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Research on Change Detection Method of

High-Resolution Remote Sensing Images Based on

Subpixel Convolution
Xin Luo , Xiaoxi Li , Yuxuan Wu , Weimin Hou , Meng Wang, Yuwei Jin, and Wenbo Xu

Abstract—Remote sensing image change detection method plays
a great role in land cover research, disaster assessment, medical
diagnosis, video surveillance, and other fields, so it has attracted
wide attention. Based on a small sample dataset from SZTAKI Air-
Change Benchmark Set, in order to solve the problem that the deep
learning network needs a large number of samples, this work first
uses nongenerative sample augmentation method and generative
sample augmentation method based on deep convolutional gener-
ative adversarial networks, and then, constructs a remote sensing
image change detection model based on an improved DeepLabv3+
network. This model can realize end-to-end training and prediction
of remote sensing image change detection with subpixel convolu-
tion. Finally, Landsat 8, Google Earth, and Onera satellite change
detection datasets are used to verify the generalization performance
of this network. The experimental results show that the improved
network accuracy is 95.1% and the generalization performance is
acceptable.

Index Terms—Change detection, DeepLabv3+, deep
convolutional generative adversarial networks (DCGAN), deep
learning, subpixel convolution.

I. INTRODUCTION

R
EMOTE sensing image change detection is a process of

extracting natural or artificial change areas from two or

more images in the same scene at different times through a

series of methods. It has important applications in land use

or cover, disaster assessment, medical diagnosis, video mon-

itoring, and other fields. Especially when a natural disaster

Manuscript received August 31, 2020; revised October 18, 2020, November 6,
2020, and December 1, 2020; accepted December 7, 2020. Date of publication
December 11, 2020; date of current version January 8, 2021. This work was
supported in part by the Science and Technology Program of Sichuan under
Grant 2017GZ0327, in part by the Science and Technology Program of Hebei
under Grant 20355901D, in part by the Science and Technology Program
of Hebei under Grant 19255901D, in part by the National Defense Science
and Technology Key Laboratory of Remote Sensing Information and Image
Analysis Technology of China under Grant 6142A010301, and in part by the
Chinese Air-Force Equipment Pre-Research Project under Grant 10305∗∗∗02
(Corresponding authors: Xin Luo; Weimin Hou.)

Xin Luo, Xiaoxi Li, Yuxuan Wu, Meng Wang, Yuwei Jin, and Wenbo Xu are
with the School of Resources and Environment, University of Electronic Science
and Technology of China, Chengdu 611731, China (e-mail: luoxin@uestc.
edu.cn; wulala@std.uestc.edu.cn; wuyuxuan@std.uestc.edu.cn;
wangmengkkk@std.uestc.edu.cn; yuwei_jin@163.com; xuwenbo@uestc.edu.
cn).

Weimin Hou is with the School of Information Science and Engineering,
Hebei University of Science and Technology, Shijiazhuang 050018, China (e-
mail: hwm@hebust.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2020.3044060

occurs, the technology of change detection can quickly and

effectively identify the disaster area. The use of remote sensing

image change detection technology after some natural disasters,

such as volcanoes, earthquakes, tsunamis, and debris flows, can

effectively assess disasters, rationally allocate disaster relief

personnel, and quickly and effectively reduce losses caused

by natural disasters. When applied to urban buildings, it can

timely monitor the demolition, reconstruction, and expansion of

buildings, and reduce safety risks and eliminate the phenomenon

of illegal occupation of land [1]. Moreover, remote sensing

change detection technology can also monitor the growth of

plants, so as to reasonably allocate forestry resources. When

applied to crops, it is also helpful to adjust the planting plan of

crops to increase yields [2].

In recent years, satellite remote sensing technology has made

a continuous progress. A lot of information contained in remote

sensing images, which can clearly reflect the detailed infor-

mation and spatial structure characteristics of objects, provides

good conditions for processing, interpretation, and analysis. In

other words, satellite remote sensing technology has stepped

into the submeter-level era, and the fine change detection of

ground objects has become a problem that should be studied

in depth. However, more detailed information means not only

more processing but also a smaller gap between changed and

unchanged areas. The difficulty of obtaining a graph of change

detection results increases. The reason is that the increase of

spatial resolution affects the spectral resolution of images, which

makes the variance among targets of the same class increase, and

it is difficult to identify the changed region. Besides, obtained

data may be interfered by light, humans, and sensors. The

traditional change detection method needs a fine preprocessing,

or it will lead to large errors [3]–[7]. Even so, the final change

detection map may still contain a large number of pepper and

salt noiselike false alarm points, which seriously limits its ap-

plication in practice [3], [8]–[11]. Therefore, it is an urgent need

to update the existing remote sensing image change detection

methods.

The most widely used method in the field of remote sensing

image change detection is multitemporal classification. This

method first obtains a classification result map, and then, com-

pares the classification result map in order to obtain change

detection results. Traditional classification methods include

minimum distance classifier (MDC) [12], maximum likelihood

classification (MLC) [13], support vector machine (SVM) [14],
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artificial neural network (ANN) [15], decision tree (DT) [16],

etc. These methods can only extract the shallow features of im-

ages. The extraction performance of deep and abstract features

is not very ideal, and the adaptability to complex samples is

very poor, resulting in inaccurate estimation of classifier param-

eters, inferior classification results, and low accuracy of change

detection results after spending a lot of time and resources.

With strong learning and feature extraction capacity, deep

learning can exhibit excellent performance even during the

processing of satellite data [17]–[20]. In 2015, Ronneberger

et al. [21] proposed U-Net network, which greatly improved

the performance of semantic segmentation. During the pe-

riod of 2015–2018, from Deeplabv1 to DeepLabv3+ model

[22]–[25], the segmentation efficiency and accuracy were effec-

tively improved by adding inception module, ResNet structure,

and feature pyramids. Due to the outstanding performance of

deep neural network, scholars have applied it to remote sensing

image change detection, and have developed many theories and

methods. The change detection methods based on results can be

divide into two categories: 1) binary change map and 2) multiple

change map called postclassification or direct classification (ob-

tained by comparison classes) [26], [27]. In 2015, Zhong et al.

[28] proposed a change detection algorithm based on the pulse

coupled neural network (PCNN) and normalized moment of

inertia (NMI). In 2016, Gong et al. [18] combined deep learning

with remote sensing image change detection for the first time,

and proposed a new SAR image change detection method. In

2017, Wu proposed an unsupervised change detection method

based on stable feature acceleration algorithm (SURF) and SVM

[19]. These methods basically use the neural network to classify

the images before and after the change, and then, use difference

methods to generate change detection maps. In the experiments,

the images before and after the change are overlapped to train

neural networks. The change detection problem is transformed

into a dichotomous problem so that the change region can be

obtained directly. In 2019, Mou et al. [29] proposed a novel

recurrent convolutional neural network (ReCNN) architecture,

which is trained to learn a joint spectral–spatial–temporal feature

representation in a unified framework for change detection in

multispectral images. Liu et al. [30] proposed the use of unsuper-

vised band expansion techniques to generate artificial spectral

and spatial bands to enhance the change representation and dis-

crimination for change detection from multispectral images. As

to CD in multitemporal VHR images, Saha et al. [31] proposed

a novel unsupervised context-sensitive framework, called deep

change vector analysis (DCVA), which exploits convolutional

neural network (CNN) features. Su et al. [32] presented a

land cover classification training pipeline with DeepLabv3+
to realize a change detection method that can identify land

cover changes from aerial imagery. Compared with traditional

methods, change detection methods based on deep learning have

obvious advantages. First, its classification precision is higher,

and the rate of omission and error in the obtained detection

results graph is lower. Second, these kinds of methods reduce

tedious steps in traditional change detection processes and make

detection speed faster.

Data augmentation is often used in machine learning, espe-

cially when it comes to deep learning methods. This is owing

to the fact that deep learning requires a certain amount of

training and testing samples. Large-scale datasets with labels

are essential for CNN-based models to achieve high recognition

rates or good classification results. Training CNN models using

smaller scale datasets usually results in overfitting. In particular,

when using deep learning methods for change detection, a large

number of images of the same region in different phases are

required. The acquisition of datasets can be labor intensive,

severely limiting the application of this technique in the field

of change detection.

The key to solving this problem is to increase the amount of

sample data, and the difficulty of obtaining change detection

samples has led to a variety of data augmentation methods.

The existing data augmentation methods are divided into two

categories—nongenerative data augmentation and generative

data augmentation.

Commonly used nongenerative data augmentation methods

include the following—geometric transformations (such as rota-

tion, translation, and scaling), Gaussian noise addition, lighting

simulation, and tone stretching. Nongenerative methods can

only rely on the real image to bring simple changes to the image,

and the representation of image contour and detail changes is far

from satisfactory. Generative data augmentation methods are a

technique for generating images based on known information.

In recent years, with the development of deep learning, more

generative data augmentation methods have emerged. In 2014,

Goodfellow et al. [33] proposed a generative model based on

deep learning, called generative adversarial network (GAN).

Later, in 2015, Radford et al. proposed a deep CNN (DCNN)

with more layers. Deep convolution GAN (DCGAN) solves the

problems of training instability, pattern collapse, and internal

covariate transformation that exist in GAN [34]. Krizhevsky

et al. [35] trained a large DCNN that can classify the 1.3 million

high-resolution images of LSVRC-2010 ImageNet training set

into 1000 different categories.

In this article, we use both nongenerative and DCGAN-

generative methods for sample augmentation to handle the

problem that deep learning networks require a large number

of samples and that change detection samples are difficult to ob-

tain. After that, a deep convolutional network-based framework

for remote sensing image change detection was constructed

using the DeepLabv3+ network, which is superior in current

classification algorithms. At the same time, the subpixel con-

volution [36] is used to replace the inverse convolution layer

in DeepLabv3+ to enhance the up-sampling effect so as to

accomplish change detection (no other researchers have con-

ducted research). To some extent, our work resolved the problem

of insufficient samples when deep learning methods are used

for change detection, and improved the accuracy of change

detection.

II. DATA AND RESEARCH METHODS

First, we carried out the sample augmentation experiment.

DCGAN is used for generative data augmentation. The gen-

erated data are the sample data, and the change areas are

manually marked. Then, we study a change detection algo-

rithm based on deep convolution network. In this article, we
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Fig. 1. Proposed change detection scheme for high-resolution remote sensing
images.

exploit DeepLabv3+, which is more outstanding than classi-

fication algorithms, and improve the algorithm according to

the characteristics of the generated sample dataset. Subpixel

convolution is used to replace the deconvolution layer in the

original DeepLabv3+ network to realize end-to-end training,

and prediction of change detection. Fig. 1 is our proposed change

detection scheme for high-resolution remote sensing images.

Because deep learning needs a large number of samples, we

must deal with the lack of sufficient sample data before studying

the change detection network. On the other hand, the final

detection results may be severely affected by the differences

in the images from different sensors. Therefore, our research

work still uses the images from the same sensor to build the

dataset and perform sample augmentation in order to meet the

requirement of the deep learning change detection network for

enough samples.

A. Sample Augmentation

In fact, change detection usually needs the images of the same

area in different time phases. Acquiring this kind of data often

consumes a lot of time and resources. If the time interval between

the images of two phrases is too small, it is very difficult to

detect changing areas, and the possibility of change is vague.

Due to factors such as sensors, illumination, angle, etc., there

are many differences between different datasets. Meanwhile,

deep learning requires a large amount of sample data during the

training process, and the preparation of the dataset often takes

a long time [37]. Therefore, very small training samples for

change detection have become an urgent problem to be solved.

In summary, this work combines generative data augmentation

with a deep neural network-based change detection method.

The generative data augmentation method is applied to generate

more change sample data, which can reduce the consumption of

temporal and material resources to a certain extent.

The dataset used in this study is the SZTAKI AirChange

Benchmark Set produced by DEVA Lab [38], [39]. This dataset

contains 13 pairs of 3-band images, 952 × 640 in size,

1.5 m/pixel in resolution, and contains binary change masks.

When marking the change area, the following differences were

considered as relevant changes:

1) new built-up regions;

2) building operations;

3) planting of large group of trees;

4) fresh plough-land; and

Fig. 2. Examples of partial training samples from SZTAKI AirChange Bench-
mark Set.

5) groundwork before building over.

The ground truth does not contain change classification, only

binary change–no change decision for each pixel. In the mask

maps, the white area is the changed part and the black area is

the unchanged part. Fig. 2 shows the pictures of some samples

of this dataset.

B. Sample Augmentation Method

In reality, a large amount of sample data is often needed in the

training process of deep neural network, otherwise it is easy to

bring about network overfitting. Therefore, this article uses both

the nongenerated data augmentation method and the generated

data augmentation method to enlarge the quantity of change

samples.

1) Nongenerative Data Augmentation Method: First, a vari-

ety of nongenerative data augmentation methods are used to ex-

pand the data scale. Each group of original images was randomly

converted into different forms by means of inversion, rotation,

sharpness adjustment, and Gaussian noise addition [40]. In the

process of data augmentation, the images of time phase 1 and

33wq2 are processed simultaneously, and only one of them is

shown here in Fig. 3.

The sample augmentation conducted by the nongenerative

method can increase the volume of training data for deep learn-

ing networks and relieve the risk of model underfitting.

2) Generative Data Augmentation Method: In this study, we

also adopt the method of generative augmentation based on

DCGAN [34]. The basic structure of GAN network is composed

of a generative model G and a discriminative model D. The

input of discriminator D is the output of generator G, and it is

designed to judge the probability that the samples generated by

the generator G are true or false. So, the output discriminator

D is binary. If the output is 0, the input image is false; if the

output is 1, the input image is real. If the input to generator G

is a random noise, a false sample image is generated from this

noise in order to “deceive” the discriminator D.

The network structure of generator G is a deconvolutionlike

neural network. Its output layer is a 100-dimensional random

vector with a uniform distribution. Four fractional strided con-

volutions are adopted to carry out convolution operation, sim-

ilar to replacing pooling layers with deconvolution, to learn
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Fig. 3. Example of nongenerative data augmentation. (a) Original picture. (b)
Random rotation. (c) Sharpness adjustment. (d) Left and right flip. (e) Up and
down flip. (f) Random Gaussian noise addition.

the model’s own spatial sampling. The network structure of

discriminator D is similar to a CNN, using convolutions with

steps instead of spatial pooling to perform spatial up-sampling.

Like a “two-player game,” generator G and discriminator D

learn from each other and fight against each other. With the

increase of network training times, the samples generated by

generator G become more and more realistic. After thousands

of iterations, the generator network converts a random noise

vector from a potential space to a real sample for a dataset, and

the discriminator network finds it difficult to identify whether

it is true. At this time, the output of discriminator D is 0.5.

Training GAN is a very intuitive process. Both generator G and

discriminator D networks are trained at the same time. As the

network training time increases, their performances will both

improve, and the samples generated by generator G are more and

more realistic. After thousands of iterations, if everything goes

well, the generator network can “perfectly” generate realistic

fake images. At that time, a “perfect” generator model G is built,

which can be used to generate sample images for deep learning.

The basic structure of DCGAN is shown in Fig. 4.

It is assumed that the distribution of training samples from real

pictures is pg and the input noise random variable of generator

G is pz(z). The purpose of the generator is to turn this series

of noises into an image whose distribution is within pg. But at

the beginning of training, the generator cannot directly generate

the images with a distribution falling into pg. Therefore, the

distribution of the images generated by the generator model is

assumed to be pz(z), and the fitting function between pz(z) and

pg is denoted as G(z; θg). The goal of training is to get each pz(z)

close to pg by learning θg, and for this sake, we need to introduce

Fig. 4. DCGAN structure [23].

discriminator D. Suppose D(x; θd) is the probability that the

output x comes from the training sample. The optimal solution

of G(z; θg) and D(x; θd) is obtained by the alternating training

of two networks. In this study, the images before and after the

change are regarded as real samples, and DCGAN is adopted to

generate new samples. The alternate training process of DCGAN

is essentially the maximum and minimum optimization problem.

It can be divided into two parts.

a) Training of generator network G: Fix discriminator

network D and optimize parameters of network G. Since D(G(z))

represents the probability that D network judges whether the

image generated by G is real, maximizing the objective function

D(G(z)) is equivalent to minimizing 1−D(G(z)), namely, min-

imizing the objective function V(D,G), as shown in (1). After

“judging,” the discriminator transfers its gradient back to G to

update the parameters of the network G

min
G

V (D,G)=Ez−Pz(z) [log(1−D(G(z)))]. (1)

b) Training of discriminator network D: Fix generator

network G and optimize parameters of network D. To enable

the discriminator network D to discriminate samples more ef-

fectively, we need to maximize the discriminant result of a true

sample and minimize the discriminant result of a false sample,

which is equivalent to minimizing D(G(z)) and maximizing

1−D(G(z)). Hence, during training network D, the objective

function V(D, G) should be maximized, as shown in (2). The

parameters of network D are updated through the back prop-

agation of errors. Fig. 5 shows a part of the training samples

generated by DCGAN

max
D

V(D,G) =Ex−Pdata(x) [logD (x)]

+ Ez−Pz(z)[log(1−D(G(z)))]. (2)

C. DeepLabv3+ Network and Optimization

1) DeepLabv3+ Network Model: DeepLabv3+ model com-

bines deep CNN with dense conditional random fields (CRFs)

[25]. First, it uses atrous convolution, which has a unique ad-

vantage over ordinary convolutions in obtaining dense features

of the input images. Usually, ordinary convolution operations

will make the feature map smaller and smaller. When mapping

the convolution results to the corresponding position in the

original image, the feature response of the whole image is sparse.

However, atrous convolution will not reduce the resolution of the
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Fig. 5. Some samples generated by DCGAN.

Fig. 6. ASPP structure.

feature map and not change the amount of computation, so that

the generated feature map will appear denser when being located

on the original image [35], [41].

Furthermore, DeepLabv3+ still uses a multiple-scale strategy

to get a better classification effect, further improving atrous

spatial pyramid pooling (ASPP) and suggesting a more generic

framework [42], [43]. Compared to the previous DeepLab se-

ries, DeepLabv3+ adds batch normalization (BN) in its ASPP

structure. By this means, even if a larger learning rate is chosen,

the network can still maintain fast training and convergence

speed. In addition, BN can take the place of the local response

normalization layer. In order to cope with the effect of nor-

malized input data on the learning features of the next layer in

the network, two learnable parameters, scaling parameter γ and

offset parameter β, are added. These two parameters enable the

network to adaptively adjust the distribution of layer features,

thereby making the distribution of hidden output features of the

entire network more stable and enhancing the learning capability

of the model. The brief diagram of ASPP in DeepLabv3+ is

presented in Fig. 6. Here, the input is the output of ResNet, and

the output result is finally sent to the decoder module.

The last but not the least, DeepLabv3+ network utilizes an

encoder–decoder structrue [25]. In the encoder stage, the ResNet

network is first used to extract the original image features. Then,

the ASPP module is applieded to extract the input features of

Fig. 7. DeepLabv3+ structure [28].

Fig. 8. Examples of deconvolution operations. (a) Filling 0 in the surrounding
and gap. (b) Filling 0 at intervals.

images through filtering in multiple scales and multiple visible

fields of view and perform the pooling operation. Thus, the en-

coded multiscale context information is obtained. In the decoder

stage, the low-level features and the features processed by the

ASPP module are concatenated to perform convolution again.

Finally, up-sampling is executed to gradually restore spatial

information to capture the finer target boundaries of images.

The specific steps are as follows—the features extracted by the

encoder are first up-sampled by four times, which is called the

feature map F1. The feature map F′

2 of the same scale as F1

extracted from the encoder is convolved by 1 × 1, and the

number of channels is reduced to obtain the feature map F2.

Then, connect F1 and F2 to obtain F3. Perform common 3 × 3

convolution on F3 to adjust F3 slightly, and directly up-sample

by four times to get the segmentation result. Fig. 7 shows the

DeepLabv3+ structure.

2) SP-DeepLabv3+ Network Model: In the DeepLabv3+
network, the image needs to be up-sampled for the sake that

the details of images will be lost due to continuous convolution

and pooling, and the up-sampled method of DeepLabv3+ is

deconvolution. Deconvolution is also called transpose convolu-

tion. It can be seen from Fig. 8 that deconvolution is equivalent

to the up-sampling operation. While the size of its output image

has increased, it cannot restore the original image, since this

process is mainly implemented through filling 0 in the input

image. Generally, there are two filling patterns, filling 0 in the

surrounding and filling 0 at intervals, as illustrated in Fig. 8.

Although deconvolution can enlarge the size of the output

image, it cannot restore the information of the original image
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Fig. 9. Structure of subpixel convolutional layer.

Fig. 10. Diagram of SP-DeepLabv3+ network structure.

properly. Therefore, subpixel convolution is exploited in this

study to replace deconvolution [36]. It is generally believed

that the smallest unit of an image is “pixel.” Although at the

macrolevel, there is no gap between each pixel, at the microlevel,

there are still smaller units between pixels. Due to the limitations

of sensor technology and photosensitive elements, these smaller

units cannot be revealed directly. They are called “subpixel.” The

structure of the subpixel convolutional layer is shown in Fig. 9.

This is a two-fold up-sampling scheme based on subpixel convo-

lution. Set k as the magnification of up-sampling, and the input

image of a single channel is convolved to obtain feature maps of

the same size, but the number of feature maps changes to k2. If the

input image is of multichannel, assuming the number of channels

is c, the number of channels after convolution becomes k2c. The

pixels are then rearranged, with each pixel having k2 channels,

into k × k image blocks. Finally, by connecting all the k × k

image blocks of each pixel together, a higher resolution image as

the output is constructed. In the DeepLabv3+ network, constant

convolution and pooling operations lose some of the detailed

information about the image. Although deconvolution can re-

cover some useful information, compared to deconvolution with

filling 0 for up-sampling, subpixel convolution is equivalent to

expanding a pixel by a factor of k2, since each extension point is

associated with that pixel, which can maximize the image details

and avoid the loss of critical information. Therefore, our research

uses a subpixel convolutional layer instead of deconvolution

layer in the DeepLabv3+ network, i.e., the final upsampling

method is modified. Subpixel convolution is used to replace the

final up-sampling layer of the network, which can introduce

more nonlinear transformations and ensure the continuity of the

enlarged image, thus offering better segmentation performance.

Moreover, the operation of pixel rearrangement is simpler, which

renders the computational complexity reduced.

The overall structure of our improved DeepLabv3+ network

is demonstrated in Fig. 10, which is represented below by SP-

DeepLabv3+ (subpixel DeepLabv3+).

Fig. 11. Three examples of the experimental samples with manually marked
areas. (a) Area 1. (b) Area 2. (c) Area 3.

Fig. 12. Training and test result curves of the original DeepLabv3+ network.
(a) Accuracy curves of network training. (b) Loss curves of network training.

III. ANALYSIS OF EXPERIMENTAL RESULTS

A. Remote Sensing Image Change Detection Based on the

DeepLabv3+ Network Before and After Improvement

This study uses the TensorFlow open source framework. Op-

erating system is Win10, the computer is configured with an Intel

Core i9-9900K CPU, an RTX 2080Ti graphics card, and a 64 GB

RAM, and the Python version is 3.7.1. The dataset used in the

experiment consists of two parts. One part is SZTAKI Airchange

Benchmark Set; the total 13 groups of original images were ex-

panded into 78 pairs by nongenerative data augmentation. Then,

the images were cut into 1206 pairs of 256 × 256 size each. The

other part consists of 146 pairs generated by DCGAN network,

of which 114 pairs were useful. Of the sample data, 70% was

randomly chosen for training, and the remaining images served

as the test set. The proportion of training and testing data is

7:3. Before inputting into the network for training, the images

of time phase 1 and 2 should be registered. Since the images

of the two phases are all of three bands, the input image is six

bands. “batch_size” represents the number of learning images

in a batch, and its value is eight. The random gradient descent

method was used to train the network. The training images of

three groups of different regions are as given in Fig. 11.

The loss curve and accuracy curve before improvement are

exhibited in Fig. 12.



LUO et al.: RESEARCH ON CHANGE DETECTION METHOD OF HIGH-RESOLUTION REMOTE SENSING IMAGES 1453

Fig. 13. Training and test result curves of the SP-DeepLabv3+ network. (a)
Accuracy curves of network training. (b) Loss curves of network training.

Fig. 14. Some change detection results of DeepLabv3+ (left) and SP-
DeepLabv3+ (Right). (a) Area 1. (b) Area 2. (c) Area 3.

The accuracy curve and loss curves of the improved network

SP-DeepLabv3+ are shown in Fig. 13. It can be found that when

the epoch reached 50 times, the network began to converge, and

its convergence was mostly completed after 60 times of training.

Some change detection results of DeepLabv3+ and SP-

DeepLabv3+ were displayed in Fig. 14. It can be drawn from

Fig. 14 that the performance of the improved network is better

than that of the original one. The areas marked in red boxes are

obvious improvements. In order to evaluate the improved net-

work further, the obtained change detection maps are compared

with the manually marked reference area. The result comparison

of different change detection methods is listed in Table I.

Additionally, we also compare the DeepLabv3+ networks

before and after improvement with two popular detection net-

works, U-Net [21] and STANet [44]. Some test images are given

in Fig. 11, and some results are shown in Fig. 15. It can be found

that the networks based on DeepLabv3+ are all superior to the

U-Net network. The reason is that the performance of the original

DeepLabv3+ network is excellent, and our improvement further

enhances the performance of the network.

Fig. 15. Some change detection results of the U-Net network.

Moreover, we also compare the proposed method with OTSU

and CVA, two traditional change detection methods [3], [8]. The

comparison results are also presented in Table I. As revealed in

Table I, the deep learning-based method outperforms the tradi-

tional method in all indicators, and the improved DeepLabv3+
has the highest accuracy. Although the deep learning approaches

involved in this work have resulted in low omission detection

rates, omission detections are still unavoidable. As indicated in

Table I, the processing speed of traditional methods is obviously

the fastest (all < 1 s), but their accuracy is all poor. The reason

is that the traditional algorithms are relatively simple, and they

are implemented through highly efficient codes differing from

deep learning methods. STANet and U-Net have higher pro-

cessing speed because they do not divide large-scale images into

blocks of standard size like the networks based on DeepLabv3+.

However, their change detection performances for our dataset

are not very ideal. Specially, since the public STANet network

pretrained model was primarily based on building change data,

the omission rate of STANet is high. It discriminated most

detection areas into the unchanged, which results in high OA

and SP, and low ER. The time complexity of methods based on

DeepLabv3+ is similar, and the average processing time of a

1048 × 724 resolution image is about 10 s. Although the time

cost of SP-DeepLabv3+ network is slightly higher than that

of DeepLabv3+ network, the change detection accuracy of the

former is significantly enhanced.

B. Verification of Network Generalization

The verification experiment in this work was carried out on the

SZTAKI AirChange Benchmark Set, whose augmented version

served as training and test samples for the network. However, in

order to verify whether the change detection network proposed

in this work has generalization performance to some degree,

we also conducted detection experiments on three other pub-

lic datasets. But even so, since the deep learning network is

relatively sensitive to differences among images from different

sensors, the internal parameters of the trained network will vary

significantly, and the comparability of experimental results is

not very strong. For images from different sensors, the superior

strategy is to regenerate the samples and train and test the change

detection network.

1) Results for Landsat 8 Data: In order to testify the pro-

posed DeepLabv3+ network generalization performance, an-

other public change detection data utilized in network testing

are derived from the Landsat 8 satellite images and provided on

the United States National Geological Survey (USGS) website.
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TABLE I
CHANGE DETECTION RESULT COMPARISON OF DIFFERENT METHODS

Fig. 16. Testing images of Landsat 8. (a) Area 1. (b) Area 2.

TABLE II
CHANGE DETECTION RESULT COMPARISON OF THE DEEPLABV3+-BASED

METHODS ON LANDSAT 8 DATA

The data contain remote sensing images of eight areas in 30 m

resolution, but the sizes of each image group are inconsistent.

These images were acquired over Dubai separately in 2000 and

2012, and over Ayakkum Lake separately in 2003 and 2012. The

two chosen image groups are, respectively, 1600 × 1600 and

1600 × 1206 in size. The typical regions of these two images

chosen for generalization testing are shown in Fig. 16.

The original and improved DeepLabv3+ networks were,

respectively, tested with two image groups, and the change

detection results are shown in Fig. 17. By comparing the change

detection result of the two DeepLabv3+-based networks with

the manual marks, the detection indicators can be calculated,

which are presented in Table II.

It can be seen that the performance of the two DeepLabv3+-

based methods all decline. This phenomenon may be owing to

the training samples of the two DeepLabv3+-based networks

Fig. 17. Change detection results of DeepLabv3+ (left) and SP-DeepLabv3+
(right) for Landsat 8 data. (a) Area 1. (b) Area 2.

being not derived from Landsat 8 data and the difference in res-

olution between Landsat 8 satellite images and SZTAKI dataset.

Although the detection performances of the two networks have

all deteriorated, the DeepLabv3+-based algorithm still has great

advantages, especially the improved DeepLabv3+ network. In

the future, we can further enhance the performance of this

network by enriching the samples of the training dataset.

2) Results for Google Earth Data: The second public testing

data are the change images of the 2011 earthquake of the Pacific

coast of Tōhoku, which are downloaded from Google Earth.

The images of phase 1 were acquired on August 14, 2009, and

the images of phase 2 were acquired on March 14, 2011. The

spatial resolution of these images is one meter, and their size

is 11008 × 6400. Also, two images of areas, an airport and a

building region, are applied in generalization testing, as shown

in Fig. 18. The change areas are marked by ourselves.

The original and improved DeepLabv3+ networks were,

respectively, tested with two image groups, and the change

detection results are shown in Fig. 19. By comparing the change

detection result of the two DeepLabv3+-based networks with

the manual marks, the detection accuracy indicators can be

calculated, which are presented in Table III.
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Fig. 18. Testing images of Google Earth. (a) Area 1: Airport. (b) Area 2:
Buildings.

Fig. 19. Change detection results of DeepLabv3+ (left) and SP-DeepLabv3+
(right) for Google Earth data. (a) Area 1. (b) Area 2.

TABLE III
CHANGE DETECTION RESULT COMPARISON OF THE DEEPLABV3+-BASED

METHODS ON GOOGLE EARTH DATA

It can be found that compared with the detection results for

Lantsat 8 data, the detection accuracy for Google Earth data

is better. The reason may be that there are slight resolution

differences between the Google Earth data and the SZTAKI

training samples. Hence, it can be inferred that the generalization

performance of the network may be affected by image resolution.

3) Results for Onera Satellite Change Detection (OSCD)

Data: The third public testing data selected in this article are

OSCD, which were taken by the Sentinel-2A satellite. Phase 1

is of 2015, and Phase 2 is 2018. It contains 24 image pairs. The

shooting area is on a global scale, including Brazil, the United

States, Europe, the Middle East, and Asia. The spatial resolution

of the images includes 10, 20, and 60 m. Two typical areas were

chosen for generalization testing, as shown in Fig. 20.

The original and improved DeepLabv3+ networks were, re-

spectively, tested with two image pairs, and the change detection

results are shown in Fig. 21. By comparing the change detection

Fig. 20. Some examples of OSCD dataset. (a) Area 1. (b) Area 2.

Fig. 21. Change detection results of DeepLabv3+ (left) and SP-DeepLabv3+
(right) for OSCD data. (a) Area 1. (b) Area 2.

TABLE IV
CHANGE DETECTION RESULT COMPARISON OF THE DEEPLABV3+-BASED

METHODS ON OSCD DATA

result of the two DeepLabv3+-based networks with the man-

ual marks, the detection accuracy indicators can be calculated,

which are presented in Table IV.

It can be seen that the accuracy of the results on the OSCD

dataset is the lowest, which may also be owing to the resolution

of the images. Therefore, the generalization performance of the

improved DeepLabv3+ network can be further ameliorated by

increasing the diversity of the training dataset in future research.
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IV. CONCLUSION

In this work, the change detection problem of high-resolution

remote sensing images is converted into a biclassification prob-

lem. For the first time, the deep neural network DeepLabv3+,

which is a forefront method of image classification, is applied

to implement image change detection, and a more accurate

detection scheme is proposed. In order to solve the problem of

insufficient change detection samples in deep learning network

training, this work uses data augmentation methods, includ-

ing the traditional nongenerative data augmentation methods,

and the generative data augmentation method DCGAN. The

data generated by DCGAN network effectively supplement

the sample dataset. Then, an improved DeepLabv3+ network

(SP-DeepLabv3+) was adopted to realize remote sensing im-

age change detection. The network was improved by replacing

the deconvolution layer with subpixel convolutions, which en-

hanced the overall accuracy of the network to 95.1%. Finally,

in order to verify the generalization capability of our proposed

detection network, the data from Landsat 8, Google Earth, and

OSCD dataset are used in network testing, and the results show

that the proposed network has acceptable generalization perfor-

mance. In the future, we will further study the generalization

problem of deep learning networks for change detection and

the problem of change detection between images from different

sensors.
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