
Scalable Computing: Practice and Experience
Volume 20, Number 2, pp. 399–431. http://www.scpe.org

DOI 10.12694/scpe.v20i2.1537
ISSN 1895-1767
c⃝ 2019 SCPE

RESEARCH ON AUTO-SCALING OF WEB APPLICATIONS IN CLOUD:
SURVEY, TRENDS AND FUTURE DIRECTIONS

PARMINDER SINGH ∗, POOJA GUPTA †, KIRAN JYOTI ‡, AND ANAND NAYYAR §

Abstract. Cloud computing emerging environment attracts many applications providers to deploy web applications on cloud
data centers. The primary area of attraction is elasticity, which allows to auto-scale the resources on-demand. However, web
applications usually have dynamic workload and hard to predict. Cloud service providers and researchers are working to reduce
the cost while maintaining the Quality of Service (QoS). One of the key challenges for web application in cloud computing is auto-
scaling. The auto-scaling in cloud computing is still in infancy and required detail investigation of taxonomy, approach and types
of resources mapped to the current research. In this article, we presented the literature survey for auto-scaling techniques of web
applications in cloud computing. This survey supports the research community to find the requirements in auto-scaling techniques.
We present a taxonomy of reviewed articles with parameters such as auto-scaling techniques, approach, resources, monitoring tool,
experiment, workload, and metric, etc. Based on the analysis, we proposed the new areas of research in this direction.

Key words: Cloud computing, resource provisioning, web applications, auto scaling, resource estimation

AMS subject classifications. 68M14, 91C15

1. Introduction. Cloud computing is emerging technology, which provides processing, bandwidth, and
storage as a service. Elasticity is the main characteristic of cloud computing. This technique allocated and
de-allocated the resources from the processes as per increment or decrement in requirement. The resource
pools are seeming unlimited for the users and can acquire or release the resources anytime [5, 96]. Regular
monitoring of giving services is required to ensure the Quality of Service (QoS) and need to fulfill the Service
Level Agreements (SLAs). SLA violation leads to the penalty to cloud providers. It is a big challenge for the
cloud service providers to provide services within budget and raise profit from datacenters. QoS assures that
the behavior of cloud services towards reliability, availability, elasticity, cost, time, etc. [75]. The infrastructure
providers offer different pricing policies, companies such as Amazon [131] provides resources for a fixed price
per hour. Thus, the application providers should decide the resources for processes, while maintaining the
SLAs. In auto-scaling, decision-making techniques to allocate the number of resources to different processes are
categorized as reactive and proactive. The reactive technique regularly watches events such as CPU, workload,
queue, etc., and performs the elastic operation for resources as per threshold. Proactive forecasting methods
used to predict the traffic from the past workload. So far none of the technique is splendid in all the cases
[84]. The reasons for ambiguity and diffusion in resource allocation for cloud environment are heterogeneity
of resources, dynamic application requirements, and failures. As for now, none of the technique can tackle
previously mentioned issues. Autonomic cloud computing can contribute the self-optimization, self-protecting,
self-healing, and self-configuration scaling [68].

1.1. Motivation for Research.
• Auto-scaling techniques for cloud application applied to estimate the required resources to process the
input requests. Web applications workload is dynamic with sudden burst due to flash workload. This
study focused on various auto-scaling techniques for web applications in cloud computing.

• We have recognized the need for detailed survey specifically for the web applications. A methodological
survey has been carried out for auto-scaling techniques for web applications. Hence, we summarized
the present research challenges and future scope in this area.

1.2. Contribution of the Study.
• A detail investigation has done to study various existing auto-scaling techniques in cloud computing.
• The mentioned techniques classification has been done as per the common characteristics.

∗Lovely Professional University, India (parminder.16479@lpu.co.in).
†Lovely Professional University, India (pooja.19580@lpu.co.in).
‡Guru Nanak Dev Engineering College, India (kiranjyotibains@yahoo.com).
§Duy Tan University, Da Nang, Vietnam (anandnayyar@duytan.edu.vn).

399

400 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Monitor

Sensors

Analyze

User behavior,
CPU utilization,
Response time

Plan

Predictive
requests, Avg.
CPU utilization,
Avg. response

time

Execute

Scale up/down
decision Effectors

Fig. 2.1. MAPE Control Loop System

• Future research direction in the area of auto-scaling is presented.

1.3. Related Surveys. Earlier surveys have been conducted by the authors [49, 88, 85, 54, 28, 107, 23,
109], but the regular updates in cloud infrastructure and persistent research yielding the new research areas.
There is a need to explore the present challenges and new research area in this field. This survey augments the
existing studies and recent research articles to describe the research challenges for web applications in cloud
computing.

2. Auto Scaling. Auto-scaling is a technique to dynamically adjusts the resources allocated to elastic
applications as per the incoming workloads. Auto-scaler in the cloud environment is generic while some are
application specific to meet the SLA, QoS and minimizing the cost of scaling. The auto-scaling challenge for
the web applications is to dynamically grow or shrink the resources to meet fluctuated workload requirement.
Autonomous scaling techniques work without human intervention. Autonomic systems are self-(configuring-
optimizing-protecting-healing) [67]. The auto-scaling following the MAPE loop (Figure 2.1): Monitoring (M),
Analysis (A), Planning (P) and Execution (E) [92].

• Monitoring: The monitoring system collects the information from a cloud environment about the com-
pliance of user expectations, resource status, and SLA violation. It provides the state of infrastructure
to the cloud provider, and users get to know about application status with expected SLA. Auto-scaling
protocols are decided on the basis of performance metrics for web applications. The author suggested
parameters such as resize numbers, operating interval, decision duration, decision threshold, refractory
period and instance bounds [45]. Generally metrics provided by cloud providers are related to VM
management; otherwise, it will be taken from the operating system. The proxy metrics are used to
reduce the complexity of metrics such as hypervisor level and application level (e.g., CPU utilization,
workload).

• Analysis: The collected information is further processed in the analysis phase. It gathers all informa-
tion from metrics and current system utilization and prediction information of future workload. Some
auto-scaler are working on a reactive approach. The decision is taken after analyzing the current sys-
tem state. The threshold values are fixed to scale in/out decisions, while others are using a reactive
approach or both. Reactive is a sophisticated approach because it’s always a delay between the settings
of resources for scaling decision. The VM startup time varies from 350 to 400 seconds [90]. Flash crowd
and events are still a challenge with the reactive approach.

• Planning: Analysis phase evaluates the present state, now the planning phase has to decide to scale
up/down or scale in/out to compliance with SLA and profit trade-off.

• Execution : Execution phase is already decided in the planning phase. Cloud providers API is
responsible for the execution of planning. The client is unaware of the issues in the execution phase.
VMs are available to users for a certain period, the startup time of VM takes some time, and these
delays have been already discussed with the user in resource SLA.

Auto-scaling techniques have the following research challenges:
Under-provisioning: The application has not sufficient resources to serve all incoming requests from the

servers. It may happen due to flash crowd or events, or poor auto-scaling algorithm. This situation leads to

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 401

Auto-scaling

Type Policy Technique Approach Monitor Service Level
Agreement Metrics Pricing Experiment

Proactive

HorizontalReactive

Vertical

Application Profiling

Threshold-based Rules

Machine Learning

Control Theory

Queuing Theory

Fuzzy Rules

Time Series Analysis

Load-aware

Resource-aware

Cost-aware

SLA-aware

QoS-aware

Data-aware

Budget-aware

Monitoring
Tool

Custom

Simulated

Monitoring
Interval

Throughput

Performance

Cost

Response
time

SLA Violation

CPU Utilization

Response delay

Arrival rate

Service time

Renting cost

Penalty cost

VMs allocation

Spot
Instances

On-demand

Reserved Workload

Benchmark
Applications

Real
Enviornment

Simulation

Fig. 3.1. The taxonomy of web application in cloud computing

SLAs violation and providers have to pay the penalty to the users, and reliability of the providers also effects.
The servers take some time to be back in the normal state.

Over-provisioning: In this situation, the number of resources to process the application is more than the
required resources. Service provider’s reliability is increased in this case. SLAs violation is minimum in over
provisioning and up to a certain level beneficial to handle the fluctuated workload. It affects the profit of the
service provider, and on-demand services become costly for the clients. No perfect solution exists either in
automatic or autonomous scaling.

Oscillation: It is a pack of both unwanted situations. Rapid resources scaling is taking place without
considering the effect on application performance. The condition can be avoided using static and dynamic
threshold value fixed for the VMs scaling. A cooling down period is another approach used to handle the
oscillation [71].

3. Taxonomy of Auto-scaling. The proposed taxonomy for web application in cloud environment is
shown in Figure 3.1. The existing research classified based on the parameters mention in the taxonomy. The
taxonomy covered the following points:

• Type: Auto-scaler is a crucial component in cloud computing. Auto-scalers are grouped into two
categories: Reactive and Proactive. The reactive approaches took the scaling decision by analyzing the
current state of the system. Proactive technique analysis the historical data and take scaling decision.
Many article formed the new techniques using hybridization of these methods.

• Policy: Cloud service providers widely use horizontal scaling as elasticity feature. Cloud providers are
providing a fix and customizable resources where the user can configure VMs by specifying memory,
cores, bandwidth, etc. Some articles developed the auto-scaling techniques using vertical scaling, where
the user can re-configure the VMs resources such as CPU, memory and network bandwidth as per the
requirement change. The Centurylink service provider gives the service to scale the CPU cores without
vertical downtime.

• Auto-scaling techniques: The researcher in the cloud computing used various techniques for analysis
and planning phase in MAPE loop to automate the scaling process. In literature, widely used techniques
classified in 7 major techniques such as Threshold rules, fuzzy rules, application profiling,machine
learning, queuing theory, control theory and time series analysis.

• Approach: The newly added feature in the taxonomy is the approach of the investigator on above of
the techniques to auto-scale. In the literature, the investigator vision to improve one or more factors
such as cost, resource optimization, QoS, SLA violation, etc. Further, the researcher get clear idea

402 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

about the articles which improve the specific objectives.
• Monitoring Tools: It act as performance indicators. It helps to determine the scaling decisions.
Monitoring interval defines the performance of auto-scaler. Balanced performance can be achieved by
selecting the right monitoring interval according to the application. Amazon cloudwatch monitoring
used by many articles whether some are using custom monitoring tool.

• Service Level Agreement (SLA): The service providers need to know the expectations of the
customers. It is the master service agreement between the customer and service providers related
to various performance outage issues. This document describes the responsibilities of the customer and
service providers. It helps the customer to compare the performance among different service providers.
The commonly consider performance metrics in SLA related to auto-scaling are response time, budget,
cost, throughput, etc.

• Performance metrics: It is an essential tool to enhance the reliability of the users moving their
applications to the cloud. Difference articles are using various metrics to check the performance of their
model such as response time, CPU usage, input request rate, etc.

• Pricing Model: Cloud providers are categories the cloud resources in three different pricing models:
on-demand, reserved and spot-instances. On-demand resources give performance guarantee to the
target application. The number of resources grows or shrink as per the workload change. The reserved
resources are a fixed number of resources. Amazon provides the spot instances relatively cheaper than
the on-demand resources. Spare capacity instances sell through auction mechanism and user acquire
the resources by submitting the bid. Single cloud and multi-cloud resource estimation challenges are
different for web applications.

• Experiment: The experiment part describes the experiment evaluation in the various articles. The
researcher used real time workload or synthetic workload to input the user requests. The benchmarking
application are also widely used in the research article for the multi-tier web application. Experiment
characteristics considered for the implementation of the model has been reviewed in the taxonomy of
auto-scaling. Synthetic and real workload used by an article for the analysis of the model. Cloudsim
simulator used by many articles, while some manuscripts used real testbed for the study of the model.

4. Elastic Applications. The elastic applications are dynamic in nature towards change in workload
and variables. The load balancer is responsible for the management of elastic applications. Cloud computing
applications are managed on VMs, and VMs are managed by the servers. Auto-scaler is a decision maker for the
scaling of resources. The system is said to be autonomous because human intervention is not required. Many
cloud applications (e.g., Video streaming, web applications) are elastic in nature [85]. Most of the papers about
elastic applications considered the web applications as compared to other elastic applications. Web applications
consist of three tiers: Presentation, Application, and Database. Most of the articles focused on the application
or business tier scaling. The major issue with auto-scaling is to scale the small running jobs, while long-running
jobs are coming under the scheduling problem.

4.1. Web Applications Architectures. Earlier single tier architecture has used the dedicated server
for each tier such as a web server (load balancer), application server and database server. The load balancer
transfers the load among other instances of single layer architecture. This architecture is not suitable according
to the elasticity and scalability features of cloud computing.

Most of the companies are now using multi-tier architecture (e.g., Amazon), where each tier in architecture
serves a specific purpose as shown in Figure 4.1. The most important benefit of multi-tier architecture is to
manage the scalability and elasticity features. Resource management of multi-tier applications is still a challenge
due to higher interdependencies between the different layers [31]. Web tier, application tier, and database tier
are deployed on the web server, application server, and database server. The responsibilities of the servers are:

• Web server: It accepts or rejects the incoming client request. Another important work of web server is
to serve the static content. It also passes the request to the application server. The response is delivered
back to the user.

• Application Server: It receives the request from the web server. The literature survey is biased towards
the scaling of VMs for the application server. Business logic is processed by this tier. It requests the
database for the required data. Optimization of queries can be done at this level also. After processing

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 403

Database-tierApplication-tierWeb-tier

Fig. 4.1. 3-tier Web Architecture [31].

data again send back to the web servers in the desired format.
• Database Server: Database management system is working at this level. Single tenant and multi-tenant
databases compatible with the cloud architecture (e.g. Oracle 12c). Structured and unstructured rela-
tional database management system is used to store the data and pass the required data to application
servers.

Another type of applications is service-based web applications such as Facebook and e-commerce website
of Amazon. Each service represented as the node is connected with another service through directed edges
and whole system abstracted as a directed graph. The application further classified in Micro-services and
Service-Oriented Architecture (SOA). Our article is mainly focusing on multi-tier web applications.

5. Survey on Auto-scaling Techniques. This literature survey is focusing on auto-scaling techniques
specifically for web applications in cloud computing. To the best of our knowledge, there is no survey specifically
focuses on web applications auto-scaling for analysis and planning phase. Auto-scaling of cloud computing has
a large number of articles published. We put the papers in the associated category by identifying the approach,
algorithms used in the research paper for a better understanding. We again revised the models, metrics,
monitoring tools, etc., from the articles and create tables according to the classification of techniques. The
symbol ’-’ in tables represent the lack of information in the article.

Author [49] have done a survey of Internet applications deployed on dedicated or shared data centers. It
focuses on the web server’s admission control issue. This service is related to the SaaS layer of the cloud
architecture. The elastic nature of web applications is more relevant with auto-scaling and can be done in two
ways: horizontal or vertical. Identification has done on the basis of approach reactive or proactive. The metric
used by the technique is identified in the survey. Workload used in the analysis of the approach is also discussed
along with the experimental setups. SLA parameter has to check the validity of the model, so SLA parameters
are collected from the papers.

Resources are the major factor in auto-scaling. To the best of our knowledge, no existing survey has identified
all types of resources used in a cloud environment. Existing surveys considered only on-demand resources in
cloud infrastructure. In this paper, the authors have identified other type of resources (e.g. Spot-instances,
reserve and on-demand), for application tier elastic layer.

Another important survey done by the authors [88] on resource management in the cloud, but little attention
has given to auto-scaling. Author [85] focused on the elastic application including web application. This
article classifies the technique and very useful literature survey, but the survey did not focus on the type of
resources such as on-demand, reserve and spot instances. Many new emerging fields such as fog computing,
edge computing, dew computing takes the support from the cloud computing for elastic services [124].

We have carried out a very diverse survey by including these surveys with specifically to web applications
auto-scaling techniques. A survey has done on the basis of auto-scaling technique. Author [85] has used the
classification technique and we have added more approaches along with mentioned former groups. This section
covers the literature survey on auto-scaling techniques. Each article is reviewed on the basis of auto-scaling
taxonomy. The classification of auto-scaling techniques are:

1. Application Profiling (AP)
2. Threshold-based Rules (TR)
3. Fuzzy Rules (FR)

404 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Application Profiling

Offline Application
Profiling

Online Application
Profiling

Integer Linear
Programming

(ILP)

Workload Profiling
Technique (WPT)

Application
Signature (AP)

AGILE

Rapid Profiling
(RP)

Fig. 5.1. Methods of Application Profiling

4. Control Theory (CTH)
5. Queuing Theory (QTH)
6. Machine Learning (ML)
7. Time Series Analysis (TSA)

5.1. Application Profiling. Application profiling is a process of finding the peak point of resource uti-
lization while running an application workload. The workload used for profiling can be real or synthetic. The
test can be both online and offline for application profiling. It is one of the simplest ways to find the desired
resources at a different point of time.

Profiling of job through an offline process gives resource requirements at different levels of workload. The
produced resources requirements help auto-scaler to monitor the resource provisioning task in a precise manner.
Author [119] applied the integer linear programming (ILP). Authors [39, 43, 108] used workload profiling
technique. The profiling cons are to reproduce requirements manually after every update in applications.

To overcome the offline profiling issues, online profiling comes in rescue. The fine grain tasks need the
VMs immediately to cater to the flash workload. Author [132] devised the technique to profile the application
workload with the further classification of application signatures. The classification has been carried out on the
basis of a number of machines required at different time stamps of application workload. The trained decision
tree update every time when the new application profiled according to its characteristics. Author [98] applied
the online technique to estimate the resources of each tier while estimating specific tier other tiers gained ample
resources. This process continues for each tier and gets the model for every tier. Author [30] designed a rapid
profiling approach for multi-tier web applications. Analysis of resources requirement correlation with each tier
of the web application inhomogeneous environment and profile the VM for a specific tier. This approach can
estimate the performance of VM without running on each tier. So it helps to put the newly added VM rapidly
into the service. Author [128] presented the architecture for the self management of the application in cloud
infrastructure. In this article, the author performed the application profiling using micro services. [83] designed
the approach using application profiling.

The method to find the critical point of utilization of resources while running of application workload (real
or synthetic). It is further classified into two categories (Figure 5.1):

• Off-line Application Profiling: This method of profiling is performed in a detailed manner in resource
provisioning of tasks at different stages of workload. The advantage of offline profiling is to perform
profiling manually after the applications are updated. The different methods of offline application
profiling are:

– Integer Linear Programming (ILP): It is a mathematical optimization problem. In this partial or

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 405

all variables are integer. The constraints and objective function is linear [119].
– Workload Profiling Technique (WPT): This technique gather the workload information. The

workload modeling performed to estimate the performance under the stressed conditions. The
workload profiling done with various types of testing techniques such as limit finding, soak testing,
etc. [39, 43, 108].

• Online Application Profiling: This method of profiling is dynamic in nature and fulfill the needs of
the fine grained tasks that immediately require working virtual machines with different workloads.The
different techniques of online application profiling are:

– Application Signatures (AS): This technique identifies a small set of classes of workload and clas-
sifies them according to workloads. The resource allocation of workload is cached at runtime
[132, 120].

– Elastic distributed resource scaling (AGILE): In this technique, wavelets are used for fulfilling the
resource demand prediction with much large time for the applications servers to start up before
falling short of performance [98].

– Rapid Profiling (RP): In this technique, the individual performance of the virtual machine instance
is profiled after it is obtained from the cloud. This technique helps to judge the best tier for the
profiled instance of virtual machine [30].

The cloud is providing resources on-demand. Spot instances can be used with fault tolerance for cloud
applications. Maximum techniques are considering the on-demand resources in the auto-scaling decision. Author
[108] used the heterogeneous spot instances with on-demand resources which could minimize the cost to a great
extent. Spot instances are up to 90% cheaper than on-demand and reserve resources. Spot instances have an
out-of-bid issue, but can be useful for flash crowd and event challenges. It will provide the cost benefit to cloud
providers.

Table 5.1 shows the taxonomy of reviewed articles in this section.

5.2. Threshold-based Rules. Threshold based techniques are simple to implement and very popular.
For deciding the threshold value requires a deep understanding of all the parameters of the corresponding
environment and workload. Amazon EC2 [4] and RightScale [113] are using threshold-based technique. The
threshold based rule technique is purely related to planning. The number of resources allocated to the application
in the form of VM according to a set of rules. There are two types of scaling decision: Scaling up/down vertically
increase or decrease the capacity of the working node. Scaling in/out refers to horizontally increasing or decrease
the VM capacity. The scaling up/out and scaling down/in is working on the principle in Algorithm 1.

Algorithm 1 The algorithm of threshold rule based auto-scaling

1: if x1 > tU1 and/or x2 > tU2 and/or ... then ◃ tUi is upper threshold
2: if Clock % dU == 0 then ◃ dU is upper duration
3: n = n+ r ◃ Scale-out or Scale-up
4: else if Clock % iU == 0 then ◃ iU is upper cool down period
5: do− nothing
6: end if
7: end if
8: if x1 < tL1 and/or x2 < tL2 and/or ... then ◃ tLi is upper threshold
9: if Clock % dL == 0 then ◃ dL is lower duration

10: n = n− r ◃ Scale-in or Scale-down
11: else if Clock % iL == 0 then ◃ iL is lower cool down period
12: do− nothing
13: end if
14: end if

There are two parts of Algorithm 1: condition and action. The Clock is a system clock, x1 and x2 are
performance metrics (e.g. Number of requests, response time, budget, CPU load, etc.), tU and tL are the upper
and lower threshold values of the performance metrics. Threshold conditions checked with upper duration dU

406 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.1
Taxonomy on application profiling based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[119]Reactive Horizontal AP and ILP Cost-aware - Arrival rate Cost and re-
sponse time

Reserved Custom
testbed

[30] Proactive Vertical AP and ANNLoad/ Ca-
pacity aware

Custom tool Response
time

CPU and
memory
usage

On-demand Custom
testbed.
SpecWeb
, TPC-W,
TPC-C ap-
plications on
Xen

[43] Reactive and
Proactive

Horizontal AP Resource-
aware

Custom tool No. of servers
and arrival
rate

Response
time

on-demand Custom
testbed (Intel
Xeon 38
servers)

[132]Proactive Vertical AP and
CMAC

Workload-
aware

Custom tool
(Script)

Response
time

CPU, I/O,
memory,
swap

On-demand Custom
testbed.
Applica-
tions on Xen
(SpecWeb
, TPC-W,
TPC-C)

[98] Proactive Horizontal AP Cost and re-
source aware

- Cost and re-
sponse time

No. of VMs On-demand Custom de-
cision agent
(VirtRL)
and olio
application

[39] Proactive Horizontal AP and TSA User-
behavior

Custom Tool.Throughput CPU usage
and arrival
time

On-demand Custom
testbed.
MediaWiki
Application

[108]Reactive Horizontal AP Fault tolerantSimulated Availability
and response
time

CPU load On-demand Custom Sim-
ulation

[128]Mixed Horizontal AP Resource
aware

Real time Response
time

Request rate
and avg. re-
sponse time

on-demand Amazon
AWS

[82] Reactive Horizontal AP Data-aware Simulated Response la-
tency

Throughput,
No. of
resources

On-demand Custom
testbed. IBM
X3500 M4
machine with
Xen

[120]Reactive Horizontal AP Resource
aware

Simulated Response
time and
success ratio

CPU usage,
response time

On-demand Custom Sim-
ulation

[83] Proactive Horizontal AP Workload
aware

Real testbed Throughput
and response
time

Input rate,
response time

Reserved and
on demand

6 Cassandra
3.0 nodes
with Linux
Ubuntu 14.04
Server x86
64. Synthetic
workload.

and lower duration dL, which considered in the seconds. If certain conditions are met, the action will be taken.
The manager should decide resources r acquired or released during the action performed from the total resources
n. During horizontal scaling r is the number of VMs and during vertical scaling r is CPU or RAM. The lower
and upper cool down period is set as iL and iU , during this time auto-scaler do nothing.

It is easy to deploy a threshold-based technique in a cloud environment. Defining rules are a difficult
task, it requires input from the client on different QoS metrics. QoS parameters have performance trade-off.
Application manager has to give threshold value of performance metrics parameters. The experiment carried

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 407

out by the authors [70], they define the performance benefits of the application-oriented metrics than system
specific metrics. The threshold needs to be carefully decided otherwise it can cause the oscillation problem [33].
To handle the oscillation issue, certain techniques such as cool down, calm and inertia periods are set, so no
scaling decision can take place in these time slots.

Most of the techniques are using one or maximum two performance metrics. Commonly used performance
metrics are input request rate, CPU load time and average response time of application. Some of the authors
are taking application response time as a performance metric [33, 51] while few focused on the system level
metrics such as storage, network, and CPU [52]. Author [87] considered the scaling overhead and SLA violation.
Due to the introduction of a new type of resources [108] evaluate the availability metrics along with response
time.

The number of threshold values also varies with different techniques. Most of the providers are using two
threshold values: Upper and the lower threshold value. Author [52] used four threshold values. In this technique
along with upper threshold (ThrU), the author defines ThrbU , which is marginally lower than ThrU and ThroL
is pretty above than the lower threshold (ThrL). The significance of setting such a threshold is to determine
the trends. Scaling action could be taken as per the trends.

Metrics are fetched from the monitoring tool. Collecting the run-time data from the monitor and taking
action as per the rules is a reactive approach.

RightScale [113] voting system is combined with the reactive approach. If most of VMs agree to scale
up/out or down/in decisions, then scaling action will be performed. Threshold needs to set by the application
manager. Several authors are using the RightScale technique [123, 71, 45, 25]. Author [25] working on the
scalability of web applications by defining the set of rules for the active sessions, further extend his work [24]
using RightScale. The rules are decided as per the upper and lower threshold value of the sessions. If the
sessions are going upper or lower scaling decision will be taken.

RightScale is working on the voting system, but it is highly dependent on the threshold values set by the
application-manager and the nature of the application workload. Author [71] compare the RightScale with
another technique and concluded the disadvantages of RightScale. Researcher [123] attempted to overcome
this issue using the strategy tree. The regression-based model has been used for three types of scaling policies.
Strategy tree follows the parent as per the workload trend.

The threshold rule-based technique is popular due to its simplicity and the client can easily understand.
Reactive nature of TR technique is a major challenge. Another issue in the TR technique is to set appropriate
performance metrics. In a cloud environment, the approximate startup time of the VM is 5 to 10 minutes, so
to ready, the machine in a reactive manner put a delay in service, which leads to performance degradation. To
resolve this issue to some extent, an author [86] suggested the dynamic threshold values. The initial values of
the threshold are static and later dynamic threshold values set as per the SLAs violation.

Multi-cloud scaling is another issue in the auto-scaling. Auto-scaling for three-tier application has been
developed [48]. The rule-based technique has been devised to take scaling decision for multiple data center.

Along with the on-demand resources, spot-instances are used for web application provisioning. The spot
instances are 90% cheaper than on-demand resources. So effective scaling strategy can provide significant benefit
to the clients as well as a service provider to reduce the SLA violation. Author [108] provided a reliable solution
to use spot instances for web application provisioning. Spot-instances have a potential for fault tolerance and
tackling of web application’s flash crowds or flash events workload.

Smart kill [20] is an important idea used to reduce the cost. Most of the service provider charge hourly
basis. It can further improve the system performance to avoid VM starting and shutdown time. It can reduce
the SLAs violation.

It is easy to implement the rule-based auto-scaling of the particular application. If the workload and nature
of application can forecast easily than rule-based technique can be used. Application with an unpredictable
pattern should choose other suitable scaling strategies.

Table 5.2 shows the taxonomy of reviewed articles in this section.

5.3. Fuzzy Rules. One of the rule-based technique for an auto-scaling approach is fuzzy rules. In this
technique, rules are defined using if-else conditions. The major advantage of fuzzy based auto-scaler over the
threshold based rule-based approach is linguistic terms e.g. low, medium, high. It uses the control system as

408 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.2
Taxonomy on threshold rules based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[71] Hybrid HorizontalRightScale and
TSA (LR +
AR(1))

User behavior Simulated - CPU load, Re-
quest rate

on-demand Custom simu-
lator with real
experiment

[123]Reactive HorizontalRightScale,
Strategy tree

Policy Based Custom tool(4
minutes)

- CPU idle time,
number of ses-
sions

on-demand Real provider.
Amazon EC2
+ RightScale
(PaaS) + a
simple web
application

[70] Reactive HorizontalTR QoS based Custom tool CPU load Average wait-
ing time in
queue

on-demand Public cloud:
FutureGrid,
Eucalyptus
India cluster

[24] Reactive HorizontalRightScale
+ MA to
performance
metric

Performance
Based

Custom tool - Number of ac-
tive sessions

on-demand Custom
testbed. Xen
+ custom col-
laborative web
application

[45] Reactive HorizontalRightScale Qos/ Perfor-
mance based

Amazon
CloudWatch

- CPU load on-demand Real provider.
Amazon EC2
+ RightScale
(PaaS) + a
simple web
application

[91] Reactive Vertical TR SLA based Simulated - CPU load,
memory, band-
width, storage

on-demand Custom sim-
ulator, plus
Java rule
engine Drools

[52] Reactive Both TR Storage/ Net-
work aware

- - CPU load,
response time,
network link,
load, jitter and
delay.

on-demand -

[51] Reactive Both TR Cost Aware Custom tool. 1
minutes

Response time CPU, memory,
I/O

on-demand Custom
testbed (called
IC Cloud) +
TPC

[20] ProactiveHorizontalTR + QTH QoS Aware Amazon
CloudWatch.
1-5 minutes

Response time Request rate on-demand Real provider.
Amazon EC2
+ Httperf +
MediaWiki

[86] Reactive Vertical TR Cost/SLA
Aware

Simulated. 1
minute

Response time CPU load on-demand Custom simu-
lator

[48] Reactive HorizontalTR Cost/ Perfor-
mance aware

Custom tool
and manual.

Response time,
Sessions

CPU load on-demand Multi-cloud
Amazon EC2
(4 data cen-
ters)

[87] Reactive HorizontalTR + Learning
Automata

SLA aware Simulated. 5
minutes

- Scaling Over-
head, SLA vio-
lation

on-demand CloudSim

[79] Reactive HorizontalTR SLA aware Custom Turnaround
time

Turnaround
time, No. of
requests

On-demand Real. Google
compute en-
gine.

[35] Reactive HorizontalTR Performance
aware

Amazon
CloudWatch

Response time CPU usage On-demand Real. Amazon
EC2

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 409

CONTROL SYSTEMS

Closed-loop

Feed-back Feed-forward

Open-loop

Fig. 5.2. Categories of control system

a performance model for estimating the required resources (output variable) for the workload (input variable).
Fuzzy sets are formed from the input and output variables, the membership function defines this process
between the (0, 1) interval. Fuzzification is the process of transforming input variables into fuzzy sets. The
inverse transformation of single numeric values to best inferred fuzzy value is known as defuzzification.

The fuzzy rule-based model used to construct the auto-scaler. This auto-scaler is not able to handle the
dynamic workload because most the components of the fuzzy controller are fixed at the design time (e.g. Rule
set, membership function). Regular update in the fuzzy controller with on-line monitoring can make the system
of adaptive nature, can better handle the dynamic workload [136, 140]. Author [140] proposed a model to apply
the fuzzy-controller at the application tier, and forecast the resources required input workload. Author [136] use
the same method for the database tier. Predict the required resources rt+1 for the time step t+1, considering no
flash workload during that time step. Author [47] developed a dynamic approach for horizontal scale-out for the

dynamic workload. Author proposed a fitness function: Fk =
N
∑

i

ai
mi,k

Ri
. Here, metric observation represented

by mi,k and Ri at k sample time aiϵ [0, 1]. The model works well under the failure of VMs, and robust for
different workloads.

Author [13] designed a fuzzy controller for scaling of scientific applications. The vertical scaling policy
developed based on threads in the application and load on the VM. In future, proactive policy can be combined
with this technique to reduce the waiting time in VM setup.

Many research articles extend the work with the neural fuzzy controller. Four-layer neural network uses
to represent the fuzzy model [74]. The first layer belongs to the input node. The second layer represents each
input variable membership to the fuzzy set. Layer three determines the precondition part of fuzzy rules. Final
layer act as a defuzzifier, which used to convert the layer 3 in numeric output. The rules and membership of
nodes are formed on-line with the help of parameters and structure learning.

Table 5.3 shows the taxonomy of reviewed articles in this section.

5.4. Control Theory. This method is used in two phases analysis and planning of the MAPE loop. It
automates the processing systems such as data centers, storage systems, and web server systems. The main goal
is to automate the scaling process. The controller maintains the controlled variable y and manipulated variable
yref matches to the desired level. Manipulated variable act as an input to the target system, the output is
measured by the sensor.

The different categories of control systems are (Figure 5.2):
• Open-loop: It is also called the non-feedback method. In this method, feedback is not considered for
validating the desired goal. The output is calculated using the present state of the system.

• Closed-loop: The closed loop systems are further categorized into two categories:
– Feed-back: The monitoring of the output and also a deviation from the goal is monitored by the

feedback controller.
– feed-forward: The anticipation of any kind of error in output is performed by the feed forward

method. The action is performed in it after considering the type of error in the system.
Feedback controller is mostly used in the reviewed articles (Figure 5.3). It further divided into several

categories [104] (Figure 5.4):
• Fixed gain controllers: The simplest of all the available controllers. The different types of fixed gain

410 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.3
Taxonomy on fuzzy rules based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[140]Reactive Horizontal FR Workload
aware/ SLA
aware

Custom tool Throughput CPU alloca-
tion, Arrival
rate

Reserved
containers

Custom
testbed +
applications
(Java Pet
Store)

[73] Proactive Horizontal FR QoS based - End-to-end
delay

Number of
servers per
tier

on-demand Simulation

[136]Proactive Vertical FR Qos Based Xentop. 10
seconds

Response
time,
through-
put

CPU load,
No. of
queries,
disk I/O
bandwidth

on-demand Custom
setup. Xen +
(RUBiS and
TPC-H)

[74] Proactive Vertical FR + ANN Workload
aware

Custom tool.
3 minutes

End-to-end
delay

Number of
requests,
resource
usage

on-demand Simulation

[40] Reactive Horizontal FR SLA based Custom tool Response
time

Arrival rate on-demand Custom sim-
ulator

[59] Proactive Horizontal FR Load aware Custom tool Number of
hits

RMSE On-demand Microsoft
Azure Cloud

[47] Proactive Horizontal FR + PID
controller

QoS based Amazon
cloudwatch

CPU usage,
NETIN,
NETOUT

CPU load
and network
usage

on-demand Real setup:
Amazon EC2

[80] Reactive Horizontal FR Resource
aware

Amazon
Cloudwatch

Response
time. 200 ms

Arrival rate,
VM alloca-
tion

On-demand Amazon EC2

[13] Proactive Vertical Fuzzy rules
+ CPU
controller

Parallel ap-
plications
aware

Custom tool Response
time

Thread in ap-
plication and
load on VM

on demand Simulation
with
CloudSim.

SYSTEM

FEEDBACK

Output

Disturbance

Fig. 5.3. Working of Feedback control system

controllers are PID(Proportional-Integral-Derivative), PI(Proportional-Integral) and I(Integral). In it,
Proportional Integral Derivate (PID) is most common controller, with following control algorithm:

uk = Kpek +Ki

k
∑

j=1

ej +Kd (ek − ek−1) (5.1)

Manipulated variable is represented by uk (e.g. New number of VM); ek difference between set point
yref and yk output; ki, kp and kd are the integral, proportional and derivative gain parameters, which
further adjust as per the target system.
The authors of [77, 76] use the I controller to manage the required VMs on average CPU utilization.
Park and the author [103] deploy PI controller to adjust the resources for batch jobs and used their
execution process. kp and ki (gain factors) adjust manually according to trail-and-error [77] basis or
target application model. Authors [142] adjusted a PID controller derivative term using the RIL agent.
The agent learns to reduce the sum of squared error of control variables without affecting budget and

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 411

Feedback Control
System

Fixed Gain Controller Model Predictive
ControllerAdaptive Controller

Fig. 5.4. Categories of Feedback control system

time constraints over time.
• Adaptive controllers: These controllers are the adaptive controllers that work as per the online data
made available by target systems. It is incapable of handling the flash load. It is further classified into
three categories

– Self-Tuning PID controller(SPID)
– Self-tuning regulator(STR)
– Gain scheduling(GS)

The adaptive controller is also used in the literature. For example, the author [2] used the two models,
adaptive and proactive controllers for scaling-down, based on the input workload and dynamic gain
parameters. Scaling-up is done using a reactive approach. Author also devised proportional controller
using proactive technique [1]. Author [102] introduced an adaptive PID controller for MIMO and used
second-order ARMA for non-linear relationships between performance and resource allocation. The
controller can fit the disk I/O usage and CPU. Author [14] used smoothing splines with gain. A gain-
scheduling adaptive controller applied to estimate the number of servers for input workload. Author
[62] combine the Kalman filter with controllers (SISO and MIMO) for CPU allocation to VMs. Author
[41] predicted job completion using kriging model. The master node enqueued all the incoming request.

• Model predictive controllers (MPC): It is proactive in nature that considers the present output
and also this model forecasts the future behavior of the system. One of its categories is Look-ahead
controller [114]. An optimization problem is solved by considering the cost function. These types of
controllers come under the proactive approach. Author [114] devised workload forecasting model using
the ARMA model and look-ahead controller. Fuzzy Model Predictive Controller developed using the
fuzzy model [136].
Author [38] devised the auto-scaling technique for vertical memory. The application performance and
resource utilization considered in developing the hybrid controller. The objective is to consume less
memory for the task, and achieve the highest memory utilization. The author achieved 83% memory
utilization. This work can further extend to increase memory utilization and considered the cache
memory in vertical scaling.
The auto-scaling task is highly dependent on the design of the controller and the target application.
The controller main objective is to add and remove the resources in the auto-scaling process is very
effective. The problem still persists, when the workload is dynamic and non-linear. General auto-scaling
model is required, that can be an adaptive controller with MPCs.

As discussed earlier, the controller has to tune the input variable (number of VMs) to calculate the output
variable (CPU load). In order to achieve this goal, a model has been devised to represent the formal relationship,
which determines how input parameters affect the output variables. This relationship is known as a transfer
function in control theory. PID controller represents with a linear equation, there is also the possibility to define
with a non-linear equation. Simple PID controller Single-Input-Single-Output(SISO) is used, but there is also
a provision to use Multiple-Input-Multiple-Output(MIMO). Following performance models have been used in
literature:

• ARMA(X) [102]: ARMA (Auto-regressive Moving Average) model is used to define the characteristics
of time series and draw future predictions. ARMAX (ARMA with eXogenous input) devised the

412 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Fig. 5.5. A simple queuing model with one server [26].

relationship between two-time series.
• Kalman filter [62]: It is used to make a prediction of time series. It is a recursive algorithm.
• Smoothing splines [14]: It is a polynomial function used to smooth the curves to avoid the noisy
observations.

• Kriging model or Gaussian Process Regression [41]: Statistical framework combined with linear re-
gression to predict future values. Unsampled data have been used to perform the forecasting with a
confidence measure.

• Fuzzy model [74, 136, 140]: Fuzzy models are used with fuzzy rules. Set of membership elements
assigned a degree of value between 0 and 1 (Boolean logic).

Author [101] devised a RIL based controller. This system does not assure the performance in all type
of conditions. The work carried specifically for business logic tier. The proposed solution able to handle
the controller failures. Author [129] designed a hybrid technique for auto-scaling of cloud applications. SDN
controller applied to control the activities of the environment. The proposed model able to reduce the SLA
violation upto 0.03% only.

Tables 5.4 and 5.5 show the taxonomy of reviewed articles in this section.

5.5. Queuing Theory. It is one of the widely used for modeling Internet applications. It is used in
the analysis phase of the auto-scaling process. It estimates the performance metrics and waiting time for the
requests. Queuing theory is a field of applied probability to solve the queuing problem. Queuing issue is quite
common in many fields such as telephone exchange, petrol station, supermarket, etc. The structure of the model
is shown in Figure 5.5. The requests arrive at the server at mean arrival rate λ and remain in queue till the
processing. One or more servers are available to process the requests at the mean process rate µ.

Author Kendall [65] represents the standard notation for queuing model known as kendall’s notation. It
describe the queue as A/B/C/K/N/D.

• A: Arrival process.
• B: Service time distribution.
• C: Number of servers.
• K: Capacity of system. The number of places in the system.
• N : Calling population. Size of users from where the request comes. Open population has an infinite
number of customers and closed model is a finite number of customers.

• D: Queue’s discipline. It represents the priority of jobs.

K,N ,D elements are optional, by default variables are considered as K = ∞, N = ∞ and D = FIFO.
FIFO (First In First Out) is mostly used, which served the request as they come. Another important one is PS
(Process sharing). M (Markovian) refers to a Poisson process characterized by λ, which indicates the number
of arrival request per time unit. D stands for deterministic also refers constantly. G is also used commonly
known as general distribution.

Multi-tier applications are complex in nature and the queuing network can be useful. The load balancer is
represented by a single queue and distribute the coming requests to the VMs.

Queuing theory is useful for stationary nature systems. It can work with both proactive and reactive kind
of environment. The main objective of the cloud-based system is to develop a model on the basis of some known
parameters (e.g. Arrival rate λ). Performance metrics measured as the mean response time, and the average
waiting time in the queue. The web application workload is dynamic, it requires the timely recalculation of
queuing model and metrics.

The queuing model can be used in two ways: simulation and analytical method. The analytical approach
can be used with simple models. M/M/1 and G/G/1 are the well-known methods used to define the arrival

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 413

Table 5.4
Taxonomy on control theory based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[103]Reactive Vertical PI controller Cost-aware Sensor library Job’s deadline Job progress On-demand Custom setup.
BLAST ,
OpenLB, AD-
CIRC, WRF,
and Montage
applications
on HyperV

[77] Reactive HorizontalPI controller
(Proportional
thresholding)
and ES

- (Xen) Hyperic
HQ

- CPU load, re-
quest rate

On-demand Custom setup.
Simple web
service + Xen
+ ORCA

[102]ProactiveVertical MIMO adap-
tive controller

SLO based Xen + custom
tool. 20 sec-
onds

Response time CPU usage,
disk I/O,
response time

On- demand Custom
testbed. Xen
+ 3 applica-
tions (RUBiS,
TPC-W, me-
dia server)
+ ARMA
(performance
model)

[14] ProactiveHorizontalCTH: Linear
Regression +
Gain-scheduler
(adaptive) +
Smoothing
splines +
(performance
model)

Resource-
aware

20 seconds Response time No. of servers
and requests,
response time

on-demand Real provider.
Amazon EC2
+ CloudStone
benchmark

[62] ProactiveVertical CTH: Adap-
tive SISO
and MIMO
controllers +
Kalman filter

Resource-
aware

Custom tool.
5-10 seconds

Response time CPU load on-demand Custom
testbed. Xen
+ RUBiS
application

[76] Reactive HorizontalCTH: PI
controller
(Proportional
thresholding)

SLO based/
Workload
based

Hyperic
SIGAR. 10
second

- CPU load, re-
quest rate

on-demand Custom
Setup. Xen
+ Modified
cloudStone
(Hadoop)

[2] Hybrid HorizontalCTH: QTH +
Adaptive con-
trollers

SLA Based Simulated No. of request
not handled

Service rate,
No. of requests

on-demand Custom simu-
lator in Python

[1] Hybrid HorizontalCTH: Adap-
tive, Pro-
portional
controller +
QTH

Load Aware 1 minute simu-
lated.

- Service rate,
Total no. of
requests and
pending in
buffer

on-demand Custom sim-
ulator (using
Python)

[41] ProactiveHorizontalCTH: Self-
adaptive
controller +
Kriging model
(performance
model)

QoS aware - Execution timeNumber of
incoming and
enqueued re-
quests, number
of VMs

on-demand Custom setup.
Private cloud
+ Sun Grid
Engine (SGE)

[53] ProactiveHorizontalCTH: fuzzy
controller +
TS

Workload
Aware

Custom tool
(Fuzzy con-
troller)

Response time Number of
hits, RMSE

on-demand Custom
testbed. Azure
Small VM

[36] ProactiveHorizontalCTH: Learning
automata

SLA Aware Custom tool. 5
minutes

Response time Scaling over-
head

on-demand Cloudsim

414 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.5
Taxonomy on control theory based reviewed literature (continuation)

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[38] ProactiveVertical CTH: Hybrid
Controller +
TS

Application
and Resource
aware

Control in-
terval using
/proc/ mem-
info

Response timeCPU and
memory uti-
lization

on-demand Custom
testbed. Xen
hypervisor
(RUBBoS
application)

[105]ProactiveHorizontalCTH: PID
controller +
Fuzzy logic

Resource
aware

Amazon
Cloudwatch

CPU uti-
lization,
sensitivity
analysis

Scheduling
gain, VM
failure

on-demand Custom tested
and Ama-
zon EC2.
Wikipedia,
FIFA world
cup workload

[138]Hybrid - CTH: Soft-
ware defined
network
(SDN) con-
troller

Security aware- DDoS attack
prevention

Arrival rate Containers Simulated

[101]ProactiveHorizontalCTH: Re-
inforcement
learning

Application
aware

6 minutes Response timeCost and SLA
violation

on-demand RUBiS appli-
catoin. Cus-
tom testbed.

[129]Hybrid Both Software
defined net-
work (SDN)
controller

Resource
aware

Simulated. 1
minute

Response timeCPU capacity,
bandwidth

On-demand
VMs or Con-
tainers

Simulate with
CloudSimSDN

and service process. Simulation can be used for the complex system to obtain the desired metrics.
M/M/1 (Poisson-based) is a basic queuing model. Exponential distribution is followed by both the arrival

times and the service times. The mean response time R of M/M/1 model can be calculated as R =
1

µ− λ
.

Arrival rate is represented by λ and µ shows the service time respectively. G/G/1 is another simple method.
Inter arrival time and service time are controlled by general distributions with prior information of mean and
variance. G/G/1 system is represented by the following equation:

λ ≥

[

s+
σ2
a + σ2

b

2(R− s)

]−1

(5.2)

R is the mean response time and s is average service time. The variance of inter-arrival time is σ2
a , σ2

b .
Little’s Law [64] is also used in many queuing scenarios. It states that the average number of requests E[C]

in the system is same as the average customer arrival rate λ multiplied by the average time of each customer in
the system E[T] : E[C] = λ× E[T].

Simple and complex queuing used in the research articles for analysis of the performance of applications
and system.

Author [1, 2] used a G/G/n queue to model a cloud application, and n represents the number of servers.
The model used to calculate the required resources to process the hosted application workload λ, the response
time according to the configuration of servers.

An elastic cloud application can be represented using the queuing network, considered each VM as a separate
queue. Author [130] devised a technique using G/G/1 queues. Histogram used to predict the peak workload.
The number of servers calculated as per the queuing model and peak workload in specific time step. The reactive
approach further used to correct the value. The deficiency of the technique is the under-utilization of resources.

Multi-tier applications can be deployed in a cloud environment and assigned one or more queues for a
specific tier. Author [141] proposed a closed system with a network of queues, which handles a limited number
of users. Author [50] deploy the multi-tier application as an open system. G/G/n queues have been used and
considered one queue per each tier. Author [8] used the queuing model for a three-tier web application. It
computes the response time per each tier. Author [10] proposed a hybrid auto-scaling technique. The queuing

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 415

theory clubbed with the time series analysis technique. The prediction error and prediction interval can be
reduce with appropriate selection of the model using classification technique.

The models discussed are considered the analysis part of the MAPE loop. Some techniques are used to
implement the planning phase using optimization algorithm and predictive controller [2] in order to maximize
the revenue for the datacenters [134]. On-line monitoring captures the number of requests, which further input
to the queuing model to estimate the number of VMs required for the processing of application workload
[50, 130]. Author [141] proposed a model using regression technique to approximate estimate the number of
CPU by calculating the quantity of a client requests at each tier (e.g. Browsing, ordering or shopping). Author
[44] proved the importance of parallelization of workload in multi-core system. The model can be improved
with the generic design which can implemented in Hadoop, edge and other environments for vertical scaling.

Application of the queuing model is for cloud application and system modeling. It defines the static
architecture and required an update in parameters or structure of the model. Simulation and the analytical
tool can be used to solve the model. Any change in the number of input request or a number of resources
needs to update the model, which is not cost-efficient. Most of the articles used CloudSim simulator [18], and
some authors [135] developed a new simulation tool specifically for the auto-scaling. It includes the trace file of
widely used workloads.

Queuing model is a component in auto-scaler. The model works quite efficiently with linear parametrized
applications, and not fit for the applications with a non-linear workload. The queuing model requires more
efforts to work with multi-tier application because of complex nature and non-linear relationships.

Table 5.6 shows the taxonomy of reviewed articles in this section.

5.6. Machine Learning. Machine learning is a technique that is used on online learning for the con-
structing dynamic approach for the estimation of resources. It is a self-adaptive technique as per the workload
pattern available [3]. The machine learning algorithms reclassified into various categories. The review is made
for the different categories used in this particular literature.

• Reinforcement Learning (RIL): It is one of the widely used machine learning approaches. The agent
performs an action as per the received environmental state. As in a cloud environment, auto-scaler acts
as an agent. An agent works on the principle of trial and error method. It gets a response or reward
for each action performed [126]. The optimal scaling decision is taken by sensing the current state,
performance metric, and type of application. The auto-scalar or agent works to yield more rewards.
The main objective of machine learning is to control the data. The purpose of the agent is to fetch
appropriate action of each states.

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞
∑

0

γkrt+k+1 (5.3)

At time t+1 the rewards gained are Rt+1, the γ factor is the discount factor. The value function Q(s, a)
known as Q-value function defines the policy. The Q(s, a) values evaluates the cumulative rewards for
each state s by execution action a.

Q(s, a) = Eπ

{

∞
∑

k=0

γkrt+k+1|St
= s, at = a

}

(5.4)

This proactive learning method makes the decision with the state of application about the future
reward(e.g. response time). The result is generated after the complete execution of the application on
the cloud. The phases analyze and plan of MAPE process are covered by RIL techniques.Firstly, data
about the application and rewards are taken from the lookup table (or any other structure) for later
use (analyze phase).In the planning phase, the data is used to take the scaling action.
To apply RIL to auto-scaling, some basic elements need to define: first, the action set A, the state
space S, and the reward function R. The first two depend upon the type of scaling: horizontal and
vertical. Reward function depends upon the cost to acquire the resources (VMs, network bandwidth,
etc.), and SLA violation penalty cost. While considering the horizontal scaling, the state defines as
input workload and the number of VMs.

416 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.6
Taxonomy on queuing theory based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[134]Reactive HorizontalQTH Budget Aware Simulated Response time Arrival rate,
service time

on-demand Custom simu-
lator (Monte-
Carlo)

[141]Proactive- QTH + Re-
gression (Pre-
dict CPU load)

QoS Based Custom tool. 1
minute

- Number and
type of trans-
actions (re-
quests), CPU
load

on-demand Custom simu-
lator, based on
C++Sim. +
Data collected
from TPC-W

[130]Hybrid HorizontalQTH + His-
togram +
Thresholds

Resource
Aware

Custom tool.
15 minutes

Response time Peak workload on-demand Custom
testbed. Xen
+ 2 applica-
tions (RUBiS
and RUBBOS)

[8] ProactiveHorizontalQTH + His-
torical perfor-
mance model

Prediction
/Resource
Aware

- Response time Arrival rate on-demand Custom
testbed. Euca-
lyptus + IBM
Performance
Benchmark
Sample Trade

[50] Reactive HorizontalQTH (model)
+ Reactive
scaling

Cost-Aware Custom tool. 1
minute

Response time
and cost

Arrival rate,
service time

on-demand Custom test-
bed (called
IC Cloud) +
TPC-W bench
mark

[42] ProactiveHorizontalQTH + kalman
Fil ter

User Aware Custom tool.
10 seconds

Response time Arrival rate on-demand Custom
TestBed

[133]ProactiveHorizontalQTH QoS based - Response time,
Bottlenecks

Arrival rate on-demand Custom test-
bed. Open
stack

[11] ProactiveBoth QTH Resource awareCustom Response time Request arrival
rate, No. of
VMs per tier

on-demand Custom test-
bed. RUBiS
benchmarking
application

[56] Reactive HorizontalQTH Resource awareCustom Response time Arrival rate,
No. of resource
allocation

on-demand Custom test-
bed. Open-
Stack.

[116]ProactiveHorizontalQTH +
Markov chain

SLO aware - Response time CPU utiliza-
tion, through-
put, Band-
width, Session
loss

on-demand Simulation and
real testbed on
Amazon EC2.
Synthetic
workload using
Apache JMeter

[135]ProactiveHorizontalQTH (Simula-
tor for auto-
scaling)

User behavior
and resources

Custom tool.
15 minutes

VM utilization,
Arrival rate

Arrival rate on-demand Custom Simu-
lator for gen-
eral purpose

[44] ProactiveBoth QTH + Am-
dahl’s Law+
Kalman Filters

Cost-aware Custom
testbed. 10
seconds

Cost and Re-
sponse time

Resource allo-
cation, service
rate

on-demand Real testbed
using Open-
Stack. RUBiS
benchmarking
applications,
WITS traces
and synthetic
workload.

[10] Hybrid HorizontalQTH + thresh-
old rules

SLO aware Custom agent Resource Oscil-
lation

No. of VMs - BUNGEE
experiment
controller.
FIFA World
Cup, BibSono-
my, IBM CICS
transactions,
German-
Wikipedia,
Retailrocket
traces.

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 417

Researcher [127] devised using (w, ut−1, ut), where w is the the total number of user requests observed
per time period; ut and ut−1 are the number of VMs allocated to the application in the current time
step, and the previous time step, respectively;
Authors [32] followed the definition of the state as (w, u, p), where w is the total number of requests
and u is considered as the number of VMs allocated and p as performance in the contract of average
response time. Horizontal scaling has been done on the basis of three decisions: append the new VM,
deallocate the VM and do nothing.
On the other hand, the resources assigned to each VM (CPU, RAM) for vertical scaling are considered
in state definition. Authors Authors [112, 139] devised the state definition as (mem1 , time1, vcpu1,....,
memu, timeu, vcpuu), where memi, timei and vcpui are the ith VM’s memory size, scheduler credit
and number of virtual CPUs. The possible operations for three variables can be increased, decrease or
no-operation. The RIL defines the task as a combination of each variable operation. Rao et al. again
proposed a technique, where RIL agent learned per VM [111]. State definition is configured as CPU,
bandwidth, memory, and swap.
RIL learning is also very useful for tasks that are very closely related to auto-scaling problems, for
example, the configuration of application parameters [16, 139]. Author [139] include the RIL agent
with ANN to configure the parameters as per the application and VM performance, such as Session
timeout, MinSpareServers, Keepalive timeout, Maxclient.
RIL can also be combined with control theory. Authors [142] combine the RIL agent with a PID
controller. Application parameters are guided by the controller to meet the Service Level Objectives
(SLO). The resources are dynamically provisioned according to the parameters. The author [95] esti-
mated the future prediction problems with anomaly detection technique. The isolation unsupervised
tree is applied for the upgrading the model. The local and global level auto-scaler design is proposed.
The author consider the containerized resources in cloud infrastructure. In real environment, there is
more complex anomalies are presented. So, more number of anomalies need to detect to design the
robust solution.
RIL algorithms are important to gain the best management policy for cloud applications without any
initial knowledge. It is an online approach to learn and adapt as per the workload, application or system
change. RIL technique could be a better approach to handle the auto-scaling for general applications,
but the RIL approach is not mature enough to deal with the real cloud environment. This is an open
research field and efforts are required to handle the flash workload and rapidly change of state and
actions.

• Hidden Markov Model (HMM) : This is modeled with a hidden Markov chain with the hidden
states. In the hidden Markov chain technique, the state is known to the observers whereas in HMM
it is invisible to observers. For example, two friends Sam and Rick are communicating on the phone.
Sam describes his activities (eating, drinking) and Rick estimated the weather condition from his
activities. The estimation is performed on the basis of the maximum likelihood estimation technique.
The parameters of HMM are x defines the states in the model, y is the total observations under
consideration and state transition probability defined with a and b the output probability shown in
Figure 5.6.
An HMM model usually require fewer observations as compare to basic Markov chain models [99, 100].
The system condition needs to observed minutely and input to the model. The author used the Weka
data mining tool for implementing the HMMmodel, 2 states used with 0.01 iteration cutoff and spherical
covariance. As per an author, model given 97% accuracy in the auto-scaling decision. Database tier is
not considered in this work.

• Support Vector Machine (SVM): It is also used in some articles. It is one of the supervised learning
technique that is a combination of two techniques: classification and regression. It can be applied to
non-linear workload [97]. The classification is done on the basis of clusters formed and generates the
classes for data under specific region. Linear SVM can be used for classifying the web workload.
Researcher [78] proposed an adaptive technique with SVM and Linear Regression (LR). Characterization
has done on the basis of priority of the job and workload pattern. The generic model has been developed

418 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Fig. 5.6. Hidden Markov Model (HMM) [110].

for cloud applications. The model can be extended further considering the different QoS parameters
according to the SLA and application.

• Q-learning: It is the most used algorithm in auto-scaling by extending it with various techniques.
Author [127] used the SARSA [126] approach. Some articles [112, 139, 111, 16] did not specify which
machine learning approach used in their research, but problem definition and update function resemble
the SARSA. There are many problems in Q-learning and SARSA addressed various ways as following
[9, 33, 32, 139, 127]:

– Initial performance is bad and required a large training period. On-line performance is poor before
the best solution is found. It requires the exploration of different states and actions.

– The curse of dimensionality problem in Q-learning. The number of state variables grows the state
exponentially. States are stored in lookup tables. As the table grows, it takes time to search for
the possible state from the lookup table.

– The environmental condition has a great impact on the performance of the RIL algorithms. As
the conditions change the best optimal solution degrades the performance. RIL need to design to
work with application behavior or environmental conditions.

Tables 5.7 and 5.8 show the taxonomy of reviewed articles in this section.

5.7. Time Series Analysis. Time series analysis is a very popular model and has applications in many
areas including economics, bioinformatics, finance, engineering, etc., to predict the measurement for future time
steps. An example, the number of requests that reach the server for an application at one-minute intervals.
The time series is used in the analysis phase to forecast future workload.

Performance metrics (input workload, CPU load) sampled at fixed time intervals (e.g. 5 minutes). The
predicted series X gained from the sequence of observation w.

X = xt, xt−1, xt−2, ..., xt−w+1 (5.5)

Time series applied in auto-scaling to forecast the future workload or resources required. Predefined rules
are designed in planning phase [66], and optimize the resource allocation [114].

As discussed earlier, the main objective of time series analysis is to predict the future workload, on q
observation from historical workload known as a history window or input workload (where q ≤ w). Time series
analysis classified in two categories: direct prediction and identification of a pattern in time series. The first
category, direct prediction contains auto-regression, moving average, ARMA, ARIMA, exponential smoothing,
and machine learning approaches:

• Moving average (MA): A widely used to smooth a time series to filter noise from random fluctuation
and to make predictions. General formula of MA is as follows:

x̂t+r = a1xt + a2xt−1 + ...+ aqxt−q+1 (5.6)

x̂t+r is a forecast value from last q observations with weighted average. Prediction interval denotes
by r, and typically sets to 1. Equal or different weight factors are assigned to the values denoted

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 419

Table 5.7
Taxonomy on machine learning based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[127]ProactiveHorizontalRIL+ ANN-
SARSA +
Queuing model

Resource
aware

- Response time Arrival rate,
previous num-
ber of VMs

on-demand Custom
testbed
(shared
data cen-
ter). Trade3
application
(a realistic
simulation
of an elec-
tronic trading
platform)

[112]ProactiveVertical RIL+ANN VM perfor-
mance

Custom tool Throughput,
response time

CPU and
memory usage

on-demand Custom
testbed. Xen
+ 3 applica-
tions (TPC-C,
TPC-W,
SpecWeb)

[33] ProactiveHorizontalTR + RIL Resource
aware

Custom tool.
20 seconds)

Response time Request rate,
response time,
number of
VMs

on-demand -

[142]ProactiveVertical CT- PID con-
troller + RIL
+ ARMAX
model + SVM
regression

QoS based - Application-
related benefit
function

Application
adaptive pa-
rameters CPU
and memory

on-demand -

[111]ProactiveVertical RIL + CMAC SLA based/
Capacity based

Custom tool
(Script)

Response time CPU, I/O,
memory, swap

on-demand Custom
testbed. Xen
+ 3 applica-
tions (TPC-C,
TPC-W,
SpecWeb)

[32] ProactiveHorizontalRIL Resource-
aware

- Response time,
cost

Number of user
requests, num-
ber of VMs, re-
sponse time

on-demand Custom
testbed. Olio
application
+ Custom
decision agent
(VirtRL)

[139]ProactiveVertical RIL + ANN Budget
aware/QoS
based

Custom tool Response time CPU and
memory usage

on-demand Custom
testbed. Xen
+ 3 applica-
tions (TPC-C,
TPC-W,
SpecWeb)

[9] ProactiveHorizontalRIL Workload
aware

Simulated Response time,
cost

Number of user
requests, num-
ber of VMs, re-
sponse time

on-demand Custom simu-
lator (Matlab)

[16] ProactiveVertical RIL + SimplexResource
aware

Custom tool Response time,
throughput

CPU, memory,
application pa-
rameters

on-demand -

[99] Reactive HorizontalHMM SLA aware - Cost-
Performance

Number of re-
quest, MAPE,
RMSE

on-demand -

[78] Reactive HorizontalLR(Linear
regression) +
SVM

Workload
based

Custom tool.
(1, 10 and 60
minutes)

Cost-
Performance

Prediction
time (ms)

on-demand Simulation

[60] Reactive HorizontalRIL: Fuzzy Q-
learning

Workload
aware

Custom. Response time No. of VMs On-demand Simulated
and Custom
testbed.

420 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.8
Taxonomy on machine learning based reviewed literature (continuation)

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[12] ProactiveHorizontalRIL Resource-
aware

Custom Response timeCPU usage,
throughput,
Mean Q-value

On-demand Custom
testbed and
CloudRL mat-
lab simulation.
Benchmarking
applications
(RUBiS,
RUBBoS and
Olio)

[137]Reactive HorizontalRIL: Q-
learning

Workload
aware

Custom. 1
hour.

- Arrival rate
and rewards

reserved, on-
demand and
spot instances

Custom
testbed. Mat-
lab.

[95] ProactiveVertical Unsupervised
learning: Iso-
lation based
tree

Resource
aware

Custom Response timeCPU utiliza-
tion, response
time, no. of
failed sessions

Reserved and
on-demand

CloudSim.
Custom
testbed.
RUBiS bench-
marking
application.

[63] ProactiveHorizontalHMM: Multi
layered

Data-
streaming
applications

Custom. - CPU usage,
Prediction
time, RMSE,
MAPE

on-demand Custom
testbed.
Hadoop for
data stream-
ing.

by a1, a2, a3, ..., aq. There are types of MA’s are Simple Moving Average (SMA) and the Weighted
Moving Average (WMA). Moving average performs in various forms, but the objective of MA is the
same. In simple moving average’s general formula is considering the arithmetic mean of previous q
values. It considers the same weight of all the observations. WMA considers the different weight for
each observation. The highest weight assigned to new observation, while less weight is given to previous
observations.

• Exponential Smoothing (ES): In contrast to the moving average, the weighted average of previous
observation is also calculated, but the ES considers all the observation of time series (w values) from
past history. The new parameter α, the smoothing factor has very less influence on the predicted value,
because exponentially decreasing weight assigned to the new observations. There are many versions
of ES such as simple ES and Brown’s double ES [15]. The smoothed value st is calculated from the
present observation and past smoothed value based on recursive formula: st = αxt+(1−α)st−1. Time
series with fewer trends can be forecast using simple ES. Brown’s double ES is suitable for linear trend
time series. Two smoothing series are required to calculate as:

s1t = αxt + (1− α)s1t−1

s2t = αs1t + (1− α)s2t−1

(5.7)

s2t is calculated from simple ES to s1t . The trend dt and level ct is obtained from s1t and s2t smoothed
values. The forecast value x̂t+r is obtained from following formula:

x̂t+r = ct + rdt

ct = 2s1t − s1t

dt =
α

1− α
s1t − s2t

(5.8)

• Auto-regression AR(p): The future value is forecast using the linear weighted sum of previous obser-
vation p in the time series:

xt+1 = b1xt + b2xt−1 + ...+ bpxt−p+1 + ϵt (5.9)

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 421

p represent the number of observations in the AR equation, which could be different from history
window w length. White noise ϵt is added in the formula. AR coefficients are calculated using different
methods such as maximum likelihood or least squares. The widely used technique in the literature is
Yule-Walker equations and auto-correlation coefficient. The formula of auto-correlations as follows for
xt to xt−k, where k = 1, 2, 3...:

rk =
covariance(xt, xt−k)

var(xt)
=

E[(xt − µ)(xt−k − µ)]

var(xt)
(5.10)

• Auto-Regressive Moving Average, ARMA(p,q): This model is the hybridization of both AR of order p
and MA of order q. ARMA model is described as:

xt = b1xt−1 + ...+ bpxt−p + ϵt + a1ϵt−1 + ...+ aqϵt−q (5.11)

ARMA model can be used either purely as AR or MA model using ARMA(p, 0) and ARMA(0, q)
respectively. ARMA is best suitable for stationary time series.
The extension of the ARMA model is Auto-Regressive Integrated Moving Average (ARIMA) model is
suitable for non-stationary time series. If ϵ (white noise) shows no pattern, then ARIMA(p, d, q) used
where d represents the degree of difference.

• Machine learning techniques: Analysis of time series was carried out by many authors using machine
learning-based techniques.
Regression-based techniques are based on statistical methods to form a polynomial function, that find
the nearest points from the history window w. Linear regression is ordered 1 polynomial expression.
The distance of points should be as less as possible. Multiple Linear Regression is used when there is
more than one variable in the expression.
Neural Network is a group of interconnected artificial neurons put on multiple layers. Multiple inputs
are put in the hidden layer, which further given an output. In time series one output against one input
from the history window. Random weights are assigned to the input vector during the training phase.
The weights are adapted to the optimized output has not achieved.

• Pattern Recognition: Time series data is a combination of seasonal and non-seasonal data. The time
series has patterned with a specific time period (e.g. hours, day, month, year, or season) on the basis
of short term and long term workload. It finds the matching pattern in the history that relates to the
current pattern. It is very similar to the string matching technique [27].

• Signal Processing Techniques: This technique is based on harmonic analysis to decompose a time series
signal into different frequencies. Fast Fourier Transformation and spectral density estimation filter the
noise and estimating the signal value.

• Auto-correlation: In the linear regression errors are independent, the auto-correlation function is used
to deal with the dependent error pattern. The input workload from the history window is shifted
recursively, and further compared with the original time series.

The histogram is used to represent the time series. It splits the time series values into equal size bins, and
each bin represents the frequency. In literature, it is used to represent the forecast values, resource distribution,
and usage pattern.

5.7.1. Review of Articles. Time series analysis for multi-tier applications is most frequently used in the
literature. A simple moving average model yields poor results, so that the MA used to remove time-series noise
[76, 103]. The resource prediction model of Author [55] was developed using double exponential smoothing and
a simple medium and Weighted Moving Average (WMA) applied. Because of w history records, ES significantly
provides better results. Author [94] used the Dual ES of Brown to predict the load of work and obtain good
results with a small error in the HTTP workload. Author [72] applied neural network and differential evolution
for workload prediction. The back propagation method give adequate accuracy. Furthermore, the accuracy of
the model can be improved with the pattern classification technique.

The auto-regression models applied for [21, 22, 46, 71, 114] workload and resource forecast. The author
taking three previous observations used the AR model to estimate workload [114]. Estimated additional response

422 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

time from the forecast values. A resource allocation optimization controller applied, taking SLA violation costs,
reconfiguration, and leasing resources into account. In order to forecast requests per second, Author [71] used
AR(order 1) and concluded that its performance is very much based on many manager-determined parameters
(e.g. history window, adaptation window, size, and monitoring interval). The forecast is based on short and
long term trends, depending heavily on the size of the history window. Further, the model extension determines
the adjustment window.

The ARMA Model foresees the future workload (number of requests) is simple and efficient. The usage of
VMs on the CPU is predicted by Author [37]. In different article [117, 17, 93], the ARIMA model is applied. The
historic workload was required in ARIMA. The model’s performance depends greatly on its history. ARIMA
is ideal for dynamic workload applications such as web applications. The horizontal and vertical scaling was
applied to increase the cost-benefit [117]. The classification given is: increasing, stable, seasonally and on/off,
used by the authors [89] VMs were repacked (or reconfigured) to provide certain capacities, and workload-
based application repacking was performed. The approach then finds the ideal package of VMs. The approach
proposed can save 7% to 60% for the use of the resource. With additional QoS parameters, the container based
approach can be further optimized. For workload forecasts and evaluate impacts on various QoS-parameters,
investigator [17] used ARIMA model. The workload of the web application is dynamic and includes seasonal
information. For non-seasonal data, the model provides 91% accuracy but is not suited for a highly non-seasonal
workload. This work can be further extended by means of an adaptive approach for working load classification
and the heuristic design for ARIMA fit for various classes. As mentioned above, an author [93] presented the
GA-based approach to time-series prediction do not fit in for all types of workload. The prediction model has
been assessed using traces of real workload. A new metric, describing solution optimization, was introduced in
the article called the Elasticity Index (EI). The EI range varies between 0 to 1, with a value of almost 1 the
solution is good. Compared to other models, the model gives less error. This approach takes longer to predict
the incoming request, even hourly prediction. In addition, the mapping of only few prediction techniques with
a particular application pattern and workload pattern can be enlarged. In particular, GA models can design
cost, energy, resource sharing, and parameters.

Author [125] performed the workload prediction using classification technique. The historical workload took
under consideration of sliding window. The past 5 lags has considered for to fit the model and predict the future
request. On the behalf of peak-to-mean-ratio and l2 − norm used to calculate the scale of time series. The
model gave sufficient accuracy in terms of RMSE and MAPE for web application workload. There is no existing
model which can capture all types of pattern. The error rate is still more than 10%. The model accuracy can
be improved with application profiling. Author [69] designed the CloudInsight approach using regression, time
series and machine learning techniques. The predictor pool has built and select the prediction model according
to the testing phase output.

The precise of neural networks [58, 106] are highly dependent on the size of the input in the history window
in several regression equations [14, 106, 71]. Author [58] have used more than one historical value and achieved a
better result. The need for a balanced size of the input history window is defined by the author [71]. Regression
of different window sizes used to locate forecast values. Another important factor is the r prediction interval.
The size of the interval window is examined and found 12 minutes at the right point due to the startup time of
VM being between 5 and 15 minutes. The neural network applied to 2 minutes to forecast the gaming load by
the author [106]. The neural network in terms of accuracy, however, is better than MA and ES.

The literary authors also focused on horizontal and vertical scaling. It can be taken individually or in a
hybrid manner. The researcher [34] investigated that horizontal scaling costs are higher than vertical scaling,
but also relatively high throughput. The author prefers to scale horizontally. Model of regression to estimate
the future workload. The author [37] concentrated on the flash crowd’s horizontal scaling (CPU and memory),
while regular changes are made with vertical scaling.

Proactive time series forecasting and a reactive approach can be combined. The author uses a reactive
strategy for scale-up and scale-down scale model and developed a model of hybrids that can be self-sized [57].
Polynomial regression is used to determine the number of instances of application and database VMs.

Some authors have also applied a pattern identification method on time series analysis [19, 46, 122]. FFT-
based techniques for identifying patterns matching the use of resources (RAM, CPU, I/O, and network) are

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 423

proposed [46]. The comparison is done using auto-correlation, histogram, and auto-regression. The authors [19]
have developed the algorithm with more parameters and poor performance.

The use of application resources in some articles is also estimated by the use of the mean distribution [21]
and, the highest frequency with simple histogram [46]. The current usage and historical data [29], the dynamic
load balancer is introduced by the Holt’s technique. This can be used with web workloads and able to give
efficiency in prediction. This can solve problems with load balancing.

Techniques for time series analysis can predict future web applications workload. Moreover, resource re-
quirements can be predicted through this information. This approach is very attractive because the auto-scaler
is known to be able to prepare the VMs in advance. The inconvenience of techniques is precision depending on
workload, selection of historical windows, measurements, the interval of prevision and the target application.
The time series forecasting exists no best solution for all types of pattern. The future scope of the adaptive or
GA-based time series forecast for a specific application, taking QoS parameters into account. Tables 5.9 and
5.10 show the taxonomy of reviewed articles in this section.

6. Future Directions. As per the literature survey, still, there is scope for further improvement in the
present auto-scaling solutions for the multi-tier web applications. The following sections describe important
future directions in this field.

6.1. Monitoring Tools. Multi-tier web applications are installed on the servers. Cost effective monitoring
tools are required to implement, which explore the hidden parameters such as cache memory, service time and
type of request (e.g. Compute intensive and data intensive). Application and workload-specific monitoring
interval can further improve the auto-scaler results.

6.2. Pricing Model. Companies such as Amazon, Google and Microsoft have their different pricing
model. Most of the researchers consider auto-scaling techniques on on-demand resources while considering the
unlimited resources. Other types of model are also introduced, for example, Spot instances by the Amazon.
The cost of such resources is very less as compare to on-demand resources. Very few authors start working on
a spot instance, so the area is very immature and have different research challenges. Auto-scaling technique for
spot-instances using reactive and proactive techniques give benefit to cloud providers and clients.

6.3. Resource Allocation. While allocating the resource for input workload, the information of data
center resources is also required. Some parameters such as CPU, RAM, Disk are well-known factors considered,
but some parameters such as cache memory, network bandwidth, and fault tolerance are least considered in the
literature. VMs for input workload for different tiers of the web application is the future scope of many articles.
SLA base resource allocation with different QoS parameters need improvements. It can be further improved by
extending the queuing network model.

6.4. Horizontal and vertical Scaling. Horizontal scaling is used in most of the articles. Operating
system and cloud architecture support horizontal scaling. The vertical scaling is easier in cloud infrastructure
and gives better cost benefit. Hypervisors and operating system support could be enhanced for the vertical
scaling. Energy and cost-effective VMs allocation, and consolidated migration are future areas for research.

6.5. Workload Predictor. The existing workload predictors are considering the historical workload.
Flash workload is hard to predict from the past workload. As growth in the online data mining and deep
learning techniques, real-time data can be used to avoid the sudden burst condition in the data center. Web
applications face this problem due to any hackers attack (DDOS) or flash event. Categorization of application
will be more helpful to handle the flash crowd. Spot instances can be more effective in terms of cost optimization
to serve flash workload.

6.6. Multi-cloud Auto-scaling. Multiple cloud providers are supporting multi-tier web architecture.
Cloud providers individually proving the reliability of their services. Multi-cloud architecture for web appli-
cations needs to work upon. The cloud provider can be selected by considering the application feature as the
type of application, input workload, geographical area, etc. The reliability-aware auto-scaling in the multi-cloud
environment by factorizing the various parameters.

424 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

Table 5.9
Taxonomy on time-series analysis based reviewed literature

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[21] ProactiveHorizontalTSA: AR(1)
and Histogram
+ QTH

Resource
Aware

Simulated. 1,
5, 10 and 20
minutes

Response time Request rate
and service
demand

On- demand Custom simu-
lator + algo-
rithms in Mat-
lab

[22] ProactiveHorizontalTSA: AR Energy
Aware

Simulated Service not
available (lo-
gin), energy
consumption

Login rate,
number of
active connec-
tions, CPU
load

On- demand Simulator

[106]ProactiveHorizontalTSA: ML Neu-
ral Network
(compared to
MA, last value
and simple
ES)

QoS based 2 minutes Prediction ac-
curacy

Number of en-
tities (players)

On- demand Simulator of
a MMORPG
game

[46] ProactiveVertical TSA: FFT
and Dis-
crete Markov
Chains.
Compared
with auto-
regression,
auto-
correlation,
histogram,
max and min.

SLO based Libxenstat
library. 1
minute

Response time CPU load On- demand Custom
testbed. Xen
+ RUBiS +
part of Google
Cluster Data
trace for CPU
usage

[94] Proactive- TSA: Brown’s
double ES

Performance
based

10 minutes - Number of re-
quests per VM

On- demand Custom
testbed. TPC-
W

[66] ProactiveBoth TSA: AR +
TR

Resource
Aware

Zabbix - Number of re-
quests

On- demand Hybrid: Ama-
zon EC2
+ Custom
testbed (Xen
+ Eucalyptus
+ PhpCollab
application)

[19] ProactiveHorizontalTSA: Pattern
matching

Workload
Aware

100 seconds Number of ser-
viced requests,
cost

Total number
of CPUs

On- demand Analytical
models

[122]Hybrid Vertical TSA: FFT and
Discrete-time
Markov Chain

SLO Aware Libxenstat li-
brary. 1 sec-
ond

Response time,
job progress

CPU load,
memory usage

On- demand -

[114]ProactiveHorizontalTSA: AR QOS Aware - Response
time, VM cost,
application re-
configuration
cost

Number of
users in the
system

On- demand No experimen-
tation on sys-
tems

[57] Hybrid HorizontalTR (scale out)
+ TSA, poly-
nomial regres-
sion (scale in)

SLA based 1 minute Response time CPU load
(scale out),
number of
requests, num-
ber of VMs
(scale in)

On- demand -

[37] ProactiveBoth TSA: ARMA SLA based - Prediction ac-
curacy

Number of
requests, CPU
load

On- demand Custom
testbed. Xen
and KVM

[55] Proactive- TSA: Brown’s
double ES.
Compared
with WMA

Cost-Aware Simulated Prediction ac-
curacy

CPU load,
memory usage

On- demand Custom
testbed. TPC-
W

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 425

Table 5.10
Taxonomy on time-series analysis based reviewed literature (continuation)

Ref Type Policy Technique Approach Monitor SLA Metric Pricing Experiment

[58] ProactiveHorizontalTSA: ML Neu-
ral Network
and (Multiple)
LR + Sliding
window

Resource
Aware

Amazon
CloudWatch.
1 minute

Prediction ac-
curacy

CPU load (ag-
gregated value
for all VMs)

On- demand Real provider.
Amazon EC2
and TPC-W
application to
generate the
dataset and
R-Project.

[34] ProactiveBoth TSA: Polyno-
mial regression

Resource/
Cost Aware

Custom tool. 1
minute

Response time,
cost for VM,
application li-
cense and re-
configuration

Number of re-
quests

On- demand Custom
testbed. KVM
+ Olio

[117]Hybrid Both TSA: ARIMA
+ Repacking

Cost-Aware 4 and 20 min-
utes

Response time Number of re-
quest, cost

On- demand Custom simu-
lator

[39] Hybrid HorizontalTSA + ProfilerQoS Aware 5 minutes Response time Number of
request, CPU
usage and
throughput

On- demand -

[17] ProactiveHorizontalTSA: ARIMA QoS aware simulated Response time Request rate,
RMSE

On- demand CloudSim
toolkit

[93] ProactiveHorizontalTSA: ARIMA
+ GA

Resource
Aware

simulated Response time,
Cost

Request rate,
Bootstrap,
Mean Elas-
ticity Index
(MEI), RMSE,
MSE

On- demand Custom
testbed in
cloud

[29] ProactiveHorizontalTSA: Holt
model + Re-
verse trend
(RT) + GA +
Fuzzy logic

Load Balance
aware

controlled en-
vironment

Execution
time, Number
of migrations

Average and
standard error
and Break-
down

On- demand Custom
testbed using
two clusters
with Globus
toolkit

[6] ProactiveHorizontalTSA: Double
Exponential
Smoothing
(DES)

Cost aware Custom Resources and
SLA

Number of re-
quests

On- demand CloudSim

[7] Hybrid HorizontalTSA: Weight
moving aver-
age (WMA)

cost aware Custom cost Number of re-
quests + CPU
utilization

On- demand CloudSim

[72] Proactive- TSA: ANN
+ Differential
evolution

Workload
aware

Prediction in-
terval (1, 5, 10,
20, 30, 60)

- Arrival rate,
RMSE

On-demand Sumlation
in Matlab.
NASA and
Saskatchewan
traces

[69] Proactive- TSA: CloudIn-
sight

Workload
aware

- - No. of re-
quests, Predic-
tion overhead,
Commutative
distribu-
tion function
(CDF)

- Python 2.7 on
Ubuntu 16.07.
Google work-
load, Wiki,
Facebook
dataset

[125]ProactiveHorizontalTSA: LR,
ARIMA and
SVR

Resource
aware

Custom Prediction ac-
curacy and re-
sources

Number of re-
quest

On- demand R-tool

[61] Hybrid HorizontalTSA: QTH
+ Contin-
uous Time
Markov Chain
(CTMC) +
AR

Resource
aware

Custom Response time Arrival rate,
VMs allocated,
Resource
utilization

On-demand Real exper-
iments on
Amazon EC2.
RUBiS, RUB-
BoS, Cassan-
dra and Olio
benchmarking
applications

426 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

6.7. Energy aware Auto-scaling. The existing work mostly focused on cost optimization and QoS
requirement. The data center is also facing environmental issues also. Solar datacenters and renewable energy
resources in the data center can reduce the carbon problem. So the carbon and energy-aware auto-scaling
provide the preference to the environmental friendly data centers in a single and multi-cloud environment.
The weather condition and maximum solar power generating data centers give the highest priority for resource
allocation.

6.8. Bin-packing Auto-scaling. The bin packing approach offers potential research topics in auto-scaling
of web applications in cloud computing. The size of bins could vary, which makes this approach more robust.
Resource provisioning of bins is lightweight and gives cost benefits.

7. Conclusions. Auto-scaling technique provisions the resources as per the incoming workloads. The
application providers reap the benefit with this technique in terms of cost while maintaining the QoS. However,
the auto-scaling design and development process having number of challenges. In literature, authors proposed
the auto-scaling techniques with various characteristics in order to overcome the problems in auto-scaling in
cloud.

In this article, a literature survey of the state-of-the-art auto-scaling techniques has carried out and, iden-
tified the key challenges in auto-scaling of multi-tier web applications. Moreover, the auto-scaling techniques
are classified and taxonomy is presented based on various characteristics. Furthermore, the future research
directions have been proposed based on the key challenges.

REFERENCES

[1] Ali-Eldin, A., Kihl, M., Tordsson, J., and Elmroth, E. (2012a). Efficient provisioning of bursty scientific workloads
on the cloud using adaptive elasticity control. In Proceedings of the 3rd workshop on Scientific Cloud Computing Date,
pages 31–40. ACM.

[2] Ali-Eldin, A., Tordsson, J., and Elmroth, E. (2012b). An adaptive hybrid elasticity controller for cloud infrastructures.
In 2012 IEEE Network Operations and Management Symposium, pages 204–212. IEEE.

[3] Alzubi, J., Nayyar, A., and Kumar, A. (2018). Machine learning from theory to algorithms: an overview. In Journal of
Physics: Conference Series, volume 1142, page 012012. IOP Publishing.

[4] Amazon (2019). Amazon EC2. https://aws.amazon.com/ec2/. [Online; accessed 30-March-2019].
[5] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G., Patterson, D. A., Rabkin,

A., Stoica, I., et al. (2009). Above the clouds: A berkeley view of cloud computing.
[6] Aslanpour, M. S. and Dashti, S. E. (2017). Proactive auto-scaling algorithm (pasa) for cloud application. International

Journal of Grid and High Performance Computing (IJGHPC), 9(3):1–16.
[7] Aslanpour, M. S., Ghobaei-Arani, M., and Toosi, A. N. (2017). Auto-scaling web applications in clouds: a cost-aware

approach. Journal of Network and Computer Applications, 95:26–41.
[8] Bacigalupo, D. A., van Hemert, J., Usmani, A., Dillenberger, D. N., Wills, G. B., and Jarvis, S. A. (2010). Re-

source management of enterprise cloud systems using layered queuing and historical performance models. In Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8.
IEEE.

[9] Barrett, E., Howley, E., and Duggan, J. (2013). Applying reinforcement learning towards automating resource allocation
and application scalability in the cloud. Concurrency and Computation: Practice and Experience, 25(12):1656–1674.

[10] Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., and Kounev, S. (2019). Chameleon: A hybrid, proactive auto-scaling
mechanism on a level-playing field. IEEE Transactions on Parallel and Distributed Systems, 30(4):800–813.

[11] Beltrán, M. (2015). Automatic provisioning of multi-tier applications in cloud computing environments. The Journal of
Supercomputing, 71(6):2221–2250.

[12] Benifa, J. B. and Dejey, D. (2018). Rlpas: Reinforcement learning-based proactive auto-scaler for resource provisioning in
cloud environment. Mobile Networks and Applications, pages 1–16.

[13] Bhardwaj, T. and Sharma, S. C. (2018). Fuzzy logic-based elasticity controller for autonomic resource provisioning in
parallel scientific applications: a cloud computing perspective. Computers & Electrical Engineering, 70:1049–1073.

[14] Bodık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., and Patterson, D. (2009). Statistical machine learning
makes automatic control practical for internet datacenters. In Proceedings of the 2009 conference on Hot topics in cloud
computing, pages 12–12.

[15] Brown, R. G. and Meyer, R. F. (1961). The fundamental theorem of exponential smoothing. Operations Research,
9(5):673–685.

[16] Bu, X., Rao, J., and Xu, C.-Z. (2013). Coordinated self-configuration of virtual machines and appliances using a model-free
learning approach. IEEE transactions on parallel and distributed systems, 24(4):681–690.

[17] Calheiros, R. N., Masoumi, E., Ranjan, R., and Buyya, R. (2015). Workload prediction using arima model and its impact
on cloud applications qos. IEEE Transactions on Cloud Computing, 3(4):449–458.

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 427

[18] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011). Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice
and experience, 41(1):23–50.

[19] Caron, E., Desprez, F., and Muresan, A. (2011). Pattern matching based forecast of non-periodic repetitive behavior for
cloud clients. Journal of Grid Computing, 9(1):49–64.

[20] Casalicchio, E. and Silvestri, L. (2013). Autonomic management of cloud-based systems: the service provider perspective.
In Computer and Information Sciences III, pages 39–47. Springer.

[21] Chandra, A., Gong, W., and Shenoy, P. (2003). Dynamic resource allocation for shared data centers using online
measurements. In International Workshop on Quality of Service, pages 381–398. Springer.

[22] Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., and Zhao, F. (2008). Energy-aware server provisioning and load
dispatching for connection-intensive internet services. In NSDI, volume 8, pages 337–350.

[23] Chen, T., Bahsoon, R., and Yao, X. (2018). A survey and taxonomy of self-aware and self-adaptive cloud autoscaling
systems. ACM Computing Surveys (CSUR), 51(3):61.

[24] Chieu, T. C., Mohindra, A., and Karve, A. A. (2011). Scalability and performance of web applications in a compute
cloud. In e-Business Engineering (ICEBE), 2011 IEEE 8th International Conference on, pages 317–323. IEEE.

[25] Chieu, T. C., Mohindra, A., Karve, A. A., and Segal, A. (2009). Dynamic scaling of web applications in a virtualized
cloud computing environment. In e-Business Engineering, 2009. ICEBE’09. IEEE International Conference on, pages
281–286. IEEE.

[26] Cohen, J. W. (2012). The single server queue, volume 8. Elsevier.
[27] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to algorithms second edition.
[28] Coutinho, E. F., de Carvalho Sousa, F. R., Rego, P. A. L., Gomes, D. G., and de Souza, J. N. (2015). Elasticity in

cloud computing: a survey. annals of telecommunications-annales des télécommunications, 70(7-8):289–309.
[29] De Grande, R. E., Boukerche, A., and Alkharboush, R. (2017). Time series-oriented load prediction model and migration

policies for distributed simulation systems. IEEE Transactions on Parallel and Distributed Systems, 28(1):215–229.
[30] Dejun, J., Pierre, G., and Chi, C.-H. (2011). Resource provisioning of web applications in heterogeneous clouds. In

Proceedings of the 2nd USENIX conference on Web application development, pages 5–5. USENIX Association.
[31] Douglas, K. B. (2003). Web services and service-oriented architectures: the savvy manager’s guide.
[32] Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N., and Truck, I. (2011). Using reinforcement

learning for autonomic resource allocation in clouds: towards a fully automated workflow. In ICAS 2011, The Seventh
International Conference on Autonomic and Autonomous Systems, pages 67–74.

[33] Dutreilh, X., Moreau, A., Malenfant, J., Rivierre, N., and Truck, I. (2010). From data center resource allocation to
control theory and back. In 2010 IEEE 3rd International Conference on Cloud Computing, pages 410–417. IEEE.

[34] Dutta, S., Gera, S., Verma, A., and Viswanathan, B. (2012). Smartscale: Automatic application scaling in enterprise
clouds. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages 221–228. IEEE.

[35] Evangelidis, A., Parker, D., and Bahsoon, R. (2018). Performance modelling and verification of cloud-based auto-scaling
policies. Future Generation Computer Systems, 87:629–638.

[36] Fallah, M., Arani, M. G., and Maeen, M. (2015). Nasla: Novel auto scaling approach based on learning automata for
web application in cloud computing environment. International Journal of Computer Applications, 113(2).

[37] Fang, W., Lu, Z., Wu, J., and Cao, Z. (2012). Rpps: a novel resource prediction and provisioning scheme in cloud data
center. In Services Computing (SCC), 2012 IEEE Ninth International Conference on, pages 609–616. IEEE.

[38] Farokhi, S., Jamshidi, P., Lakew, E. B., Brandic, I., and Elmroth, E. (2016). A hybrid cloud controller for vertical
memory elasticity: A control-theoretic approach. Future Generation Computer Systems, 65:57–72.

[39] Fernandez, H., Pierre, G., and Kielmann, T. (2014). Autoscaling web applications in heterogeneous cloud infrastructures.
In Cloud Engineering (IC2E), 2014 IEEE International Conference on, pages 195–204. IEEE.

[40] Frey, S., Lüthje, C., Reich, C., and Clarke, N. (2014). Cloud qos scaling by fuzzy logic. In Cloud Engineering (IC2E),
2014 IEEE International Conference on, pages 343–348. IEEE.

[41] Gambi, A. and Toffetti, G. (2012). Modeling cloud performance with kriging. In Proceedings of the 34th International
Conference on Software Engineering, pages 1439–1440. IEEE Press.

[42] Gandhi, A., Dube, P., Karve, A., Kochut, A., and Zhang, L. (2014). Adaptive, model-driven autoscaling for cloud
applications. In 11th International Conference on Autonomic Computing (ICAC 14), pages 57–64.

[43] Gandhi, A., Harchol-Balter, M., Raghunathan, R., and Kozuch, M. A. (2012). Autoscale: Dynamic, robust capacity
management for multi-tier data centers. ACM Transactions on Computer Systems (TOCS), 30(4):14.

[44] Gandhi, A., Dube, P., Karve, A., Kochut, A., and Zhang, L. (2018). Model-driven optimal resource scaling in cloud.
Software & Systems Modeling, 17(2):509–526.

[45] Ghanbari, H., Simmons, B., Litoiu, M., and Iszlai, G. (2011). Exploring alternative approaches to implement an elasticity
policy. In Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 716–723. IEEE.

[46] Gong, Z., Gu, X., and Wilkes, J. (2010). Press: Predictive elastic resource scaling for cloud systems. In 2010 International
Conference on Network and Service Management, pages 9–16. IEEE.

[47] Grimaldi, D., Pescape, A., Salvi, A., Persico, V., et al. (2017). A fuzzy approach based on heterogeneous metrics for
scaling out public clouds. IEEE Transactions on Parallel and Distributed Systems.

[48] Grozev, N. and Buyya, R. (2014). Multi-cloud provisioning and load distribution for three-tier applications. ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS), 9(3):13.

[49] Guitart, J., Torres, J., and Ayguadé, E. (2010). A survey on performance management for internet applications. Con-
currency and Computation: Practice and Experience, 22(1):68–106.

[50] Han, R., Ghanem, M. M., Guo, L., Guo, Y., and Osmond, M. (2014). Enabling cost-aware and adaptive elasticity of

428 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

multi-tier cloud applications. Future Generation Computer Systems, 32:82–98.
[51] Han, R., Guo, L., Ghanem, M. M., and Guo, Y. (2012). Lightweight resource scaling for cloud applications. In Cluster,

Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, pages 644–651. IEEE.
[52] Hasan, M. Z., Magana, E., Clemm, A., Tucker, L., and Gudreddi, S. L. D. (2012). Integrated and autonomic cloud

resource scaling. In 2012 IEEE Network Operations and Management Symposium, pages 1327–1334. IEEE.
[53] Heinze, T., Pappalardo, V., Jerzak, Z., and Fetzer, C. (2014). Auto-scaling techniques for elastic data stream processing.

In Data Engineering Workshops (ICDEW), 2014 IEEE 30th International Conference on, pages 296–302. IEEE.
[54] Huang, D., He, B., and Miao, C. (2014). A survey of resource management in multi-tier web applications. IEEE Commu-

nications Surveys & Tutorials, 16(3):1574–1590.
[55] Huang, J., Li, C., and Yu, J. (2012). Resource prediction based on double exponential smoothing in cloud computing. In

Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on, pages 2056–
2060. IEEE.

[56] Huang, G., Wang, S., Zhang, M., Li, Y., Qian, Z., Chen, Y., and Zhang, S. (2016). Auto scaling virtual machines
for web applications with queueing theory. In 2016 3rd International Conference on Systems and Informatics (ICSAI),
pages 433–438. IEEE.

[57] Iqbal, W., Dailey, M. N., Carrera, D., and Janecek, P. (2011). Adaptive resource provisioning for read intensive
multi-tier applications in the cloud. Future Generation Computer Systems, 27(6):871–879.

[58] Islam, S., Keung, J., Lee, K., and Liu, A. (2012). Empirical prediction models for adaptive resource provisioning in the
cloud. Future Generation Computer Systems, 28(1):155–162.

[59] Jamshidi, P., Pahl, C., and Mendonça, N. C. (2016). Managing uncertainty in autonomic cloud elasticity controllers.
IEEE Cloud Computing, 3(3):50–60.

[60] Jin, Y., Bouzid, M., Kostadinov, D., and Aghasaryan, A. (2018). Testing a q-learning approach for derivation of scaling
policies in cloud-based applications. In 2018 21st Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), pages 1–3. IEEE.

[61] JV, B. B. and Dharma, D. (2018). Has: Hybrid auto-scaler for resource scaling in cloud environment. Journal of Parallel
and Distributed Computing, 120:1–15.

[62] Kalyvianaki, E., Charalambous, T., and Hand, S. (2009). Self-adaptive and self-configured cpu resource provisioning
for virtualized servers using kalman filters. In Proceedings of the 6th international conference on Autonomic computing,
pages 117–126. ACM.

[63] Kaur, G., Bala, A., and Chana, I. (2019). An intelligent regressive ensemble approach for predicting resource usage in
cloud computing. Journal of Parallel and Distributed Computing, 123:1–12.

[64] Keilson, J. and Servi, L. (1988). A distributional form of little’s law. Operations Research Letters, 7(5):223–227.
[65] Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of the

imbedded markov chain. The Annals of Mathematical Statistics, pages 338–354.
[66] Khatua, S., Ghosh, A., and Mukherjee, N. (2010). Optimizing the utilization of virtual resources in cloud environment. In

2010 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems,
pages 82–87. IEEE.

[67] Kim, H., el Khamra, Y., Jha, S., and Parashar, M. (2009a). An autonomic approach to integrated hpc grid and cloud
usage. In e-Science, 2009. e-Science’09. Fifth IEEE International Conference on, pages 366–373. IEEE.

[68] Kim, H., Parashar, M., Foran, D. J., and Yang, L. (2009b). Investigating the use of autonomic cloudbursts for high-
throughput medical image registration. In 2009 10th IEEE/ACM International Conference on Grid Computing, pages
34–41. IEEE.

[69] Kim, I. K., Wang, W., Qi, Y., and Humphrey, M. (2018). Cloudinsight: Utilizing a council of experts to predict future
cloud application workloads. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 41–48.
IEEE.

[70] Koperek, P. and Funika, W. (2011). Dynamic business metrics-driven resource provisioning in cloud environments. In
International Conference on Parallel Processing and Applied Mathematics, pages 171–180. Springer.

[71] Kupferman, J., Silverman, J., Jara, P., and Browne, J. (2009). Scaling into the cloud. CS270-advanced operating
systems.

[72] Kumar, J. and Singh, A. K. (2018). Workload prediction in cloud using artificial neural network and adaptive differential
evolution. Future Generation Computer Systems, 81:41–52.

[73] Lama, P. and Zhou, X. (2009). Efficient server provisioning with end-to-end delay guarantee on multi-tier clusters. In
Quality of Service, 2009. IWQoS. 17th International Workshop on, pages 1–9. IEEE.

[74] Lama, P. and Zhou, X. (2013). Autonomic provisioning with self-adaptive neural fuzzy control for percentile-based delay
guarantee. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 8(2):9.

[75] Lango, J. (2014). Toward software-defined slas. Communications of the ACM, 57(1):54–60.
[76] Lim, H. C., Babu, S., and Chase, J. S. (2010). Automated control for elastic storage. In Proceedings of the 7th international

conference on Autonomic computing, pages 1–10. ACM.
[77] Lim, H. C., Babu, S., Chase, J. S., and Parekh, S. S. (2009). Automated control in cloud computing: challenges and

opportunities. In Proceedings of the 1st workshop on Automated control for datacenters and clouds, pages 13–18. ACM.
[78] Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., and Chen, J. (2017). An adaptive prediction approach based on workload

pattern discrimination in the cloud. Journal of Network and Computer Applications, 80:35–44.
[79] Liu, X., Yuan, S.-M., Luo, G.-H., Huang, H.-Y., and Bellavista, P. (2017). Cloud resource management with turnaround

time driven auto-scaling. IEEE Access, 5:9831–9841.
[80] Liu, B., Buyya, R., and Toosi, A. N. (2018a). A fuzzy-based auto-scaler for web applications in cloud computing environ-

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 429

ments. In International Conference on Service-Oriented Computing, pages 797–811. Springer.
[81] Liu, X., Dastjerdi, A. V., Calheiros, R. N., Qu, C., and Buyya, R. (2018b). A stepwise auto-profiling method for

performance optimization of streaming applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
12(4):24.

[82] Liu, X., Dastjerdi, A. V., Calheiros, R. N., Qu, C., and Buyya, R. (2018). A stepwise auto-profiling method for
performance optimization of streaming applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
12(4):24.

[83] Lombardi, F., Muti, A., Aniello, L., Baldoni, R., Bonomi, S., and Querzoni, L. (2019). Pascal: An architecture for
proactive auto-scaling of distributed services. Future Generation Computer Systems.

[84] Lorido-Botrán, T., Miguel-Alonso, J., and Lozano, J. A. (2012). Auto-scaling techniques for elastic applications in
cloud environments. Department of Computer Architecture and Technology, University of Basque Country, Tech. Rep.
EHU-KAT-IK-09-12.

[85] Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A. (2014). A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of Grid Computing, 12(4):559–592.

[86] Lorido-Botrcn, T., Miguel-Alonso, J., and Lozano, J. A. (2013). Comparison of auto-scaling techniques for cloud
environments.

[87] Mahallat, I. (2015). Astaw: Auto-scaling threshold-based approach for web application in cloud computing environment.
[88] Manvi, S. S. and Shyam, G. K. (2014). Resource management for infrastructure as a service (iaas) in cloud computing: A

survey. Journal of Network and Computer Applications, 41:424–440.
[89] Mao, M. and Humphrey, M. (2011). Auto-scaling to minimize cost and meet application deadlines in cloud workflows. In

High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference for, pages 1–12.
IEEE.

[90] Mao, M. and Humphrey, M. (2012). A performance study on the vm startup time in the cloud. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pages 423–430. IEEE.

[91] Maurer, M., Brandic, I., and Sakellariou, R. (2011a). Enacting slas in clouds using rules. In European Conference on
Parallel Processing, pages 455–466. Springer.

[92] Maurer, M., Breskovic, I., Emeakaroha, V. C., and Brandic, I. (2011b). Revealing the mape loop for the autonomic
management of cloud infrastructures. In Computers and Communications (ISCC), 2011 IEEE Symposium on, pages
147–152. IEEE.

[93] Messias, V. R., Estrella, J. C., Ehlers, R., Santana, M. J., Santana, R. C., and Reiff-Marganiec, S. (2016).
Combining time series prediction models using genetic algorithm to autoscaling web applications hosted in the cloud
infrastructure. Neural Computing and Applications, 27(8):2383–2406.

[94] Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., and Yuan, L. (2010). Online self-reconfiguration with performance guarantee
for energy-efficient large-scale cloud computing data centers. In Services Computing (SCC), 2010 IEEE International
Conference on, pages 514–521. IEEE.

[95] Moghaddam, S. K., Buyya, R., and Ramamohanarao, K. (2019). Acas: An anomaly-based cause aware auto-scaling
framework for clouds. Journal of Parallel and Distributed Computing, 126:107–120.

[96] Nayyar, A. (2011). Private virtual infrastructure (pvi) model for cloud computing. International Journal of Software
Engineering Research and Practices, 1(1):10–14.

[97] Nayyar, A., Puri, V., et al. (2017). Comprehensive analysis & performance comparison of clustering algorithms for big
data. Review of Computer Engineering Research, 4(2):54–80.

[98] Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J. (2013). Agile: Elastic distributed resource scaling for
infrastructure-as-a-service. In ICAC, volume 13, pages 69–82.

[99] Nikravesh, A. Y., Ajila, S. A., and Lung, C.-H. (2014). Cloud resource auto-scaling system based on hidden markov
model (hmm). In Semantic Computing (ICSC), 2014 IEEE International Conference on, pages 124–127. IEEE.

[100] Nikravesh, A. Y., Ajila, S. A., and Lung, C.-H. (2017). An autonomic prediction suite for cloud resource provisioning.
Journal of Cloud Computing, 6(1):3.

[101] Nouri, S. M. R., Li, H., Venugopal, S., Guo, W., He, M., and Tian, W. (2019). Autonomic decentralized elasticity
based on a reinforcement learning controller for cloud applications. Future Generation Computer Systems, 94:765–780.

[102] Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., and Merchant, A. (2009). Automated
control of multiple virtualized resources. In Proceedings of the 4th ACM European conference on Computer systems, pages
13–26. ACM.

[103] Park, S.-M. and Humphrey, M. (2009). Self-tuning virtual machines for predictable escience. In Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 356–363. IEEE Computer Society.

[104] Patikirikorala, T. and Colman, A. (2010). Feedback controllers in the cloud. In Proceedings of APSEC.
[105] Persico, V., Grimaldi, D., Pescape, A., Salvi, A., and Santini, S. (2017). A fuzzy approach based on heterogeneous

metrics for scaling out public clouds. IEEE Transactions on Parallel and Distributed Systems, 28(8):2117–2130.
[106] Prodan, R. and Nae, V. (2009). Prediction-based real-time resource provisioning for massively multiplayer online games.

Future Generation Computer Systems, 25(7):785–793.
[107] Qu, C., Calheiros, R. N., and Buyya, R. (2016a). Auto-scaling web applications in clouds: a taxonomy and survey. arXiv

preprint arXiv:1609.09224.
[108] Qu, C., Calheiros, R. N., and Buyya, R. (2016b). A reliable and cost-efficient auto-scaling system for web applications

using heterogeneous spot instances. Journal of Network and Computer Applications, 65:167–180.
[109] Qu, C., Calheiros, R. N., and Buyya, R. (2018). Auto-scaling web applications in clouds: A taxonomy and survey. ACM

Computing Surveys (CSUR), 51(4):73.

430 Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand Nayyar

[110] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of
the IEEE, 77(2):257–286.

[111] Rao, J., Bu, X., Xu, C.-Z., and Wang, K. (2011). A distributed self-learning approach for elastic provisioning of virtu-
alized cloud resources. In 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 45–54. IEEE.

[112] Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. (2009). Vconf: a reinforcement learning approach to virtual machines
auto-configuration. In Proceedings of the 6th international conference on Autonomic computing, pages 137–146. ACM.

[113] RightScale (2019). RightScale Universal Cloud Management. http://www.rightscale.com/. [Online; accessed 30-March-
2019].

[114] Roy, N., Dubey, A., and Gokhale, A. (2011). Efficient autoscaling in the cloud using predictive models for workload
forecasting. In Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 500–507. IEEE.

[115] Runsewe, O. and Samaan, N. (2018). Cloud resource scaling for time-bounded and unbounded big data streaming appli-
cations. IEEE Transactions on Cloud Computing.

[116] Salah, K., Elbadawi, K., and Boutaba, R. (2016). An analytical model for estimating cloud resources of elastic services.
Journal of Network and Systems Management, 24(2):285–308.

[117] Sedaghat, M., Hernandez-Rodriguez, F., and Elmroth, E. (2013). A virtual machine re-packing approach to the
horizontal vs. vertical elasticity trade-off for cloud autoscaling. In Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference, page 6. ACM.

[118] Shah, N. B., Shah, N. D., Bhatia, J., and Trivedi, H. (2019). Profiling-based effective resource utilization in cloud envi-
ronment using divide and conquer method. In Information and Communication Technology for Competitive Strategies,
pages 495–508. Springer.

[119] Sharma, U., Shenoy, P., Sahu, S., and Shaikh, A. (2011). A cost-aware elasticity provisioning system for the cloud. In
Distributed Computing Systems (ICDCS), 2011 31st International Conference on, pages 559–570. IEEE.

[120] Shah, N. B., Shah, N. D., Bhatia, J., and Trivedi, H. (2019). Profiling-based effective resource utilization in cloud envi-
ronment using divide and conquer method. In Information and Communication Technology for Competitive Strategies,
pages 495–508. Springer.

[121] Shekhar, S., Barve, Y., and Gokhale, A. (2017). Understanding performance interference benchmarking and application
profiling techniques for cloud-hosted latency-sensitive applications. In Proceedings of the10th International Conference
on Utility and Cloud Computing, pages 187–188. ACM.

[122] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J. (2011). Cloudscale: elastic resource scaling for multi-tenant cloud systems.
In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 5. ACM.

[123] Simmons, B., Ghanbari, H., Litoiu, M., and Iszlai, G. (2011). Managing a saas application in the cloud using paas policy
sets and a strategy-tree. In Proceedings of the 7th International Conference on Network and Services Management, pages
343–347. International Federation for Information Processing.

[124] Singh, S. P., Nayyar, A., Kumar, R., and Sharma, A. (2018). Fog computing: from architecture to edge computing and
big data processing. The Journal of Supercomputing, pages 1–36.

[125] Singh, P., Gupta, P., and Jyoti, K. (2018). Tasm: technocrat arima and svr model for workload prediction of web
applications in cloud. Cluster Computing, pages 1–15.

[126] Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning, volume 135. MIT Press Cambridge.
[127] Tesauro, G., Jong, N. K., Das, R., and Bennani, M. N. (2006). A hybrid reinforcement learning approach to autonomic

resource allocation. In 2006 IEEE International Conference on Autonomic Computing, pages 65–73. IEEE.
[128] Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., and Bohnert, T. M. (2017). Self-managing cloud-native

applications: Design, implementation, and experience. Future Generation Computer Systems, 72:165–179.
[129] Toosi, A. N., Son, J., Chi, Q., and Buyya, R. (2019). Elasticsfc: Auto-scaling techniques for elastic service function

chaining in network functions virtualization-based clouds. Journal of Systems and Software.
[130] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., and Wood, T. (2008). Agile dynamic provisioning of multi-tier

internet applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 3(1):1.
[131] Varia, J. and Mathew, S. (2014). Overview of amazon web services. Amazon Web Services.
[132] Vasić, N., Novaković, D., Miučin, S., Kostić, D., and Bianchini, R. (2012). Dejavu: accelerating resource allocation in

virtualized environments. In ACM SIGARCH computer architecture news, volume 40, pages 423–436. ACM.
[133] Vilaplana, J., Solsona, F., Teixidó, I., Mateo, J., Abella, F., and Rius, J. (2014). A queuing theory model for cloud

computing. The Journal of Supercomputing, 69(1):492–507.
[134] Villela, D., Pradhan, P., and Rubenstein, D. (2007). Provisioning servers in the application tier for e-commerce systems.

ACM Transactions on Internet Technology (TOIT), 7(1):7.
[135] Vondra, T. and Šedivỳ, J. (2017). Cloud autoscaling simulation based on queueing network model. Simulation Modelling

Practice and Theory, 70:83–100.
[136] Wang, L., Xu, J., Zhao, M., Tu, Y., and Fortes, J. A. (2011). Fuzzy modeling based resource management for virtualized

database systems. In 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 32–42. IEEE.

[137] Wei, Y., Kudenko, D., Liu, S., Pan, L., Wu, L., and Meng, X. (2019). A reinforcement learning based auto-scaling
approach for saas providers in dynamic cloud environment. Mathematical Problems in Engineering, 2019.

[138] Xing, J., Zhou, H., Shen, J., Zhu, K., Wangt, Y., Wu, C., and Ruan, W. (2018). Asidps: Auto-scaling intrusion
detection and prevention system for cloud. In 2018 25th International Conference on Telecommunications (ICT), pages
207–212. IEEE.

[139] Xu, C.-Z., Rao, J., and Bu, X. (2012). Url: A unified reinforcement learning approach for autonomic cloud management.

Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions 431

Journal of Parallel and Distributed Computing, 72(2):95–105.
[140] Xu, J., Zhao, M., Fortes, J., Carpenter, R., and Yousif, M. (2007). On the use of fuzzy modeling in virtualized data

center management. In Fourth International Conference on Autonomic Computing (ICAC’07), pages 25–25. IEEE.
[141] Zhang, Q., Cherkasova, L., and Smirni, E. (2007). A regression-based analytic model for dynamic resource provisioning

of multi-tier applications. In Fourth International Conference on Autonomic Computing (ICAC’07), pages 27–27. IEEE.
[142] Zhu, Q. and Agrawal, G. (2010). Resource provisioning with budget constraints for adaptive applications in cloud environ-

ments. In Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pages
304–307. ACM.

Edited by: Pijush Kanti Dutta Pramanik
Received: Mar 17, 2019
Accepted: Apr 4, 2019

