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ABSTRACT Click-through rate (CTR) prediction is critical in Internet advertising and affects web pub-

lisher’s profits and advertiser’s payment. In the CTR prediction, the interaction between features is a key

factor affecting the prediction rate. The traditional method of obtaining features using feature extraction

did not consider the sparseness of advertising data and the highly nonlinear association between features.

To reduce the sparseness of data and to mine the hidden features in advertising data, a method that learns the

sparse features is proposed. Our method exploits dimension reduction based on decomposition and combines

the power of field-aware factorization machines and deep learning to portray the nonlinear associated

relationship of data to solve the sparse feature learning problem. The experiment shows that our method

improves the effect of CTR prediction and produces economic benefits in Internet advertising.

INDEX TERMS Click through rate, deep learning, factorization machines, sponsored search, tensor

decomposition.

I. INTRODUCTION

Click-through rate (CTR) prediction is critical to many

web applications including web search, recommender

systems [1], [2], sponsored search, and display advertising.

Search advertising, known as sponsored search, refers to

advertisers identifying relevant keywords based on their

product or service for advertising. When the user retrieves

the keyword purchased by the advertiser, the corresponding

advertisement is triggered and displayed. In the cost-per-click

model, the advertiser pays the web publisher only when a user

clicks their advertisements and visits the advertiser’s site. The

CTR prediction is defined to estimate the ratio of clicks to

impressions of advertisements that will be displayed [3].

With the development of online promotion technology,

accurate advertising delivery has become the standard for

online marketing trends. In the process of purchasing and

searching for ads on the demand side platform (DSP), it is

necessary to assess the user’s preferences for advertising, and

an important indicator of this preference is the click-through

rate of the advertisement [4]. The process of sponsored search

is similar to a web search, including query analysis, advertis-

ing search, advertising sorting and other stages. The CTR is

the most important measure of advertising revenue. In many

recommender systems, the goal is to maximize the number

of clicks, so the items returned to a user can be ranked by the

estimated CTR. The CTR is also important for improving rev-

enue in other application scenarios such as online advertising.

Therefore, the ranking strategy can be adjusted as CTR∗bid

across all candidates, where ‘‘bid’’ is the benefit the system

receives if the item is clicked by a user. It is clear that the goal

is to estimate the CTR correctly.

Considering the high dimensional sparsity of advertis-

ing data and the highly non-linear association between

features [5], a sparse feature learning method from the

perspective of deep learning is proposed in this paper.

We explore data dimension reduction and identify the rela-

tionship between features based on deep learning. Addi-

tionally, many experiments are conducted to show that this

method improves the accuracy of CTR estimation.

The rest of this paper is organized as follows. Section 2 pro-

vides a brief overview of the relevant work. In Section 3,

considering the problems existing in the contemporary work

and the characteristics of the advertising data, the sparse

feature learning method for advertising data based on deep

learning (DLSFL) is proposed. In Section 4, we design the

experiment and verify the prediction accuracy of the method
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by comparison experiment. We also analyze the experimental

results in this section. Section 5 concludes the paper and lists

possible future work.

II. RELATED WORK

Click-through rate, defined as the probability of an ad click

from a specific user on a displayed ad, is essential in online

advertising [6]. To maximize revenue and user satisfaction,

online advertising platforms must predict the expected user

behavior for each displayed advertisement and maximize the

expectation that users will click. There are many features that

affect CTR but considering the featuresmay not receive better

effects, it is necessary to identify the features that are relevant

to improving click-through rate estimation. Researchers have

proposed many models that are usually based on machine

learning methods. We can divide them into three categories:

linear, nonlinear, and fusion models. McMahan et al. [7]

used a logistic regression model to solve the CTR prob-

lem of Google ads. Using multiple aspects of characteristics

including user information, search keywords, advertising data

and relative metadata with advertisement as the input of the

model, the proposed the online sparse learning algorithm to

train the model. Chapelle [8] proposed a machine learning

framework based on Logistic Regression (LR), aiming to

predict the CTR for Yahoo website. Jahrer et al. [9] proposed

using collaborative filtering, a Bayesian network model and

feature engineering to predict the click rate. He et al. [10]

introduced a fusion model which combines decision trees

with logistic regression for predicting clicks on Facebook ads.

However, when the features of advertising data are sparse, the

prediction accuracy is inaccurate. Shen et al. [11] considered

the user personalization information and proposed collabo-

rative filtering and tensor decomposition to extract person-

alized features. Kumar et al. [12] from BV Bhoomaraddi

College of Engineering and Technology adopted logistic

regression to predict the CTR of search engine advertis-

ing and achieved approximately 90% accuracy on a dataset

of approximately 25 GB. Baqapuri and Trofimov [13] pro-

posed a novel architecture to solve the CTR prediction for

sponsored search advertising by combining artificial neural

networks with boosted trees. The processing of features in

the above several models requires a large number of feature

engineering.

The advertising data has sparse feature. Richardon et al.

used the known advertisements based on the same or sim-

ilar items to estimate CTR. One of the biggest challenges

in CTR prediction is the lack of information, especially

for new ads. The historical display data is too small to

provide a pre-estimated benchmark for the click-through

model. Liu et al. [14] extended CNN for CTR prediction,

but CNN-based models are biased towards the interactions

between neighboring features. Shan et al. [15] proposed the

deep crossing model which is a deep neural network that

automatically combines features to produce superior mod-

els. The model did not consider the important of low-order

features. Product-based neural networks with an embedding

layer to learn a distributed representation of the categorical

data was proposed by Qu et al. [16], but the model also

ignored the low-order feature. The Convolutional Click Pre-

diction Model (CCPM) is a convolutional model for click

prediction [14]. This model learns local-global features effi-

ciently. However, CCPM relies on feature alignment and

lacks interpretation.

The click-through rate estimation method has been widely

studied, but problems remain. The key to improving the

click-through rate of advertising is to explore the relation-

ship between features. Advertising data has high-dimensional

sparse features. The effective information (non-zero value)

in the high-dimensional features is minimal, and the noise

disturbs the real information. Most CTR estimation methods

can not accurately estimate the click-through rate in high-

dimensional and highly sparse advertising data.

Another characteristic of advertising data is the non-linear

association between features. The method of artificial struc-

tural features (also known as ‘‘artificial feature engineering’’)

is inefficient and has poor scalability. The focus of this paper

is automatically mining the association between features and

reducing manual intervention.

FIGURE 1. The structure of DLSFL method.

III. THE METHOD OF CLICK-THROUGH RATE

ESTIMATION BASED ON DEEP LEARNING

The key to improving the click-through rate of advertising

is to explore the relationship between features. One of the

necessary steps in the click rate prediction system is to mine

features that are highly correlated with the estimated task.

To improve the prediction of CTR, we propose a sparse

feature learning method for advertising data based on deep

learning (DLSFL), andDLSFL enable reduce the high sparse-

ness of features and characterize the non-linear relationship

between features. The network structure of the proposed

DLSFL method is shown in Figure. 1.

A. DATA DIMENSIONALITY REDUCTION

There are complex relationships between different types of

objects. For instance, given a particular user and the query
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submitted by the user, it is necessary to predict whether the

user will click on the advertisement and the probability. There

is a complex implicit relationship between users, queries and

advertising. Based on the characteristics of the click log data,

dimension reduction is achieved in the following two aspects:

the similarity between the internal objects and the association

between different objects.

In this paper, the k-means clustering algorithm [17] based

on distance is adopted. We cluster queries, advertisements

and users separately, and the similar objects are aggregated

into the same cluster. We use advertising frequency as the

weight of the advertisement Ai and query Qj, and create a

matrix WMa×Mq of the ad-query (where Ma is the number

of ads, and Mq indicates the number of queries), using the

k-means algorithm to cluster the ad-querymatrix.We scan the

ad-query matrix to obtain the ad sets and query sets, as A =

{a1, a2, · · · , am} andQ = {q1, q2, · · · , qN }. Then, we take K

samples from the advertising set randomly as the initial point

of the cluster center, record as T = {t1, t2, · · · , tk}. Next,

Equation (1) is used to calculate the distance between ad ai
and each cluster center point tj. The number of clusters of

users, ads and queries is as Ku, Ka, Kq, respectively. Finally,

the number of users, ads and queries in the data set is reduced

from Mu, Ma, Mq to Ku, Ka, Kq.

Dis(ai, tj) =

√

∑

c∈Gij

(Wai −Wqj )
2 (1)

whereGij represents a collection of queries that ai and tj show

together, Wai is the weight of ai, Wqj is the weight of tj and

Dis(ai, tj) is the distance between ai and tj.

There is a ternary relationship among the user, query and ad

in the click log data. In this paper, we use a three-dimensional

tensor structure model [18], [19] to represent the user, query

and advertisement. The tensor decomposition method is used

to reduce the dimensions. The sum of the display number of

ads in the cluster is used as the weight of the elements in 3D

space. The three-dimensional tensor model is constructed and

represented by X ∈ RKu×Kq×Ka . In this paper, tensor X is

decomposed using Tucker factorization. Equation (2) is the

decomposition formula.

X = [G;A,B,C] = G× uA× qB× aC

=

P
∑

p=1

M
∑

m=1

R
∑

r=1

gpmrup ◦ qm ◦ ar (2)

In Equation (2), G represents the core tensor of tensor

X and ◦ denotes the composite operation. We use A, B

and C to represent the feature matrix of the tensor X on the

dimension Ku, Kq, Ka.

Figure 2 is a schematic diagram of the Tucker decompo-

sition. The purpose of the tucker decomposition is to find an

approximate tensor X̂ with the original tensor X and to retain

the original tensor information and structural information to

the greatest extent [20]. The minimization formula is shown

FIGURE 2. Schematic diagram of the Tucker decomposition.

below:

min

∥

∥

∥
X − X̂

∥

∥

∥
, X̂ = G× uA× qB× aC = [G;A,B,C] (3)

Equation (3) is the objective optimization function. ‖.‖ is

the norm of the vector. According to Equation (3), the expres-

sion of the core tensor can be obtained as follows:

G = X × uA
T × qB

T × aC
T (4)

the objective function can be written in a squared form:

‖X − [G;A,B,C]‖2

= ‖X‖2 − 2
〈

X ×u A
T × qB

T × aC
T,G

〉

+ ‖G‖2

= ‖X‖2 − 2 〈G,G〉 + ‖G‖2

= ‖X‖2 − ‖G‖2

= ‖X‖2 −

∥

∥

∥
X ×u A

T × qB
T × aC

T
∥

∥

∥

2
(5)

where 〈.〉 denotes the inner product.

Therefore, the objective function is transformed to:

max

∥

∥

∥
X × uA

T × qB
T × aC

T
∥

∥

∥

2

∥

∥

∥
ATW

∥

∥

∥
,W = X × qB

T × aC
T;

∥

∥

∥
BTW

∥

∥

∥
,W = X × uA

T × aC
T;

∥

∥

∥
CTW

∥

∥

∥
,W = X × uA

T × qB
T; (6)

In the process of solving the optimal solution, we need

to fix the matrix of the other dimensions W , solve for

AT, BT, CT, and then perform a singular value decomposi-

tion (SVD) of AT, BT, CT. Next, X1, X2, X3 are obtained from

expanding the tensor X to a matrix on the user, query, and

advertising dimensions, respectively, and then we apply SVD

on X1, X2, X3:

X1 = A · G1 · V
T
1 ;

X2 = B · G2 · V
T
2 ;

X3 = C · G3 · V
T
3 ; (7)

G1, G2, G3 are diagonal singular value matrices

obtained using singular value decomposition of the matrices

X1, X2, X3. The dimensions of the singular value matrix

A, B, C are obtained by calculating the diagonal singular val-

ues of G1, G2, G3 in proportion. V
T
1 , V

T
2 , V

T
3 are vectors that

VOLUME 7, 2019 12781



Q. Wang et al.: Research on CTR Prediction Based on Deep Learning

obtained by SVD. In the process of reducing the dimensions,

the proportion of exclusion singular values is set to 50% in

this paper. Therefore, the calculation of the core tensor after

dimension reduction is as follows:

G′ = X × uA
T
r1 × qB

T
r2 × aC

T
r3

X ′ = G′ × uAr1 × qBr2 × aCr3 (8)

The three dimensions of the initial tensor X are Ku,

Kq, Ka, and the three dimensions of the approximate tensor

X ′ after decreasing dimension are denoted by Nu, Nq, Na.

The time complexity of the Tucker decomposition algorithm

is proportional to the tensor dimension, which is expressed

as O(KuKqKa). We previously used the clustering method to

achieve the reduction of the original matrix, which reduced

the cost of the Tucker decomposition is greatly reduced, and

improved the efficiency and precision.

B. FEATURE COMPOSITION ANALYSIS OF INPUT LAYER

There is a high degree of non-linear correlation between

the features in advertising data. Although the approximate

tensor of the original tensor is reduced by Tucker decom-

position, it only reflects the information between the three

characteristic dimensions of user, query and ad. Other useful

information in the data is not fully utilized for click-through

rate estimates, such as the position of the advertisement on

the page, the number of ads, and the age and gender of the

user, etc. This paper combines the features of <user, query,

ad> after tensor reduction and other valid information in the

log data as the object of feature learning. The composition of

the input layer features is summarized as follows:

1) ID FEATURE

ID feature uniquely identifies a class of entities in the actual

click log, usually use a set of numeric strings to represent

variables. For instance, ’10110’ can identify only one user

group. The ID class used in this article has the UserID,

QueryID, AdID, position, and the number of advertisements

on the return page. UserID, QueryID, and AdID are collec-

tions of ‘‘virtual’’ ID classes that are obtained using K-means

clustering and tensor dimension reduction.

2) ATTRIBUTE FEATURE

The ID feature is a symbol that cannot be obtained from

the new entity data, and has weak generalization ability.

Attribute features are used to describe a set of users, ad collec-

tions, etc., and have better generalization ability and apply to

multiple instances. Therefore, the input layer should contain

the attribute features. Commonly used attribute features are:

user’s URL, user’s gender, user’s age, advertising time to

trigger and query keywords.

3) STATISTICAL FEATURE

The statistical feature uses statistical information from his-

torical data to provide an estimate for the forecasting model.

The statistical characteristics of the text are the number of

advertising histories, the number of clicks on the adver-

tising history and the click-through rate after the advertis-

ing position normalization of, denoted by Shows, Clicks

and (COEC) [21], COEC is a position normalized statistic:

COEC(a) =
∑

p

c(p, a)
/

∑

p

ec(p, a) (9)

where the numerator indicates the sum of the number of clicks

for advertising a in all locations, the denominator represents

the sum of the expected number of clicks for advertising a at

each location.

In the experiment, the features of input layer are shown

in Figure 3.

FIGURE 3. The features of input layer.

C. FEATURE LEARNING MODEL

BASED ON DEEP LEARNING

The study of the machine learning field shows that the models

of depth or hierarchy are more effective in characterizing

non-linear relationships and complex patterns in the data.

The key challenge is in effectively modelling feature inter-

actions. Some feature interactions are known and can be

designed by experts. However, most other feature interac-

tions are hidden in data and difficult to identify a priori,

and can only be captured automatically by machine learn-

ing. As a powerful approach to learn feature representation,

deep learning has the potential to learn sophisticated feature

interactions [22]. To model both low and high-order feature

interactions, Cheng et al. [23], proposed an interesting hybrid

network structure (Wide & Deep) that combines a linear

(‘‘wide’’) model and a deep model. In this model, two dif-

ferent inputs are required for the ‘‘wide part’’ and ‘‘deep

part’’, and the input of the ‘‘wide part’’ still relies on expertise

feature engineering. We propose a new model named AUFM

that integrates the architectures of field-aware factorization

machines (FFM) and stacked autoencoder. This model is

used to automatically learn the pattern characteristics of data,

and integrate the acquired characteristics into the modeling

process (such as classification and prediction) to overcome

the incomplete defects of artificial feature engineering.

1) FIELD-AWARE FACTORIZATION MACHINE (FFM)

The factorization machine (FM) was proposed by

Rendle et al. [24], [25] to learn feature interactions for

recommendations. Pairwise interaction tensor factoriza-

tion (PITF) [24] is a variant of FM. InKDDCup 2012, ‘‘Team

Opera Solutions’’ [26] proposed a generalization of PITF

called ‘‘factor model’’. The idea of FFMoriginates from PITF

proposed for recommender systems with personalized tags.

PITF is used for recommender systems and is limited to three

specific fields (User, Item, and Tag). In FM, every feature

12782 VOLUME 7, 2019
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FIGURE 4. The architecture of FFM.

has only one latent vector to learn the latent effect with

any other features. In this paper, features are grouped into

fields. Each feature has several latent vectors, and each latent

vector contains k latent factors, where k is a user-specified

parameter. Depending on the field of other features, one of

them is used to perform the inner product. Mathematically,

φFFM (w, x) =< w, x > +

n
∑

j1=1

n
∑

j2=j1+1

(wj1,f2 · wj2,f1 )xj1xj2

(10)

where f1 and f2 are respectively the fields of j1 and j2. The

addition unit (< w, x >) reflects the importance of order-1

features. The structure is shown in Figure 4. To explain how

FFM works, we consider the following new example:

Three features ESPN, Vogue, and NBC, belong to the

field Publisher, and the other three features Nike, Gucci, and

Adidas, belong to the field Advertiser. Take ESPN as an

example, wESPN is used to learn the latent effect with Nike

(wESPN ·wNike) and Male (wESPN ·wMale). However, Nike and

Male belong to different fields, the latent effects of (EPSN,

Nike) and (EPSN, Male) may be different. Depending on the

field of other features, one of them is used to do the inner

product. In our example, φFFM (w, x) is

wESPN ,A · wNike,P + wESPN ,G · wMale,P + wNike,G · wMale,A.

We see that to learn the latent effect of (ESPN, NIKE),

wESPN ,A is used because Nike belongs to the field Adver-

tiser, and wNike,P is used because ESPN belongs to the field

Publisher.

w is obtained by solving the following optimization

problem:

min
w

λ

2
‖w‖22 +

m
∑

i=1

log(1+ exp(−yiφFMM (w, xi))) (11)

where λ is the regularization parameter.

2) STACKED AUTOENCODER

The autoencoder (AE) [27] is often used to learn a better

representation of the original data [28]; it consists of three

network layers. The bottom is the input layer I , the middle of

FIGURE 5. The architecture of auto encoder.

FIGURE 6. Stacked autoencoder.

the hidden layer H and the output layer O or reconstruction

layer. The autoencoder architecture is shown in Figure 5.

Given a training data set X = {x(1), x(2), · · · , x(n)},

the encoder maps the sample x(i) to y(i). The process of

mapping is a process of encoding, using the sigmoid function

as the connection function to complete the encoding process,

expressed as follows:

y(i) = f (W (1) · x(i) + b(1)) (12)

where W (1) is a coding weight matrix, and b(1) is the bias.

From the hidden layer y(i) to the output layer z(i), the process

of reconstructing the input vector is also a decoding process,

which reconstructs the input vector x(i). It maps from y(i) to z(i)

using a linear mapping as follows:

z(i) = W (2)y(i) + b(2) ≈ x(i) (13)

where W (2) and b(2) represent the weighting matrices and

bias vectors of the decoding process, respectively. The encod-

ing algorithm minimizes the reconstruction error between

the input x(i) and the output z(i), to obtain a set of param-

eters for the encoding and decoding process. Here, Z =

{z(1), z(2), · · · , z(m)} and J (X ,Z ) represent the reconstruction

error.

J (X ,Z ) =
1

2

n
∑

i=1

∥

∥

∥
x(i) − z(i)

∥

∥

∥

2
(14)

In the autoencoder, multiple auto encoders form a stacked

autoencoder. Each of its hidden layers is a non-linear trans-

formation of the output of the previous layer. Figure 6 shows

the structure.
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3) AUFM MODEL

AUFM consists of two components, an FFM component and

a stacked autoencoder component, both these two compo-

nents share the same input. AUFM can be trained efficiently

because its wide part and deep part, share the same input

and embedding vector. In the stacked autoencoder, multiple

autoencoder form amulti-layer depth network structure. Each

of its hidden layers is a non-linear transformation of the

output of the previous layer. The initial feature is used as the

input of the model, and the non-linear feature of the initial

feature is transformed to obtain the first hidden layer, the low

order combination. The low-order combination of features as

a new learning object and the combination features of the

higher order are obtained by non-linear transformation. This

process is repeated until the set number of hidden layers is

reached and that is shown in Figure 7.

FIGURE 7. The architecture of AUFM.

The AUFM model integrates FFM and autoencoders to

predict click rate. The graphical model of the AUFM model

is shown in Figure 7. The objective function is minimized as

follows:

min
w

λ

2
‖w‖22 +

m
∑

i=1

log(1+ exp(−yi

×

n
∑

j1=1

n
∑

j2=j1+1

(wj1,f2 · wj2,f1 )xj1xj2 ))+
1

2

n
∑

i=1

∥

∥

∥
x(i) − z(i)

∥

∥

∥

2

(15)

Following [25], [26], stochastic gradient methods (SG) are

used to solve the local optimal problem in FFM. However,

boosting the training process of SG has been proposed [29],

and it is effective onmatrix factorization. In this paper, we use

the AdaGrad method [30] to solve the local optimal solution

of the objective function. First, the sub-gradients are:

gj1,f2 ≡ ∇wj1,f2
f (w) = λ · wj1,f2 + κ · wj2,f1 (16)

gj2,f1 ≡ ∇wj2,f1
f (w) = λ · wj2,f1 + κ · wj1,f2 (17)

where

κ =
∂ log(1+ exp(−yφFFM (w, x)))

∂φFFM (w, x)

=
−y

1+ exp(yφFFM (w, x))
.

Second, for each coordinate n = 1, . . . ,m, the sum of the

squared gradient is accumulated:
(

Gj1,f2
)

m
←

(

Gj1,f2
)

m
+

(

gj1,f2
)2

m
(

Gj2,f1
)

m
←

(

Gj2,f1
)

m
+

(

gj2,f1
)2

m
(18)

Finally,
(

wj1,f2
)

m
and

(

wj2,f1
)

m
are updated by:

(

wj1,f2
)

m
←

(

wj1,f2
)

m
−

η
√

(

Gj1,f2
)

m

(

gj1,f2
)

m

(

wj2,f1
)

m
←

(

wj2,f1
)

m
−

η
√

(

Gj2,f1
)

m

(

gj2,f1
)

m
(19)

where η is a user-specified learning rate. The initial values of

W are randomly sampled and G is set to one.

In the stacked autoencoder component, we select the

square error as the objective function and adopt the gradient

descent to train the parameters. The related definition of the

jth node in the hidden layer (y) of the AE can be described as

follows:

sh is the number of nodes in the hidden layer (H ) of the AE.

whji is the connection weight between the jth node of hidden

layer (H ) and the ith node of input layer (I ).

bhj is the bias of the jth node in the hidden layer (H ).

nethj = bhj +
sx
∑

i=1

whjio
x
i is the weight sum of the input of the

jth node in the hidden layer (H ).

ohj is the output value of the jth node in the hidden layer (H ).

The activation function of every neuron node is σ (x) =
1
/

1+ e−x .

The output value of the jth node in the hidden layer (H )

can be represented by formula (20).

ohj = f (nethj ) = σ (bhj +

sx
∑

i=1

whjio
x
i ) (20)

When the feature of the hidden layerH is decoded, the fea-

ture of the reconstruction layer O is obtained. The output

value of the jth node in the reconstruction layer O can be

represented by formula (21).

ooj = g(netoj ) = g(boj +

sh
∑

i=1

wojio
h
i )

= σ (boj +

sh
∑

i=1

woji(σ (b
h
i +

sx
∑

k=1

whiko
x
k ))) (21)

We use the square error as the objective function. It can be

described by formula (22).

J (X ,Z ) =
1

2

n
∑

i=1

∥

∥

∥
x(i) − z(i)

∥

∥

∥

2
=

1

2

sx
∑

j=1

(oxj − o
o
j )

2 (22)
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To easily calculate and deduce the formulae, we define the

residual error δlj of the jth node in the lth layer. The residual

error δhj of the neuron node of the reconstruction layer can be

calculated using formula (23) according to chain rule.

δhj =
∂J

∂nethj
=

∂J

∂ohj

∂ohj

∂nethj

=

so
∑

i=1

(
∂J

∂netoi

∂netoi

∂ohj
) ·

∂ohj

∂nethj

= (

so
∑

i=1

δoi w
o
ji)

∂δ(nethj )

∂nethj

= (

so
∑

i=1

δoi w
o
ji)δ(net

h
j )(1− δ(nethj ))

= (

so
∑

i=1

δoi w
o
ji)o

h
j (1− o

h
j ) (23)

The parameters wlji and b
l
j can be calculated by formulae

(24) and (25).

∂J

∂wlji
=

∂J

∂net lj

∂net lj

∂wlji
= δlj · o

l−1
i (24)

∂J

∂blj
= δlj (25)

The parameters wlji and b
l
j can be updated as the following

formulae, where ε is the learning rate.

wlji = wlji − β
∂J

∂wlji
= wlji − β · δlj · o

l−1
i (26)

blj = blj − β
∂J

∂blj
= blj − β · δlj (27)

IV. EXPERIMENTS

In this section, we compare our proposed DLSFL method

and the other models empirically. The evaluation result indi-

cates that our proposed DLSFL is more efficient than other

methods and the estimate is more effective. At the same

time, we observe the impact of different data sizes on the

click-through rate estimation result.

A. DATASETS

The experimental data in this paper were from SIGKDD

Cup2012 track2, which is the advertising click log data pro-

vided by soso (Tencent’s search engine). The KDD2012 CUP

track2 corresponding research question was based on the

actual click data information to predict the click rate

of the advertisement, which included click data informa-

tion, user query, return advertising information, return page

information, etc.

The training dataset provided by the competition had a total

of 149,639,105 records, and the size of 9.8GB. In addition

to the number of click and the number of displays, the test

dataset was consistent with the training dataset, a total of

20,257,594 records, 1.28GB in size. A record in the dataset

represents all the information contained in the advertise-

ment shown by the user’s search behavior, also known as an

instance.

B. EXPERIMENTAL DESIGN PROCESS

1) EXPERIMENTAL DATA DIVISION

After data cleaning and data pre-processing, a total of

3.5 million samples were randomly selected from the can-

didate dataset for the experiment. The data statistics used in

the experiment are shown in table 1.

TABLE 1. Dataset.

During the experiment, we used the training data to train

the model in the dataset of seven different scales, and veri-

fied the prediction performance of different methods on the

same test set. The samples of seven different scale datasets

were 150000, 200000, 300000, 500000, 600000, 750000 and

1 million. The training data were grouped randomly, and the

final result was the average of all the experimental results to

ensure the reliability of the experimental results.

2) THE METHOD COMPARISON

LR [31]: LR is the most widely used linear model in

industrial applications. It is easy to implement and fast to

train. However, it is unable to capture non-linear information.

HPCM [11]: HPCM used matrix resolution to obtain

the user-query related information by tensor decomposition.

Then using Bayesian network modelling, the obtained prob-

ability model was solved using the EM algorithm. How-

ever, the method could not capture the relationship between

features effectively.

Human_LR [32]: Human_LR used LR as the estimation

model. It was extracted by artificial feature and obtained the

characteristics related to the click rate estimation.

FM [22]: FM was successfully applied to the rec-

ommended system and user response prediction task.

FM explores feature interaction, which is effective on sparse

data.

Wide&Deep [33]: This model combines a linear (‘‘wide’’)

model and a deep model. The deep part is a three-layer

MLP that first concatenates feature embedding. Thewide part

(which is a linear regression model) is subject to design to

incorporate cross-features.

DeepCross [15]: It applies a multi-layer residual network

on a feature embedding cascade for learning feature interac-

tions. This model is a deep neural network that automatically

combines features to produce superior models.

FNN [34]: FNN is a FM-initialized feed forward neural

network. It is able to capture high-order latent patterns of

multi-field categorical data.
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DBNLR [35]: This model integrates a deep belief net-

work (DBN) with logistic regression to address the problem

of CTR prediction. A DBN stacked of RBMs is used to

obtain abstract features from original advertisement datasets,

and then a regression model is adopted to calculate the CTR

prediction value.

3) EVALUATION METRICS

In this paper, the area under the ROC curve (AUC) [3] and

log-loss were used as the evaluation criterion of the model.

AUC is the size of the area below the ROC curve, which is

usually between [0.5, 1). The larger the AUC is, the better

the performance of the click-through model.

C. ANALYSIS OF EXPERIMENTAL RESULTS

1) IMPACT OF PARAMETERS

The number of network layers n in the depth learning phase,

and the number of iterations (iter) in the training phase have a

direct effect on the final estimate of the model. Therefore, this

paper first experimented with parameters to select the best

combination of parameters. We used a set of sampled data

training models with a data size of 500,000 samples, tested

on the test set. When we fixed the network layer number (n =

2, 3, 4, 5, 6) of the model, we analyzed the effect of different

iter on the model performance, and the results are shown in

table 2.

TABLE 2. The relationship between the number of network layers
and iter.

FIGURE 8. AUC comparison of different iter and different network layer.

According to table 2 to generate Figure 8, Figure 8 reflects

the AUC change for different network hidden layers n and

LR model iterations for iter . As seen in Figure 8, when the

number of iterations is 90 to 120, the AUC values of several

curves stabilized. Therefore, in the comparison experiment,

115 was chosen as the number of iterations for training the

prediction model. As shown in Figure 8, the curve fluctuated

greatly with the change of iterations, and n = 4 was relatively

stable, so we chose n = 4.

TABLE 3. The best log-loss with different values of k .

FIGURE 9. (a). The impact of λ (b). The impact of η.

The AUFM model has three important parameters: 1) The

regularization parameter λ, 2) A user-specified parameter k ,

and 3) A user-specified parameter η. We conducted experi-

ments to investigate the impact of k , λ and η. The results are

shown in table 3. The table 3 shows that k did not signifi-

cantly effect the log-loss. As seen in Figure 9 (a), we found

the relationship between λ and log-loss. When λ was too

large, the model could not achieve good results. But if λ was

small, the model performed better. The training log-loss kept

decreasing, and was easy to overfit. Choosing λ = 2× 10−5

as the default value was reasonable. As shown in Figure 9 (b),

when we had a small η, the model slowly performed better.

However, if η was large, log-loss decreased quickly, but lead

to over-fitting. We needed early-stopping so η = 0.2 was

reasonable.
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2) RUNTIME COMPARISON

In this paper, the operation time for the three methods with

different data sizes was recorded. Table 4 shows the average

run time at 150,000, 300,000, 500,000, 750,000 and 1 million

data.

TABLE 4. Time comparison with different data sizes.

As seen in table 4, the nine methods differed in the

model run time. The LR and Human_LR methods ran for

a short time because they only had an estimated model

training phase. The HPCM method relates to the complex

operation of tensor decomposition and the EM algorithm.

FM explores feature interaction, so the running time was

longer. The computational overhead of the depth learning

algorithm was also large, and the Wide&Deep, DeepCross,

FNN, DBNLR and DLSFL methods ran longer. The DLSFL

method proposed in this paper had no advantage in runtime.

However, the most time-consuming advertising click-through

rate estimation model is based on massive data training. The

calculation process is carried out in an offline environment.

As a result, the runtimes had no effect on the online CTR

values.

3) PERFORMANCE COMPARISON

We trained the models on seven different scale datasets

and evaluated the estimated results on the same test set.

Table 5 and table 6 describe the estimated results for the

different methods at different data sizes.

Table 5 and table 6 show the overall performance. Com-

pared with the other seven methods, the DLSFL method

showed a better prediction effect. As the data size increased,

the accuracy rose and the log-loss declined. That is because

more click is conducive to finding the relationship between

the features.

LR: Logistic regression is a linear model with simple

implementation and fast training speeds. It is widely used

in online advertising estimation. However, this model does

not consider feature interaction and performed worse than the

other models.

Human_LR: This model uses LR as the estimation model

and extracts features using artificial methods. Although the

relationship between features can be obtained, hidden fea-

tures cannot be found. Thus, as shown in table 5 and table 6,

the performance of this model ranked eighth.

HPCM: Based on the Bayesian network model, this

model uses matrix resolution to obtain the ad-query intrinsic

TABLE 5. (a) Overall CTR estimation for AUC performance. (b) Overall CTR
estimation for AUC performance.

TABLE 6. (a) Overall CTR estimation for log-loss performance. (B) Overall
CTR estimation for log-loss performance.

association and the user-query related information between

the advertisements using tensor decomposition. But the rela-

tionship between features cannot be obtained. Thus, as shown

in table 5 and table 6, the performance of this model ranked

seventh.

FM: This model was successfully applied to the user

response prediction task. It explores feature interaction,

which is effective on sparse data. However, this model is lim-

ited in mining high-order latent patterns or learning quality

feature representations. As shown in table 5 and table 6, the

performance of this model ranks sixth.

Wide&Deep: Wide&Deep combines a linear model and a

deep mode. It learns high- and low-order feature interactions.

Thus, as shown in table 5 and table 6, the performance of this

model ranked second.
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DeepCross: DeepCross applies a multi-layer residual net-

work on a feature embedding cascade for learning feature

interactions. The performance of this model ranks fourth.

FNN: FNN is a FM-initialized feed forward neural net-

work. The FM pre-training strategy results in some limi-

tations, such as the embedding parameters might be over

affected by FM and the efficiency is reduced by the overhead

introduced by the pre-training stage. The performance of this

model ranks fifth.

DBNLR: DBNLR combines together the powerful data

representation and feature extraction capability of Deep

Belief Nets, with the advantage of simplicity of traditional

Logistic Regression models. The performance of this model

ranks third.

DLSFL: The DLSFL method performed best. The reasons

are as follow: 1) The method exploits dimension reduction

based on decomposition, and reduces the sparseness of the

feature. 2) The AUFMmodel is based on deep learning. It can

learn high- and low-order feature interactions simultaneously

while sharing the same feature embedding and improving the

performance of the CTR prediction model. Most features are

categorical, so the AUFM model performance better.

V. CONCLUSION

In click-through rate prediction, the interaction between fea-

tures is a key factor affecting the prediction rate. In this

paper, based on the search advertising click data, we proposed

a sparse feature learning method for advertising data from

the perspective of feature learning (DLSFL). We used the

reduced dimension method to cluster similar advertisements,

queries and users and established a three-dimensional tensor

model for the triad after dimension reduction. Then the low-

order approximate tensor was obtained using Tucker decom-

position. Aiming at the highly nonlinear relation between

the features, this paper studied the feature learning method

based on the depth learning. The AUFMmodel trained a deep

component and an FFM component jointly. Performance

improved based on these advantages: It learns both high-

and low-order feature interactions and introduces a shar-

ing strategy of feature embedding. We conducted extensive

experiments to compare the effectiveness and efficiency of

DLSFL with other methods. The method proposed in this

paper can better improve the CTR. There are two interesting

directions for future study. One is exploring strategies (such

as introducing pooling layers) [36] to strengthen learning the

most useful high-order feature interactions. The other is to

use different dimension reduction methods, such as sparse

filtering.
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