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Traditionally, the classification of seed defects mainly relies on the characteristics of color, shape, and texture. This method requires
repeated extraction of a large amount of feature information, which is not efficiently used in detection. In recent years, deep learning
has performed well in the field of image recognition. We introduced convolutional neural networks (CNNs) and transfer learning
into the quality classification of seeds and compared them with traditional machine learning algorithms. Experiments showed that
deep learning algorithm was significantly better than the machine learning algorithm with an accuracy of 95% (GoogLeNet) vs.
79.2% (SURF+SVM). We used three classifiers in GoogLeNet to demonstrate that network accuracy increases as the depth of
the network increases. We used the visualization technology to obtain the feature map of each layer of the network in CNNs
and used the heat map to represent the probability distribution of the inference results. As an end-to-end network, CNNs can
be easily applied for automated seed manufacturing.

1. Introduction

Maize is one of the most important crops global-wise. About
one-third of the world’s population consumes maize as the
major food source. Due to the urbanization, the cultivated
land has been decreasing, which is a prominent issue partic-
ularly in China. The quality of seeds has become a growing
concern for us. The phenotypic defects of seeds are one of
the criteria for judging the quality. The traditional method
of detecting seed defects typically relies on manual inspec-
tion, which is inefficient and subjective. Therefore, an objec-
tive and automated seed screening method is required.

Researchers have applied machine vision technology to
achieve seed quality testing [1–4]. Features, such as color,
texture, size, and shape, can be extracted from images of
seeds, and the defects of the seed can be identified through
various classifiers based on computer vision. This procedure
can be easily automated and thus provide a significantly more
efficient method for seed sorting than being inspected by
human labor.

In recent years, deep learning has been rapidly developed.
For example, some search engines, recommendation systems,
image recognition, and speech recognition have adopted
deep learning techniques and achieved good results [5]. As
the performance of the GPU and the power of parallel com-
puting continues to improve, it is possible to process graphi-
cal data in real time. Excellent results have been achieved
with convolutional neural networks (CNNs) for image recog-
nition. CNNs have obvious advantages over ordinary
machine learning algorithms: the deep convolutional neural
network is more independent on the display structure of
the data during the image processing and weight sharing,
down sampling, and local receptive fields can be used in the
network [6]. The data processing method guaranteed the
high efficiency of the CNNs. In the process of using CNNs,
we only need to determine certain parameters, such as learn-
ing rate, weight loss, and batch size, of the optimization algo-
rithm. At the same time, the accuracy of the algorithm
increases with the amount of data we obtain. However,
CNNs also have their disadvantages: (1) there are thousands
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of parameters in the model, and it is a long process to tune
the parameters. (2) There are a lot of redundant information
in the large number of feature maps; we cannot artificially
intervene to filter out useful information. Researchers have
also applied CNNs to the task of seed identification. Heo
et al. used CNNs to filter weed seeds from high-quality seeds
[7]. Veeramani used CNNs to distinguish between haploid
and polyploid maize seeds [8], Ravindran used transfer learn-
ing to classify wood species [9], and Uzal used CNNs to esti-
mate the number of soybean seeds [10].

The purpose of this study was to use CNNs and transfer
learning to identify the appearance defects of maize seeds.
We used CNNs to compare with traditional machine learn-
ing algorithms; the relationship between network depth and
the accuracy of CNNs was also studied.

2. Materials and Methods

2.1. Data Collection. We used a “1/2.5” CMOS camera
(MindVision MD-U500) with a 28mm lens (MindVision
ML15). The maximum resolution of 2592∗1944 and an FPS
of 10. The depth of each color channel is 8 bits, and a white
LED ring light source (MindVision MD-HX24) is used. A
black background was used to make the maize seeds and
background more distinguishable.

The seed image library was acquired by our custom-made
image acquisition equipment (Figure 1). In this study, 4000
corn seeds were used and divided into training and testing
sets, 20% of the seeds are randomly selected as test sets.
Table 1 shows the number of divided data sets. Both the
training set and testing set were composed of two groups of
corn seeds, respectively. One group of seeds were defect free
in appearance, and the other group was with defects includ-
ing, mold, worm, damages, and discoloration (see Figure 2).

2.2. Image Segmentation. In the actual testing process, it is
unrealistic to test only one seed at a time, so we imaged
multiple seeds at the same time. The problem was that there
might be seeds getting in touch with each other, which greatly
affected the classification of single seeds. Many researchers
have open-sourced projects for target detection. These
frameworks are based on CNN and enable identification of

multiple targets in a single image simultaneous. The best
performing frameworks are Faster R-CNN [11], SSD [12],
and YOLO [13]. Faster R-CNN showed excellent results in
the agricultural sector [14]. However, due to the large amount
of computation in the training process, high-performance
GPU is required to participate in the operation. Therefore,
we used image processing algorithms for seed singulation.

Weusedstate-of-the-art imageprocessing techniqueswith
OpenCV [15] to segment seeds from the images. Firstly, the
original color image was converted into grayscale image, and
the maximum interclass variance method (OTSU) [16] was
used to obtain the binary image of the approximate contour
of the seed. The morphological operations were then used for
removing noise in the background and holes in the seeds area.

The next step was to dilate the image so that the image of
the real seed was a subset of the expanded image. We used
distance transform to find the center area of each seed, and
then subtracted the dilated image from the central region to
obtain an indeterminate seed edge. Lastly, we used watershed
algorithm to get the exact position of each seed edge, and dif-
ferent colors were used to represent each seed for easy obser-
vation. The process was shown in Figure 3(a).

The final step was to extract each seed from the original
image. We calculated the position coordinates of each seed.
In order to prevent interference with adjacent seed images
during the segmentation process, we only kept one maize
seed in the original image before cropping (Figure 3(b));
the final results were shown in Figure 3(c).

2.3. Data Augmentation. Since there were limited data in the
training set, increasing the number of pictures before starting
training would increase the accuracy of CNNs [17], and
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Figure 1: The image acquisition equipment.

Table 1: The number of divided data sets.

Training set Testing set

Worm 376 94

Mold 496 117

Damages 356 89

Discoloration 286 71

Good 1714 428
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considering uncertain factors such as the placement angle
and position of the seed during the recognition process, we
randomly flipped, moved, rotated the images, and applied
the transformed images in training along with the original
images to improve the robustness of the model. The total
number of seeds is 20000.

2.4. Machine Learning Algorithm. A traditional computer
vision method requires extracting features, such as shape,
color, and texture, from the original image for the training
process [3], which is usually overly complicated, so we
adopted Speeded Up Robust Features (SURF) algorithm [18]
and used a variety of classifiers for comparison in this study.

The location and direction of the seeds could be ran-
dom during the classification process, and the SURF algo-
rithm was used to extract the features from each seed
image. The algorithm has the characteristics of scale and
rotation invariance and uses an integral map to calculate
the convolution, then use the Hessian response to measure
whether a point is a feature point and create a descriptor to
describe the feature.

We used logistic regression, support vector machine
(SVM), K-nearest neighbor (KNN), and ensemble learning
to classify the extracted features: (1) logistic regression is a
simple classifier which models the mean response as a func-
tion of the linear combination of predictors. (2) Medium
Gaussian SVM is a support vector machine that makes fewer

distinctions than a fine Gaussian SVM, using the Gaussian
kernel with kernel scale set as the square root of the number
of predictors. (3) Coarse KNN is a nearest-neighbor classifier
that makes coarse distinctions between classes. (4) Bagged
trees is a bootstrap-aggregated ensemble of fine decision
trees. For each method, we used cross-validation during the
training. These classifiers were implemented using the Classi-
fication Learner App [19] in MATLAB 2018a, which has the
advantage of integrating multiple classifiers and eliminating
the necessity to set any complex parameters.

2.5. Convolutional Neural Network. There are two ways to
train a CNN: training from scratch using random numbers
as starting values or using transfer learning. In many practi-
cal tasks, it is not possible to train a network from the begin-
ning, since it takes significant amount of computing time to
obtain a large number of training data and using a small
amount of data to train network from the beginning will
cause over-fitting of the network. This problem can be easily
solved using transfer learning [20], because the network is
initialized by an optimal pretraining model (trained by the
ImageNet dataset [21]) and only light tuning is required dur-
ing the training process.

There are two ways to use transfer learning. One is to fix-
ate the weight parameters of certain layers and only the
parameters of other layers can be changed during the train-
ing. The other is to make all the initial weight parameters

(a) (b) (c) (d)

Figure 2: The seeds with defects.

(a) (b) (c)

Figure 3: The process of dividing an image containing seeds connected to each other into a single seed image. (a) The process of finding
the edge of the seed using the watershed algorithm. (b) Single seed image before cropping in the original image. (c) The images of seed
after cropping.
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alterable in the training process; this method is called fine-
tuning. The first method was used in this study.

We used a shallower network VGG19 [22] as the base
network. First, the weight parameters of the entire network
were initialized, locking the top 22 layers, and a three-layer
custom layer (a global average pooling layer and two dense
layers) was added at the end of the network. The network
structure is shown in Table 2. The output shape indicates
width × height × dimension.

The entire network was composed of 25 layers, which
included: an input layer, convolution layers, activation layers,
pooling layers, and fully connected layers. The input layer
accepted RGB images with a size of 224 ∗ 224. Each convolu-
tion block contained a convolution layer and an activation
layer. The convolution kernels were all 3 × 3 in size, without
padding. The ReLU [23] function was used for activation
layers, and the max pooling was adopted for pooling layers.
The global average pooling layer was used to prevent the
entire network from overfitting. The last layer was a 2-way
dense layer with softmax. The total network parameters were
20,551,746. Only the last three layers with 527,362 parame-
ters were required to be tuned in the training. Cross entropy
loss function and Adam [24] optimization algorithm were

used in the model. The initial value of the learning rate was
set as 0.001.

Szegedy et al. studied the effect of the depth of the net-
work in training accuracy [25]. We also devised a study to
improve the performance of the model by using a deeper net-
work—GoogLeNet. The transfer learning was also applied to
GoogLeNet in the study. The reason for choosing this net-
work was that there were two auxiliary classifiers to compare
the relationship between network depth and recognition rate.
The inception structure was used in the network. The incep-
tion structure was composed of convolution kernels of 3 × 3,
5 × 5, and 1 × 1, respectively. The purpose was to extract
richer features comparing with large convolution kernels
when performing convolution operations on the same size
of the receptive field [26]. The adoption of a 1 × 1 convolu-
tion kernel was actually a convolution operation for each
pixel of the feature map. The effect was equivalent to a fully
connected layer. In fact, it acted as a dimensionality reduc-
tion, and the computational complexity was significantly
reduced. At the end of the structure, four convolution opera-
tions were aggregated, and different feature maps were
spliced together to enrich the feature map (Hebbian princi-
ple), and another function was to decompose the sparse
matrix into a dense matrix. Redundant information was not
processed for the original feature map, which speeded up
the calculation.

In addition to the inception structure, we also added
dropout layers and randomly discarded 40% of neurons to
prevent overfitting of the network. Two auxiliary classifiers
were added after Inception (4a) and Inception (4d) in order
to achieve better results. During the training process, the loss
was added to the total loss with a certain proportion, but
these were not applied to the process of inferencing. We used
this structure to evaluate the effect of the depth of the net-
work structure on the performance of the network.

Table 2: The network structure based on VGG19, a global average
pooling layer, and two dense layers were added for transfer
learning. Params label means the number of parameters per layer.

No. Layer name Output shape Params

1 input_1(InputLayer) (224,224,3) 0

2 block1_conv1(Conv2D) (224, 224, 64) 1792

3 block1_conv2 (Conv2D) (224, 224, 64) 36928

4 block1_pool (MaxPooling2D) (112, 112, 64) 0

5 block2_conv1 (Conv2D) (112, 112, 128) 73856

6 block2_conv2 (Conv2D) (112, 112, 128) 147584

7 block2_pool (MaxPooling2D) (56, 56, 128) 0

8 block3_conv1 (Conv2D) (56, 56, 128) 295168

9 block3_conv2(Conv2D) (56, 56, 256) 590080

10 block3_conv3 (Conv2D) (56, 56, 256) 590080

11 block3_conv4(Conv2D) (56, 56, 256) 590080

12 block3_pool (MaxPooling2D) (28, 28, 256) 0

13 block4_conv1(Conv2D) (28, 28, 512) 1180160

14 block4_conv2 (Conv2D) (28, 28, 512) 2359808

15 block4_conv3(Conv2D) (28, 28, 512) 2359808

16 block4_conv4 (Conv2D) (28, 28, 512) 2359808

17 block4_pool(MaxPooling2D) (14, 14, 512) 0

18 block5_conv1 (Conv2D) (14, 14, 512) 2359808

19 block5_conv2(Conv2D) (14, 14, 512) 2359808

20 block5_conv3 (Conv2D) (14, 14, 512) 2359808

21 block5_conv4(Conv2D) (14, 14, 512) 2359808

22 MaxPooling2D (7, 7, 512) 0

23 global_average_pooling2d (512) 0

24 dense (Dense) (1024) 525312

25 dense_1 (Dense) (2) 2050

Table 3: The accuracy of machine learning algorithm.

Algorithm Accuracy

Logistic regression

Logistic regression 75.7

Quadratic SVM 77.8

Cubic SVM 77.9

Fine Gaussian SVM 50.1

Medium Gaussian SVM 79.2

Coarse Gaussian SVM 79.0

KNN

Fine KNN 57.3

Medium KNN 72.4

Coarse KNN 78.2

Cosine KNN 74.8

Cubic KNN 60.1

Ensemble

Boosted trees 78.1

Bagged trees 79.1

Subspace discriminant 78.2

Subspace KNN 71.8

RUSBoosted trees 75.9
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3. Results

The SVM algorithm with Gaussian kernel function had the
highest accuracy rate of 79.2%, which performed the best
(Table 3).

We used Keras [27] with TensorFlow as the backend to
get the model of VGG19. Figure 4 shows the accuracy of
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Figure 4: The curves for VGG19 during training. (a) Training loss. (b) Testing loss. (c) Training accuracy. (d) Testing accuracy.

Table 4: The confusion table of VGG19 (100 seeds were used as the
validation set).

Predict-good Predict-bad

True-good 48 7

True-bad 8 37
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Figure 5: The curves for GoogLeNet during training. (a) Training loss. (b) Testing loss. (c) Training accuracy. (d) Testing accuracy.
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training loss, testing loss, training accuracy, and testing accu-
racy of testing set for VGG19. The test accuracy was finally
stabilized at around 88%. Comparing with machine learning
algorithms, there was a significant improvement. We selected
100 maize seeds as the validation set to verify the algorithm,
and the confusion table is shown in Table 4.

Since there was no integrated GoogLeNet pretraining
model in Keras, we used Caffe deep learning framework.
Figure 5 shows the training loss, testing loss, training accu-
racy, and testing accuracy of the three classifiers (the blue line
and the red line represented two auxiliary classifiers, respec-
tively, and the green line represented the main classifier).
An accuracy level was reported every 500 iterations. It could
be seen that the accuracy reached more than 90% in the
previous iterations. Table 5 shows the accuracy of the three
classifiers after 8000 iterations. The accuracy of the main
classifier (deep layer) was 96.3%, and the accuracy of the aux-
iliary classifier (shallow layer) for the network was 95.7%. We
used the same 100 seeds for algorithm verification. As shown
in Table 6, the accuracy of the verification set was 94% which
was slightly lower than the test set.

3.1. Visualizing Feature Maps and Heat Maps. CNNs is an
end-to-end architecture. The recognition result can be auto-
matically obtained by feeding only the pictures to be recog-
nized to the network. The intermediate process was usually
a black box and not interpretable. We used the visualization
technology [28, 29] to extract the feature map of each layer
in the network. In order to facilitate observation, we selected
seeds with obvious damage (Figure 6(a)). Taking the first
convolution layer, for example, Figure 6(b), as an output,
there were 64 feature maps. It could be seen that the layer
retained the original image color and texture feature infor-
mation. In addition, we can observe that the features
extracted by the network become more abstract as the depth
of the layer increases.

We also visualized the heat map, which indicated which
part of the picture was determined by the decision classifi-
cation of the network. The heat map was a two-dimensional
matrix that represented the CNN’s score for each position
of the input image. As an example, Figure 7 shows that
the worm part had the greatest influence for the classifica-
tion results.

4. Discussions

In the actual classification process, due to the random place-
ment, the direction of seeds was indefinite, so the SURF (with
scale and rotation invariance) algorithm was used to extract
the characteristics of the seeds and there was no need to use
other algorithms to correct the rotation of the seed.

Unlike traditional machine learning algorithm, deep
learning does not require complex feature extractions. We
only need to consider using the appropriate network struc-
ture with the corresponding optimization algorithm. And
changing the learning rate and other parameters during the
training process can make the algorithm reach an optimal
state. In the initial experiment, we tried to train the data from
scratch using some lightweight networks (AlexNet), but these
networks have experienced severe overfitting.

The reason for the excellent performance of transfer
learning was that a best subset of initial values was used for
model parameters. It was not necessary to start the model
training with completely random numbers for all parameters.
We used a shallower network (VGG19) for transfer learning:
the training loss dropped significantly, but the testing loss
decreased at the beginning and tended to be unchanged in
the later stage. The accuracy of the training set was close to
95% and the testing accuracy of the model was stabilized at
88%, which indicated that the network had reached its opti-
mal state. Although it had a better performance than SVM,
the accuracy level was still not ideal in practice. The reason
was that since VGG19 needed to identify multiple defects
of seeds, the difference between some seeds with and without
defects was not obvious. Therefore, the classification error
was large, and it was necessary to extract deeper features.
Thus, we adopted a more complex network GoogLeNet,
which had an excellent ability to extract features based on
the inception structure. The accuracy of the shallowest classi-
fier was 95.7%, and the accuracy of the entire network was
96.5%. The results showed that deepness of the network
played an important role. Although we achieved decent
results with a deep network structure, there was overfitting
during the iterative process (the training loss was decreasing
and the testing loss was rising), which indicated that the
amount of data available was still relatively small for complex
networks like GoogLeNet.

5. Conclusions

In this paper, we used CNNs and transfer learning to achieve
defect classification of maize seeds. Experiments demonstrate
the availability of CNN in seed defect classification tasks, the
CNNs were significantly better than machine learning algo-
rithms in maize seed defect evaluation and the accuracy of
the model increased as the depth of the network increased.
The appearance defect of the seed is one of the indicators
for judging the quality of the seed.

In this research, we only applied the CNN to RGB
images, it can also be applied to multispectral or hyperspec-
tral images. The application of multispectral images not only
has the ability to recognize the phenotypic characteristics of

Table 5: The accuracy of three classifiers (2 auxiliary classifiers) in
GoogLeNet.

Layer Test accuracy

Shallow layer 0.95754

Middle layer 0.96000

Deep layer 0.96375

Table 6: The confusion table of GoogLeNet (100 seeds were used as
the validation set).

Predict-good Predict-bad

True-good 53 2

True-bad 4 41
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seeds but also different varieties, enhancing the generaliza-
tion ability and practicability of the model.
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