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Abstract 
 
Blind source separation is a signal processing method based on independent component analysis, its aim is to 
separate the source signals from a set of observations (output of sensors) by assuming the source signals in-
dependently. This paper reviews the general concept of BSS firstly; especially the theory for convolutive 
mixtures, the model of convolutive mixture and two deconvolution structures, then adopts a BSS algorithm 
for convolutive mixtures based on residual cross-talking error threshold control criteria, the simulation test-
ing points out good performance for simulated mixtures. 
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1. Introduction 
 
Blind source separation (BSS) is a typical tool to recover 
source signals from several observations usually pro-
vided by a set of sensors. Due to the lack of prior 
knowledge of the source signals, generally, this method 
considers an assumption of independence between the 
sources. It has been successfully used in many fields, 
such as biomedicine, telecommunications, speech proc-
essing, underwater acoustics [1–3]. But BSS methods 
have seldom been used for monitoring or diagnosing the 
mechanical devices, in many cases the signals obtained 
by sensors consist of some useless signals, such as envi-
ronment noise, other mechanical devices [4–6]. In these 
condition, using BSS as a preliminary step will reduce, 
even remove the useless signals, which can significantly 
improve the efficiency and accuracy of the condition 
monitor and fault diagnosis. 

At present, most of BSS works are related to the sepa-
ration of linear mixtures of sources. However, the vibra-
tion of mechanical devices is complex, and so is the 
propagation medium. The mechanical vibration signals 
are often convolutive mixtures [7].  

Consequently, this paper mainly describes BSS for 
convolutive mixtures and its application to mechanical 
vibrations. 

2. BSS 
 
2.1. BSS Introduction 
 
Blind source separation is a signal processing technique 
by which unobserved signals, also called sources, are 
recovered from the observation of several mixtures. The 
term “Blind” includes two facts: both the source signals 
and the mixing structure are unknown. In the present 
research work, most are assuming the mutual independ-
ence of the sources. This is the fundamental basis of 
BSS.  

For condition monitoring and fault diagnosis, the ob-
served signals are usually the output of a set of sensors 
and linear combinations of the sources. Just as Figure 1 
shows. 

 
Figure 1. Observed signals and sources. 
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In Figure 1, the S1, S2, S3,…Sq denote the sources and the 
x1, x2, x3,…xp denote the observations (output of sensors). 
When condition monitoring and fault diagnosing of me-
chanical devices, the P observations (output of P sensors) 
are the linear combinations of the q sources. In this way, 
the i-th observation (output of the i-th sensors) is: 

1

( ) ( )
q

i ij j i
j

x a s t n t


         (1) 1, 2,3, ,i   p

where aij is the linear combination coefficients, ni(t) 
denotes the environment noise received by the i-th sen-
sor. 

The noise may be considered as a source signal, in this 
way, the mathematical model of BSS could be shown as 

( ) ( )X t AS t                   (2) 

where
1 2( ) [ ( ), ( ), , ( )]T

pX t x t x t x t 

1 2( ) [ ( ), ( ), , ( )]T
qS t s t s t s t 

denotes the p observed 

signals, which are the available data. A is the unknown  
p×q mixing matrix, which denotes the unknown propa-
gation.  denotes the q source sig-

nals, which include the noises. Here, generally, p ≥ q and 
denotes the transpose operator. []T

Here, assuming the mixing matrix A is invertible and 
the sources Si(t) (i=1,2,…q) are statistically independent. 
The assumption of independence between the sources is 
physically plausible because they have different origins 
[8]. 

The kernel of BSS is to find a q*p separation matrix B 
and the recovered signals are 

( ) ( ) ( ) ( )S t BX t BAS t CS t             (3) 

If matrix B could make the matrix C be an identity 
matrix, it could be concluded that the source signals have 
been separated perfectly.  

The general model of BSS could be shown as Figure 2. 
 

2.2. Model of Convolutive Mixture [9] 
 
For condition monitoring and fault diagnosis, vibration 
analysis involves a convolutive mixture because of the 
propagation medium (structure of the system). The envi-
ronment noise may be considered as a source signal. The 
general model of a convolutive mixture can be repre-
sented as in the Figure 3 for two source signals and two 
observation signals (p=q=2) to be simplified.  

Moreover, if the sensors are located near the source 
signals, respectively, we could consider that the filters  

 

 
 

Figure 2. BSS general model. 

 
 
Figure 3. Two source signals and two observation signals 
model. 
 
A11 and A22 are equal to 1. In fact, it is significantly for 
condition monitoring and fault diagnosis that the sensors 
are as close as possible to the origins. In this way, we can 
get a simplified model: 

1 1 12 2

2 21 1 2

( ) ( ) * ( )

( ) * ( ) ( )
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x n A s n s n

 
 

          (4) 

Using the Z transform 

1 1 12 2

2 21 1 2
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         (5) 

and the matrix formulation 

( ) ( ) ( )X z A z S z               (6) 

where 

12
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1
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1
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              (7) 

assuming that the filters of A(z) can be modeled by 
Lth-order causal transverse filters, so that the matrix 

are given by ( )A z
1

0

( ) ( )
L
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              (8) 

Formulation (5) may be expanded in the time domain 
1
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     (9) 

 

2.3. Separation Principle and Criteria 
 
Theoretically, if the mixing matrix A is invertible, and 
the separation matrix B is the inverse matrix of the mix-
ing matrix A, it could be reconstituted the source signals 
perfectly. But, in fact, the mixing matrix A is unknown; 
we could not obtain the separation matrix B by A di-
rectly. 

In the case of the Figure 3, Herault [2] proposed a solution 
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Figure 4. Recursive structure for the BSS. 
 

 
 

Figure 5. Direct structure for the BSS. 
 

based on a recursive architecture, which can be general-
ized in the case of convolutive mixtures modeled by FIR 
filters as Figure 4: Recursive structure. 

Also, it can be modeled by Figure 5: Direct structure. 
In the Z-domain, the relationship between recovered 

signals and observation signals is 
~

1 112

~
21 212 21

2

( )1 ( )( ) 1

( ) ( )11 ( ) ( )
( )

X zB zS z

B z X zB z B z
S z

                

   (10) 

Therefore, the relationship between source signals and 
recovered signals is 

1 12 21 12 12 1

21 21 21 12 212 21
2

1 ( ) ( ) ( ) ( ) ( )( ) 1

( ) ( ) 1 ( ) ( ) ( )1 ( ) ( )
( )

B z A z A z B z S zS z

A z B z B z A z S zB z B z
S z

 
             








(11) 

For the Formulation (10),  
If 12 12( ) ( )B z A z  and 21 21( ) ( )B z A z ,  

Then 

( ) ( ), {1,2}i iS z S z i            (12) 

If
12

21

1
( )

( )
B z

A z
  and 

21
12

1
( )

( )
B z

A z
 ,  

then  

( ) ( ) ( ), {1,2}i ij jS z A z S z i j         (13) 

In the case of the Formulation (13), the filters Bij(z) are 
infinite impulse response, so only the case of the Formu-
lation (12) is valid. In practice, the mixing filters Aij(z) 
are unknown, therefore, we must estimate them by a 
method, which could be a stochastic iteration by maxi-
mizing the independence. 

( 1, ) ( , ) [ ( ( )) ( ( ))], {1,2}, [0, ]ij ij n i jb n k b n k u E f s n g s n k i j k L       (14) 

where bij (n,k) is the k-th coefficient of filter Bij at the 
n-th iteration, un is a positive adaptation gain, ( )f  and 

( )g   are non-linear functions, such as 3( )f x x  and 

( )g x x . 

 
2.4. Performance Criteria 
 
The separation performances two aspects: 

Residual cross-talking error (RCTE), defined as 

2

2

( )
( , ) 10 lg

( )

i i

i i
i

E s s
RCTE s s

E s

       
 
  



 
   (15) 

This could verify the quality of recovered signals, gen-
erally, when its value is less than –20db, we can consider 
that the recovered signals are correct. 

For the computing speed, this paper adopts the rule 
based on RCTE threshold control criteria [10] 

 
Figure 6. Source signals. 

 

Figure 7. Observed signals. 
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Figure 8. Recovered signals. 

 

Figure 9. RCTE between the recovered signals and the 
source signals. 

 

Figure 10. Frequency spectra of source signals, observed 
signals and recovered signals. 

1 2RCTE RCTE                (16) 

where α is the goal constant, its value is decided by the 
separation efficiency and separation purpose.  
 
3. Simulation and Results 
 
As previously specified, the aim of BSS is to recover 
unknown sources with the observations. The purpose of 
this part is to illustrate the capability of BSS algorithms 
to separate signals from rotating machine vibration. The 
rotating machine vibration contains some character, in-
cluding transient impact, ambient noise [11]. From this 
point of view, two simulation signals are generated as 
below. 

1s =(sin(12 t)+0.4*sin(2 t))*(sin(100 t+0.5*sin(0.02 t)))  

2s ( )randn t


  

The mixture coefficients are acquired using a transfer 
matrix defined in Equation (6), the mixing filter is  

12A =[0.8459  0.3561 -0.4625  0.0251  0.2413  -0.0866]

21A =[-0.0599   0.0326    0.4426   -0.1977   -0.0748    0.7442]

  
 

The value of un is 0.0016. 
The value of goal constant α is –42db. 

In this way, we can obtain observed signals as Figure 7, 
x1 and x2 are the mixture signals. The recovered signals 
by the BSS algorithm are as Figure 8 shows. The algo-
rithm produces satisfactory separation results in Figure 9, 
for recovered signals  and , the RCTE can reach 

–18.58db and –23.59db respectively. It also shows satis-
factory results in Figure 10, the frequency spectrum of 
recovered signals are almost the same as the sources. It 
demonstrates that the transient can be extract from the 
observed signals.  

1s 2s

 
4. Conclusions 
 
In this paper, we reviewed the basic theory of BSS for 
convolutive mixtures, and then analyzed its application 
to machine vibration, presented a BSS algorithm for 
convolutive mixtures based on RCTE threshold control 
criteria. The results of the simulation are favorable. 
However, for real signals, improvements are necessary 
for the mixture model and the algorithm. Presently, we 
are trying to seek some other control criteria for BSS, do 
research on its application to gearbox condition moni-
toring and fault diagnosis. 
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