interest on

architecting microservices in the last years. A small number of

publications have been produced until 2014, which is actually

the first year in which (i) microservices started to attract the

1http://cs.gssi.infn.it/ICSA2017ReplicationPackage

http://cs.gssi.infn.it/ICSA2017ReplicationPackage

interest of large organizations, and (ii) the term microservice

as architectural style was consistently used [14]. As a confir-

mation, even if the four studies published before 2014 were

about systems composed of small-scale lightweight services

(P10, P62, P63, P64), they were referring to slightly different

perspectives on microservices as they are considered today.

For example, P10 refers to low-level software components in

the robotic domain as microservices, whereas P62 considers

microservices as mobile services generated by end-users. We

observed alternative definitions of microservices also in other

cases throughout the years, as described in Section V-A.

Fig. 2. Distribution of primary studies by type of publication over the years

Publication types. The most common publication type is

conference papers (48/71), followed by journal (13/71) and

workshop papers (10/71). Such a high number of conference

and journal papers may indicate that architecting microservices

is maturing as research topic despite its relative young age.

Publication venues. We can observe an extreme fragmentation

in terms of publication venues, where research on architecting

microservices is spread across 62 venues spanning different

research areas like cloud infrastructures, software engineering,

software services, autonomic computing, etc. This can be an

indication that architecting microservices is considered as an

orthogonal research target with many cross-cutting concerns.

Research strategies. Since this parameter is general and

independent from the research area, we reuse the comparison

of research approaches proposed by Wieringa et al. in [18].

We chose this comparison because (i) it has been widely used

in various systematic mapping studies (e.g., in [3]) , and (ii)

its categories are quite cost-effective to be identified [15].

As shown in Table I, here the clear winner is solution

proposal (48/71). We can root this result to the fact that

the microservice architectural style is still in its infancy (we

recall here that the first well acknowledged definition has

been provided only in 2014) and not yet consolidated in

any (not even de facto) standards. This results in a large

number of researchers trying to propose their own solutions

for either recurrent or specific problems (see Section V-A

for the details on this). Validation research (14/71) is the

second most recurrent research strategy, highlighting the fact

that researchers are actually providing some level of evidence

about their proposed solutions, either by simulations, in-

the-lab experiments, prototypes, etc. However, Table I also

shows that researchers performed evaluation research very

rarely (3/71), meaning that industry- and practitioners-oriented

studies (e.g., industrial case study, action research, practitioner

targeted survey) are not yet in the focus of researchers today.

This represents a gap that should be filled by future research

TABLE I
APPLIED RESEARCH STRATEGIES

Res. strategies #Studies Studies

Solution proposal 48 P1, P2, P3, P4, P6, P7, P9, P10, P12,
P13, P14, P15, P17, P18, P20, P21,
P22, P23, P25, P26, P29, P30, P32,
P33, P36, P39, P42, P43, P44, P45,
P47, P49, P50, P51, P52, P54, P55,
P56, P58, P61, P62, P63, P64, P66,
P68, P69, P70, P71

Validation
research

14 P3, P6, P9, P14, P21, P24, P38, P51,
P52, P59, P61, P62, P69, P71

Opinion paper 8 P11, P16, P19, P28, P41, P48, P60, P67
Experience paper 8 P8, P31, P34, P37, P38, P40, P57, P65
Philosophical pa-
per

3 P5, P46, P53

Evaluation
research

3 P27, P35, P45

on architecting microservices, specially if we want to either

(i) solve real problems coming from industrial scenarios or (ii)

push the technology transfer of research results into industry.

Main findings:

◮ Year 2015 signed a booming, monotonic increase

in publication numbers with particular interest in

conferences and journals (both increasing).

◮ The field is rooted in practice: publication venues

are scattered across specific topics or application

domains, and most publications propose specific

solutions and validations thereof.

V. RESULTS - RESEARCH FOCUS (RQ2)

As described in Section III-C, the part of classification

framework related to RQ2 has been systematically defined. Af-

ter this process we obtained two main categories related to the

research focus on architecting microservices, namely: scope

(Section V-A) and support for architecting (Section V-B).

A. Scope

With this category we provide information to help re-

searchers and practitioners in putting a research study on

architecting microservices into context. For example, here we

have parameters about the targeted problem, the main research

contributions, the used definition of microservice, etc. In the

following we discuss the results related to each parameter.

Target problems. As shown in Table II, the most recur-

rent problems targeted by the primary studies are complexity

(19/71) and low flexibility (19/71), followed by resources

management (16/71) and service composition (15/71). These

results confirm that if on the one hand microservices can help

in achieving a good level of flexibility (e.g., by promoting low

services coupling, higher maintainability), on the other hand

adopting a microservice-based architecture may bring higher

complexity, mainly because they imply a high number of

distributed services to operate. Interestingly, the bottom area of

Table II shows problems that are related to system-level quality

TABLE II
TARGET PROBLEMS

Problems #Studies Studies

Complexity 19 P3, P10, P12, P18, P21, P22, P23, P26,
P31, P33, P37, P39, P41, P46, P50, P62,
P64, P67, P68

Low flexibility 19 P8, P15, P17, P19, P23, P25, P29, P37,
P38, P47, P49, P50, P54, P61, P63, P66,
P67, P68, P70

Resources man-
agement

16 P11, P15, P19, P21, P24, P27, P28, P34,
P35, P36, P48, P49, P53, P54, P65, P70

Service compo-
sition

15 P2, P30, P32, P33, P37, P41, P47, P52,
P55, P60, P66, P67, P68, P69, P70

Data
management

13 P3, P4, P9, P19, P20, P29, P38, P54, P55,
P61, P62, P63, P64

Modernization 11 P7, P8, P11, P13, P36, P42, P43, P51,
P56, P65, P71

Low auditabil-
ity

7 P6, P14, P21, P22, P37, P41, P59

Runtime uncer-
tainty

7 P5, P10, P22, P26, P39, P40, P45

Low portability 5 P1, P12, P22, P46, P48
Low testability 5 P6, P22, P44, P57, P58
Realtime com-
munication

4 P2, P25, P31, P37

Security 4 P14, P16, P28, P48
Time to market 4 P13, P47, P54, P66

like low portability and testability (5/71), security and time to

market (4/71). These have been extensively investigated in the

software architecture area, but are still new to microservice

architectures; this result may be an indicator of a potentially

relevant research gap needing attention in the future.

Research contribution. The main research contributions

are application (21/71) and method (18/71), as reported in

Table III. The high number of applications might indicate that

microservice architerectures can be suitable in many areas, and

it would confirm that the trend emerged from the industrial

field. Researchers seem to deal with the complexities in

architecting microservices by proposing new methods (18/71),

reference architectures (16/71) and middlewares (12/71). A

significant number of problem framing (14/71) studies in-

dicates that researchers are trying to better undestand and

shape the challenges in this field. Interestingly, few papers

are investigating design patterns and architectural languages

for microservices, which might reveal gaps to be filled by the

research community. Proposing an architectural language for

microservices could help architects in many activities as for

example in reasoning on the system as a whole, performing

analysis on the system qualities, coping with the dynamic and

changing aspects of the application at runtime.

Research perspective. The research perspective is the main

focus area of the primary study. As reported in Table IV,

the predominant research perspectives are: cloud (21/71),

system quality (21/71) and migration (16/71). The attention

on cloud confirms the close relation between the microservice

architectural style with the DevOps culture, and also confirms

that containerization and virtualization are key enabling tech-

nologies. Moreover, the focus on the system quality (e.g., scal-

ability, performance, security) suggests that the microservice

architectural style has direct impact on the design of a system

TABLE III
RESEARCH CONTRIBUTION

Contribution #Studies Studies

Application 21 P3, P8, P9, P10, P12, P15, P17, P20, P21,
P25, P29, P31, P36, P37, P40, P47, P53,
P54, P59, P65, P66

Method 18 P7, P22, P24, P26, P27, P35, P42, P43, P51,
P56, P57, P58, P61, P62, P64, P69, P70,
P71

Reference
architecture

16 P1, P2, P3, P5, P13, P18, P21, P33, P34,
P38, P46, P49, P55, P59, P60, P63

Problem
framing

14 P11, P12, P16, P19, P28, P30, P32, P33,
P39, P41, P46, P48, P57, P67

Middleware 12 P3, P4, P6, P14, P23, P32, P40, P44, P45,
P61, P62, P68

Design pat-
tern

2 P30, P50

Architectural
language

2 P52, P62

and that researchers are still investigating how to leverage

its characteristics. Not surprisingly, a significant number of

studies are investigating migration techniques in order to

adopt and benefit of microservices starting from the so called

monolithic applications. It is also interesting to note that the

domains of application of microservices are rather fragmented.

Indeed, the microservice architecture have been applied to

recent technologies as Internet of Things (6/71) and mobile

(6/71), but also to domain-specific (11/71) fields as robotics

(P10) or data centers (P29).

TABLE IV
RESEARCH PERSPECTIVE

Perspective #Studies Studies

Cloud 21 P1, P11, P12, P16, P17, P21, P24, P27, P28,
P32, P34, P35, P36, P41, P42, P46, P48, P53,
P58, P65, P70

System
quality

21 P6, P7, P14, P16, P20, P22, P23, P24, P27,
P28, P34, P35, P39, P44, P45, P49, P50, P57,
P58, P64, P66

Migration 16 P7, P8, P11, P36, P37, P39, P42, P43, P48,
P51, P53, P56, P63, P65, P67, P71

Domain-
specific

11 P3, P9, P10, P15, P18, P25, P26, P29, P31,
P37, P69

IoT 6 P13, P23, P30, P40, P47, P54
Mobile
oriented

6 P54, P55, P61, P62, P64, P66

Other 10 P2, P4, P5, P19, P33, P38, P52, P59, P60, P68

Vertical scope. It is the layer of abstraction at which the study

considers microservice architectures. As shown in Table V,

more than half of the studies focus on the service layer

only (39/71) without considering other layers. Differently,

other studies not only focus on services, but also consider

the environment upon which the services run. Indeed, the

container (14/71) layer and the virtual machine (13/71) layer

are discussed as relevant aspects of the architectures.

Software lifecycle scope. Results show that when architecting

microservices, the predominant software lifecycle phases are:

design (65/71), implementation (24/71) and operation (22/71)

– see Table VI. Surprisingly, there is a significant gap be-

tween the number of studies on the design phase and both

implementation and operation. This gap might confirm the

TABLE V
VERTICAL SCOPE

Vertical scope #Studies Studies

Service 39 P1, P3, P4, P5, P6, P7, P9, P10, P13, P15,
P18, P21, P22, P23, P33, P37, P38, P39,
P40, P42, P44, P45, P50, P51, P52, P54,
P55, P56, P57, P60, P61, P62, P63, P64,
P66, P67, P69, P70, P71

Container 14 P2, P8, P11, P17, P19, P25, P29, P35,
P36, P47, P48, P58, P59, P68

Virtual machine 13 P12, P14, P16, P20, P24, P26, P30, P31,
P32, P34, P43, P49, P53

Hardware 4 P27, P28, P41, P46
Operating sys-
tem

1 P65

existence of challenges and complexities in the implementation

and deployment of microservice architectures in practice. It

is worth noting that the phases of maintenance (12/71) and

testing (10/71) are not a primary target of research, probably

because microservice applications are relatively young. Possi-

bly, the areas of microservices maintenance and testing might

become fields for further investigations. We observe also that

in only (1/71) study (P8) the requirements are discussed in

detail along with their impact on the evolution of the presented

microservice-based system.

TABLE VI
SOFTWARE LIFECYCLE SCOPE

Lifecycle scope #Studies Studies

Design 65 P1, P2, P3, P4, P5, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, P17, P18, P19,
P20, P21, P23, P24, P25, P26, P27, P28,
P29, P30, P31, P32, P33, P34, P35, P36,
P37, P38, P39, P40, P41, P42, P43, P46,
P47, P48, P49, P50, P51, P52, P53, P54,
P55, P56, P59, P60, P61, P62, P63, P64,
P65, P66, P67, P68, P69, P70, P71

Implementation 24 P8, P9, P10, P14, P15, P20, P21, P25,
P29, P30, P31, P34, P35, P37, P38, P52,
P54, P56, P60, P61, P64, P66, P68, P70

Operation 22 P1, P8, P11, P12, P16, P17, P19, P24,
P25, P26, P27, P30, P32, P35, P36, P41,
P43, P48, P53, P59, P62, P65

Maintenance 12 P7, P30, P31, P37, P43, P51, P54, P56,
P63, P68, P70, P71

Testing 10 P6, P17, P22, P25, P43, P44, P45, P56,
P57, P58

Requirements 1 P8

Microservice architecture definition. In the primary studies

microservice architectures have been defined in several ways

and in some cases even more than one single definition was

reported. The most recurring definition was the one provided

by J. Lewis and M. Fowler (32/71) [4], followed by the one

given by S. Newman (13/71) [13]. In (16/71) studies the prove-

nance of the definitions was scattered among other scientific

papers, while in (19/71) studies own-informal definitions were

adopted. This evident fragmentation of definitions results in

ambiguities and does not help to provide clarity to the bound-

aries of the microservice architectural style. Interestingly, the

definitions provided by J. Lewis and M. Fowler and S. Newman

(13/71) seem to start prevailing over the remaining definitions.

B. Support for architecting

Here we characterize research studies with respect to how

they support architecture-specific concerns and activities.

Architecting activities. We have based our classification of

architecting activities according to the introvert/extrovert

nature of software architects [11]. The introvert nature is com-

posed of the analysis and other design-oriented architectural

activities and it has been refined into the architecting activities

defined by Li et al. in [10]. The extrovert nature regards the

communication between architects and other stakeholders and

it has been further classified into the providing information

and getting input parameters proposed by Kruchten in [9].

As shown in Table VII, the mainly discussed introvert archi-

tecting activities are analysis (56/71) implementation (29/71),

description (23/71) and evaluation (18/71). These indicators

seem to show that researchers are not focusing on architecting

activities regarding architectural reuse (6/71) or maintenance

and evolution (15/71) of existing assets. Moreover, architec-

ture impact analysis (2/71) and architecture recovery (5/71)

are hardly discussed. These aspects may be significant research

directions to explore. In the lower part of the Table we can

observe how little investigation is performed on extrovert

architecting activities, i.e., providing information (4/71) and

getting input (0/71). These complementary activities to the

system design concern the interaction with other stakeholders.

From a research perspective the low interest in these comple-

mentary activities might indicate that there could be areas of

improvement in the engagement of customers and users, and

also in the project management and the communication with

the teams. Toward these directions an architectural language

might be a powerful instrument in order to enable better

communication with both stakeholders and developers.

Quality attributes. It is the set of quality attributes ad-

dressed or discussed by the study. Performance efficiency

(40/71), and maintainability (28/71) are the most investigated

quality attributes, while the remaining qualities are almost

equally represented, as shown in Table VIII. One of the key

reasons why performance efficiency is extensively investigated

is because it includes scalability, which microservice architec-

tures aim to support to a great extend. Similarly, the attention

to maintainability might be related to the characteristics of

small services and automatic deployment. We observe that,

the difference between the higher focus on the maintainability

quality attribute with respect to the activity of maintenance

and evolution (discussed in the previous paragraph) is due to

the fact that researchers address more often the quality of the

system rather than performing the activity of maintenance as

defined by Li et al. [10] as the activity of correcting faults and

adapting to a changed or changing operational environment.

If we compare the number of primary studies addressing

security (17/71), reliability (14/71) and portability (12/71)

to the number of studies focusing on performance efficiency

(40/71) we might observe that these quality attributes have not

received the same research attention. Possible research gaps

might exist in the areas related to these quality attributes.

TABLE VII
ARCHITECTING ACTIVITIES

Arch. activities #Studies Studies

Introvert activities

Architectural
Analysis

56 P1, P2, P3, P4, P5, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, P17, P18, P19,
P20, P21, P23, P25, P26, P28, P29, P31,
P32, P33, P34, P35, P36, P37, P38, P39,
P40, P42, P45, P47, P48, P49, P50, P51,
P54, P55, P56, P57, P60, P61, P63, P64,
P65, P66, P67, P68, P69, P71

Architectural
Implementation

29 P2, P3, P8, P10, P11, P14, P15, P18, P20,
P21, P25, P26, P29, P32, P33, P34, P37,
P38, P47, P49, P52, P54, P56, P60, P61,
P66, P68, P69, P70

Architecture
Description

23 P1, P3, P7, P8, P18, P37, P38, P40, P41,
P51, P52, P53, P55, P56, P59, P61, P62,
P65, P66, P68, P69, P70, P71

Architectural
Evaluation

18 P8, P12, P14, P15, P24, P25, P26, P29,
P32, P35, P37, P49, P51, P55, P56, P61,
P64, P65

Architectural
Maintenance
and Evolution

15 P1, P4, P6, P7, P8, P31, P37, P41, P43,
P44, P45, P51, P53, P58, P70

Architecture
Understanding

10 P1, P7, P8, P11, P12, P26, P31, P37, P45,
P50

Architecture
Reuse

6 P8, P11, P30, P37, P67, P70

Architectural
Synthesis

6 P8, P12, P13, P37, P51, P62

Architecture
Recovery

5 P9, P15, P27, P43, P65

Architecture
Impact
Analysis

2 P7, P8

Extrovert activities

Providing
Information

4 P22, P40, P46, P70

Getting Input 0

Architecture provenance. An architecture is designed if it

is created prior its implementation, extracted vice versa. The

type of provenance of the architectures results to be mainly

designed (58/71) rather than extracted (13/71), as reported

in Table IX. This result might suggest that it is not easy to

realize microservice architectures unless an actual analysis and

design of the system has been performed. From a research

point of view, this might confirm that there exist some uncer-

tainty about the realization of microservices. This uncertainty

might be related either to the microservice architectural style

challenges, or the needed infrastructure and technologies.

Architectural language. From the analysis of the primary

studies has emerged that the majority of the proposed archi-

tectures were described using informal architectural languages

(50/71) while in few cases UML (4/71) was used. Interest-

ingly, six different architectural languages were either used

or proposed as suitable languages for designing microservice

architectures: UML (P43), BPMN (P33, P51), Medley (P52),

OCCIEx (P59), Ciudad (P62) and Diary (P70). From a re-

searcher’s point of view, the use of informal architectural lan-

guages and the lack of a predominant architectural language

can indicate difficulties in the description and modeling of

microservice architectures.

TABLE VIII
QUALITY ATTRIBUTES

Quality attr. #Studies Studies

Performance
efficiency

40 P1, P3, P4, P6, P7, P9, P11, P12, P14, P15,
P17, P18, P19, P20, P23, P24, P25, P26,
P27, P29, P30, P31, P32, P33, P34, P35,
P36, P41, P49, P51, P52, P54, P57, P58,
P61, P65, P66, P67, P68, P69

Maintainability 28 P1, P3, P4, P6, P8, P11, P14, P17, P22, P23,
P30, P33, P36, P37, P38, P39, P40, P43,
P45, P47, P50, P51, P53, P56, P63, P65,
P68, P71

Security 17 P1, P11, P14, P16, P17, P18, P19, P20, P21,
P28, P32, P52, P54, P58, P60, P64, P66

Functional
suitability

14 P2, P6, P11, P12, P29, P30, P38, P42, P47,
P50, P55, P56, P59, P62

Reliability 14 P1, P5, P6, P12, P30, P32, P36, P44, P45,
P49, P54, P57, P65, P68

Compatibility 14 P4, P5, P10, P18, P19, P21, P23, P30, P40,
P53, P56, P58, P60, P68

Usability 13 P8, P9, P20, P25, P29, P33, P34, P37, P51,
P52, P56, P61, P62

Portability 12 P1, P11, P12, P13, P17, P30, P46, P48, P53,
P56, P65, P70

TABLE IX
ARCHITECTURE PROVENANCE

Arch.
provenance

#Studies Studies

Designed 58 P1, P2, P4, P5, P7, P10, P11, P12, P13, P14,
P16, P18, P19, P20, P21, P22, P23, P24,
P25, P26, P28, P29, P30, P32, P33, P34,
P35, P36, P38, P39, P40, P41, P42, P43,
P46, P47, P48, P49, P50, P51, P52, P53,
P55, P56, P57, P58, P59, P60, P61, P62,
P63, P64, P66, P67, P68, P69, P70, P71

Extracted 13 P3, P6, P8, P9, P15, P17, P27, P31, P37,
P44, P45, P54, P65

Architecture description types. The results show that the

architectures proposed were mostly described in their struc-

tural (55/71) aspects, while the behavioral (24/71) aspects

were treated in a minor number of cases. In the remaining

studies (12/71) this classification was not applicable.

Design patterns. Several design patterns have being dis-

cussed in the primary studies, but not many have been applied

frequently. The most recurring design patterns are: API gate-

way (11/71), publish/subscribe (8/71), circuit breaker (6/71),

proxy (4/71) and load balancer (3/71). It is important to note

that a number of other design patterns have been proposed, and

as the field of microservice architectures matures more design

patterns will likely emerge. Results are reported in Table X.

Technology-specific. We classified as technology-specific the

studies which have proposed solutions, methods or techniques

that are dependent from one or more specific technologies. The

results have shown that (54/71) of the primary studies were not

technology-specific, while the remaining (17/71) resulted to

be technology-specific. The predominance of not technology-

specific studies is a good indicator because approaches and

solutions can be reused. Differently, technology-specific stud-

ies have the advantage of being more detailed, but their

applicability and portability in the future might be limited.

TABLE X
DESIGN PATTERNS

Design patterns #Studies Studies

API Gateway 11 P2, P3, P8, P18, P33, P35, P38,P47,
P50, P65, P67,P68, P71

Publish/subscribe 8 P2, P3, P4, P19, P40, P50, P67, P68
Circuit breaker 6 P1, P16, P30, P44, P46, P65
Proxy 4 P6, P8, P12, P18
Load balancer 3 P30, P47, P49
Other 9 P1, P11, P19, P30, P38, P44,P46,P50,

P67

Infrastructure services. It is the set of infrastructure ser-

vices supporting non-functional tasks, as defined by Richards

in [17]. As shown in Table XI, the most relevant infrastructure

services seem to be related to monitoring (26/71) and system

level management (26/71). Microservice architectures, being

inherently distributed, show a clear need for monitoring ca-

pabilities (e.g., logging, profiling) but also need instruments

for system level management (e.g., health management, au-

toscaling, load balancing) in order to leverage the underlying

infrastructure efficiently. Once more this confirms the tight

coupling between microservices and DevOps.

TABLE XI
INFRASTRUCTURE SERVICES

Infr. services #Studies Studies

Monitoring 26 P1, P9, P10, P14, P15, P16, P18, P20, P26,
P27, P28, P29, P30, P31, P32, P34, P37,
P38, P39, P41, P50, P53, P59, P60, P61,
P65

System level
management

26 P1, P2, P11, P12, P15, P18, P20, P25, P26,
P34, P35, P36, P37, P40, P41, P43, P45,
P46, P47, P48, P49, P50, P55, P59, P62,
P68

Service
Orchestration

13 P1, P3, P6, P8, P12, P15, P20, P46, P48,
P49, P66, P68, P69

Service
brokering

10 P1, P11, P12, P20, P29, P31, P32, P40,
P50, P68

Messaging 6 P9, P21, P40, P53, P54, P68
Security 6 P14, P20, P21, P23, P28, P62
Service Prox-
ies

4 P6, P12, P44, P67

Data storage 1 P18

Not surprisingly, a significant research interest is pointing

to service orchestration (13/71) and service brokering (10/71),

confirming that service management capabilities are funda-

mental to this area. Interestingly, some research is also focused

on providing security (6/71) at the infrastructural layer.

Main findings:

◮ Both research scope and support for architecting

mirror the current immaturity of the field.

◮ In scope are problems that consolidate the need

to master the tradeoffs between complexity and

flexibility; focus on cloud and mobile paradigms

(and many domains that rely on them); and the focus

on legacy migration. Also, most studies cover the

design phase, and only one does address require-

ments – food for thought.

◮ Architecture analysis emerges as the most popular

architecting activity. Results suggest software archi-

tecture as a powerful instrument for stakeholder en-

gagement. The clear focus on infrastructure services

will help devising new patterns and styles building

upon them and hence further leveraging cloud-based

architecture models.

VI. RESULTS - POTENTIAL FOR INDUSTRIAL ADOPTION

(RQ3)

Readiness level. Defined by the systematic measurement sys-

tem for assessing the maturity of a particular technology [12],

the technology readiness level (TRL) is an integer n where

1 ≤ n ≤ 9. This measure has been proposed by the Horizon

2020 European Commission for the 2014/2015 work program.

Fig. 3. Frequencies of technology readiness levels

Figure 3 presents the frequencies of the TRLs of our primary

studies. Firstly, the majority of the studies (54/71) have a

low TRL (i.e., TRL ≤ 4), where a technology is either

formulated, validated or demonstrated at most in lab. Secondly,

4 studies have a medium TRL (i.e., 5 ≤ TRL ≤ 6), where a

technology is either validated or demonstrated in the relevant

environment, and 13 studies have a high TRL (i.e., TRL ≥ 7),

where the technology is either completed, demonstrated, or

proven in operational environment. These results indicate that

(i) research on architecting microservices is still in its initial

phases for what concerns the transferability of the developed

technologies into industry (many of them are simply not ready

yet), (ii) in many studies (22/71) only the basic principles on

architecting microservices have been discussed (TRL=1) or the

technology concept has been simply formulated (TRL=2)and

(iii) there is a relatively large number of studies in which the

actual system has been proven in its operational environment

(P4, P8, P20, P34, P37, P61, P68). Interestingly, the studies

with TRL=9 are evenly distributed between academic only,

industrial only, and mixed involvement (see next parameter).

Industry involvement. Here we classify each primary study

as: academic if all authors are affiliated with universities or

research centers, industrial if all authors are affiliated with

some companies, or a mix of the previous two categories. As

shown in Figure 4, the majority of primary studies contribute

with an academic-only perspective (41/71), followed by mixed

(18/71) and industry-only (12/71) contributions. This result is

encouraging as in almost half of the primary studies there

is the involvement of at least one industrial researcher or

practitioner; this means that in those cases we are potentially

smoothing the knowledge exchange between academia and

industry, where research is performed on industrially relevant

problems and new methods, technologies and tools are trans-

ferred from academia to industry [20].

Fig. 4. Distribution of industry involvement

Tool support. In the context of this study a tool can be

considered as an instance that may represent a precise version

of an automated tool or a written procedure [6]. Based on

the given definition, we categorize a tool either as software

based or knowledge based. Our analysis shows that almost

half of the studies (35/71) provide a knowledge-based tool

(e.g., best practices, documented design patterns, guidelines),

whereas only 20 studies provide a software-based tool (e.g., a

testing tool, a code generator, a monitoring infrastructure) and

16 studies provide a combination of knowledge- and software-

based tool (e.g., a method for implementing services that

communicate via an implemented middleware, a testing tool

together with a testing method, etc.).

Open-source test system. When screening the 71 primary

studies we checked if an open-source test system for bench-

marking microservices-based systems was used, discussed or

proposed. We identified only one such systems (in P27), it

is called Acme Air and it is publicly available as open-

source repository on GitHub2. Acme Air is a web-based

system available in two different architectures (i.e., monolithic

service and microservice) and in two different languages (i.e.,

Node.js and Java), thus providing to researchers a very useful

benchmark for evaluating, measuring, and comparing their

own solutions over a common reference system.

Main findings:

◮ In spite of their focus on specific solutions, the low

TRL scores of most studies suggest that industrial

transferability is far away.

◮ The balanced involvement of industrial and aca-

demic authors is however promising for knowledge

co-creation and cross-fertilization.

VII. THREATS TO VALIDITY

In 2015, Petersen et al. [16] created a checklist for objec-

tively assessing the quality of systematic mapping studies. In

this context a score can be computed as the ratio of the number

of actions taken in a study in comparison to the total number

of actions in the checklist. In our case we achieve a score of

65%, far higher than most systematic studies in the literature,

which have a distribution with a median of 33% and 48% as

the absolute maximum value. As always, however, threats to

2https://github.com/acmeair/acmeair

validity are unavoidable. The following reports on the main

threats to validity to our study and how we mitigated them.

External validity. The most severe external threat of our

study consists in the fact that our primary studies are not

representative of the state of the art on architecting microser-

vices. As a solution, we applied a search strategy consisting

of both automatic search and backward-forward snowballing

on the selected studies in combination. Also, we considered

only peer-reviewed papers and excluded the so-called grey

literature (e.g., white papers, editorials, etc.); nevertheless, this

potential bias did not impact our study significantly since

considered papers have undergone a rigorous peer-reviewed

process, which is a well-established requirement for high qual-

ity publications. We also applied well-defined and previously

validated inclusion and exclusion criteria, which we refined

iteratively by considering the pilot studies of our review.

Internal validity. We rigorously defined the research protocol

of our study and we iteratively defined our classification

framework by rigorously applying the keywording process.

The syntheses of the collected data have been performed

by applying well-assessed descriptive statistics. During the

horizontal analysis we made a sanity test of the extracted data

by cross-analyzing parameters of the classification framework.

Construct validity. We mitigated this potential bias by au-

tomatically searching the studies on multiple data sources,

independently of publishers’ policies or business concerns;

also we are reasonably confident about the construction of

the search string since the terms used are very general and

suited to our research questions; the automatic search has

been complemented with snowballing. Also, we rigorously

selected the potentially relevant studies according to well-

documented inclusion and exclusion criteria. This selection

stage was performed by one researcher and, as suggested by

[20], a random sample of potentially relevant studies was

identified and the inter-researcher agreement was ensured.

Conclusion validity. We rigorously defined and iteratively

refined our classification framework, so that we could reduce

potential biases during the data extraction process. In so doing

we also have the guarantee that the data extraction process

was aligned with our research questions. More in general, we

mitigated potential threats to conclusion validity by applying

the best practices coming from three different guidelines on

systematic studies [7, 16, 20]. We applied those best practices

in each phase of our study and we documented each phase in

a publicly available research protocol, thus making our study

easy to be replicated by other researchers.

VIII. RELATED WORK

A systematic mapping on microservices was performed by

Pahl et al. on a set of 21 primary studies from 2014 to

2015 [14]. It is a classification of the research directions in

the field and highlights the relevant perspectives considered

by researchers. Our study differs from [14] in the following

terms: (i) we apply a more comprehensive search process by

considering studies published in any year up to 2016 (allegedly

the term microservices has been used for the first time in 2011

https://github.com/acmeair/acmeair

[http://en.wikipedia.org/wiki/Microservices]), extending their

search string, and complementing the automated search with

snowballing; (ii) we apply a systematic process for defining a

classification framework; (iii) we investigate on the potential of

industrial adoption of research in architecting microservices.

In [1] Alshuqayran, Ali and Evans presented a sys-

tematic mapping study on microservice architecture. Their

study focusses on (i) the architectural challenges faced by

microservice-based systems, (ii) the architectural diagrams

used for representing them, and (iii) the involved quality

requirements. The work by Alshuqayran et al. and our study

can be considered as complementary, each of them cutting the

topic of architecting microservices from different perspectives.

The main difference between those two studies is that ours

considers different research questions, thus leading to different

results, findings, and overlook for future research.

Dragoni et al. performed an informal survey on microser-

vices [2]. Our study differs from their study because (i)

we specifically focus on architectural principles, method, and

techniques, rather than on microservices in general; (ii) we

apply a rigorous empirical method throughout the study (i.e.,

systematic mapping), thus providing evidence-based results

and easing replication of the performed research; (iii) the

objective of our study is to characterize existing research on

architecting microservices, rather than on providing a narrative

viewpoint on their historical, current, and future traits.

IX. CONCLUSIONS AND FUTURE WORK

The purpose of this study is to provide a broader survey

investigating relationships among research contributions on

microservices is demanded [2]. Specifically, we performed a

systematic mapping on 71 primary studies and produced a

clear overview of the state of the art on architecting microser-

vices. The results of this study will benefit both researchers

willing to further contribute to the area and practitioners

willing to understand existing research. Future work includes

(i) a qualitative study involving practitioners aiming at better

understanding the state of the practice on microservices and

(ii) attacking a selection of the identified research gaps.

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans. A Systematic

Mapping Study in Microservice Architecture. In Proc.

of the 9th International Conference on Service-Oriented

Computing and Applications. IEEE, IEEE, 2016.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,

F. Montesi, R. Mustafin, and L. Safina. Microser-

vices: yesterday, today, and tomorrow. arXiv preprint

arXiv:1606.04036, 2016.

[3] E. Engström and P. Runeson. Software product line

testing - a systematic mapping study. Inf. Softw. Technol.,

53(1):2–13, Jan. 2011.

[4] M. Fowler and J. Lewis. Microservices a def-

inition of this new architectural term. URL:

http://martinfowler.com/articles/microservices.html.

[5] M. Ivarsson and T. Gorschek. A method for evaluating

rigor and industrial relevance of technology evaluations.

Empirical Software Engineering, 16(3):365–395, 2011.

[6] M. L. Jaccheri, G. P. Picco, and P. Lago. Eliciting

software process models with the e 3 language. ACM

Transactions on Software Engineering and Methodology

(TOSEM), 7(4):368–410, 1998.

[7] B. Kitchenham and P. Brereton. A systematic review of

systematic review process research in software engineer-

ing. Information and software technology, 55(12):2049–

2075, 2013.

[8] B. A. Kitchenham and S. Charters. Guidelines for

performing systematic literature reviews in software en-

gineering. Technical Report EBSE-2007-01, Keele Uni-

versity and University of Durham, 2007.

[9] P. Kruchten. What do software architects really do?

Journal of Systems and Software, 81(12), 2008.

[10] Z. Li, P. Liang, and P. Avgeriou. Application of

knowledge-based approaches in software architecture: A

systematic mapping study. Information and Software

Technology, 55(5):777–794, 2013.

[11] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and

A. Tang. What industry needs from architectural lan-

guages: A survey. IEEE Transactions on Software

Engineering, 39(6):869–891, 2013.

[12] J. C. Mankins. Technology readiness levels. White Paper,

April, 6, 1995.

[13] S. Newman. Building Microservices. O’Reilly Media,

Inc., 2015.

[14] C. Pahl and P. Jamshidi. Microservices: A Systematic

Mapping Study. In Proceedings of the 6th International

Conference on Cloud Computing and Services Science,

Rome, Italy, pages 137–146, 2016.

[15] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.

Systematic mapping studies in software engineering. In

Proceedings of the 12th International Conference on

Evaluation and Assessment in Software Engineering,

EASE’08, pages 68–77, Swinton, UK, UK, 2008.

[16] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines

for conducting systematic mapping studies in software

engineering: An update. Information and Software Tech-

nology, 64:1–18, 2015.

[17] M. Richards. Microservices vs. Service-Oriented Archi-

tecture. O’Reilly Media, 2015.

[18] R. Wieringa, N. Maiden, N. Mead, and C. Rolland.

Requirements engineering paper classification and evalu-

ation criteria: a proposal and a discussion. Requirements

Engineering, 11(1):102–107, 2006.

[19] C. Wohlin. Guidelines for snowballing in systematic

literature studies and a replication in software engineer-

ing. In Proceedings of the 18th International Conference

on Evaluation and Assessment in Software Engineering,

pages 38:1–38:10, New York, NY, USA, 2014. ACM.

[20] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,

and A. Wesslén. Experimentation in Software Engineer-

ing. Computer Science. Springer, 2012.

