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Abstract 

Minimax algorithm and machine learning technologies have been studied for 

decades to reach an ideal optimization in game areas such as chess and back-

gammon. In these fields, several generations try to optimize the code for 

pruning and effectiveness of evaluation function. Thus, there are well-armed 

algorithms to deal with various sophisticated situations in gaming occasion. 

However, as a traditional zero-sum game, Connect-4 receives less attention 

compared with the other members of its zero-sum family using traditional 

minimax algorithm. In recent years, new generation of heuristics is created to 

address this problem based on research conclusions, expertise and gaming 

experiences. However, this paper mainly introduced a self-developed heuris-

tics supported by well-demonstrated result from researches and our own ex-

periences which fighting against the available version of Connect-4 system 

online. While most previous works focused on winning algorithms and 

knowledge based approaches, we complement these works with analysis of 

heuristics. We have conducted three experiments on the relationship among 

functionality, depth of searching and number of features and doing contras-

tive test with sample online. Different from the sample based on summarized 

experience and generalized features, our heuristics have a basic concentration 

on detailed connection between pieces on board. By analysing the winning 

percentages when our version fights against the online sample with different 

searching depths, we find that our heuristics with minimax algorithm is per-

fect on the early stages of the zero-sum game playing. Because some nodes in 

the game tree have no influence on the final decision of minimax algorithm, 

we use alpha-beta pruning to decrease the number of meaningless node 

which greatly increases the minimax efficiency. During the contrastive expe-

riment with the online sample, this paper also verifies basic characters of the 

minimax algorithm including depths and quantity of features. According to 
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the experiment, these two characters can both effect the decision for each step 

and none of them can be absolutely in charge. Besides, we also explore some 

potential future issues in Connect-4 game optimization such as precise ad-

justment on heuristic values and inefficiency pruning on the search tree.  
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1. Introduction 

Minimax algorithm has already achieved significant success in area of game in-

cluding chess, backgammon and Connect-4. What’s more, as people keep rein-

forcing search algorithms and machine learning technologies in AI, it has de-

veloped superhuman intelligence. For example, Deep Blue, designed by IBM, 

beat world chess champion Garry Kasparov in 1997 [1]. Moreover, as minimax 

was being constantly studied by people through self-playing, Google’s Deep-

Mind Company designed state-of-the-art intelligent player Alphazero. 

However, AI still does not play Connect-4 game in a super optimal way. Con-

nect-4 was first solved by James Dow Allen, and independently by Victor Allis in 

1988 [2]. Even though they introduced a knowledge-based approach and several 

winning strategies, ways to optimize the search algorithms were not taken into 

consideration. Thus, it would be nice to increase the efficiency and functionality 

of search algorithms by a certain function. In such cases, heuristics to optimize 

the minimax algorithm would be desirable. 

Connect Four, known as Captain’s Mistress, is a two-player connection game 

on a 6 × 7 board first published by Milton Bradley in 1974. The complexity of 

this game is so high that we can see it more clearly how heuristics optimizes mi-

nimax in Connect-4. In order to become a strong Connect Four player, there are 

two ways to play Connect Four: defensive and aggressive. Defensive AI prevents 

its opponent from winning, whereas aggressive AI makes every possible move to 

connect four in a row ahead of its opponent; this paper discuses a program that 

relies on the “aggressive” way [3].  

Furthermore, this paper mainly applies minimax with alpha-beta pruning to 

play Connect Four. Minimax computes minimax values of each following node, 

and uses backtracking to find out the best move [4]. The two players are called 

MAX and MIN separately. MAX makes moves to maximize its score while MIN 

tends to minimize MAX’s score. The minimax algorithm predicts the state of the 

board ahead of time in order to make the best move. 

Minimax search algorithm is good at predicting its opponent’s move and then 

beating it, but the runtime of minimax is always an issue. In order to shorten its 

runtime, this paper applies alpha-beta pruning to minimax. Since time is too li-

mited for minimax to look at every node in the game tree, the main goal of al-

pha-beta pruning is to increase minimax’s efficiency by pruning any unnecessary 
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move that has no influence on making the final decision [4].  

However, even though runtime is shortened, it still takes too much time for 

minimax to reach peak optimization levels in some cases. For example, when 

playing Connect Four game, computers lack the ability to search the bottom 

value of game tree in an optimal speed. In order to speed up the progress of 

making the best move, heuristic functions are applied in this paper. Heuristic 

functions determine which branch to follow by sorting the alternatives in each 

branch-step based on available information [5]. Since minimax picks the highest 

value that heuristic generates, heuristic becomes so essential that every subtle 

change in it can alter the final outcome of the move. 

Therefore, this paper compares how two heuristics improve the functionality 

of minimax. Since the effectiveness of heuristic is influenced by depth of search-

ing and number of features, this paper also compares how depth of searching 

and number of features improve heuristics.  

This paper is organized as follows. In Section 2, we review a brief history of 

minimax and some current research on game areas. In Section 3, we review the 

methodology of minimax in Connect-4 and introduce two heuristics with de-

tailed explanation of features. What’s more, we explain methods to assess expe-

riments. In Section 4, we conduct three experiments and analyze the relationship 

among functionality of heuristics, depth of searching, and number of features. 

Finally, we conclude the paper with a discussion of future in Section 5.  

2. Related Work 

Minimax algorithm basically comes from the “Minimax theorem”, which was 

proposed by John von Neurmann in 1928. At first, minimax theorem was used 

in zero-sum game with two players knowing all moves that have taken place so 

far. However, John von Neumann improved and extended the minimax theorem 

that involving imperfect information games with more than two players, pub-

lished this result in [6] 1944 (written with Oskar Morgenstern). Later, A. Wald 

extended Von Neumann theory that M and N (finite dimension simplices) are 

allowed to be subset of certain infinite dimensional linear fields. Further, Sion 

Maurice greatly generalize Von Neumann theory in [7] by unifying two argu-

ments (disjoint convex sets by a hyperplane and yields the theorem of Knes-

er-Fanor or a fixed point theorem and a yields Nikaidό’s result) by proving a 

minimax theorem for a function that is quasi-concave-convex and appropriately 

semi-continuous in each variable.  

From the work [6] generalized by von Neumann and Morgenstern, they pro-

posed theories of rational choice for a special class of situations in which a per-

son is faced with choosing between various alternatives, and where the person 

knows that the outcome of his choice is in part a function of how another per-

son, who is presumed to be equally rational, chooses. Following the previous re-

searchers steps, T. Parthasarathy in 1970 states in [8] that a particular class of 

games has a mixed value, provided that at least one of the players has a strategy 
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that is restricted to absolutely continuous distributions with respect to the Le-

besgue measure. 

Basically, minimax theorem was first used in the game field with zero-sum 

games and still played an important role to solve basic modern games such as 

tic-tac-toe and connect-N currently. The progress of minimax to play an optimal 

game starts with a groundbreaking paper. In 1950, Claude Shannon published 

[9], which first put forth the idea of a function for evaluating the efficacy of a 

particular move and a “minimax” algorithm which took advantage of this evalu-

ation function by taking into account the efficacy of future moves that would be 

made available by any particular move. Later on, after several years attempts and 

efforts, machine Deep Blue successfully defeat the chess grandmaster Kasparov 

in 1997.  

In addition, minimax can also be applied to different fields’ problems. In a 

zero-sum game with two players, there is always a specific and rational strategy 

for player to reach the optimal income, which regard as a core content of game 

theory [10]. This strategy can be used in financial and economic field when the 

decision maker tries to optimize its own profit. Besides, combined with other 

algorithm and mathematical method, minimax is also involved in network de-

sign [11], robotic fields [12] and public electing field [13]. 

3. Methodology 

3.1. Connect-4 Game 

Connect-4 game is a chess game on a board of 7 vertical columns of 6 squares 

each. Two players make their moves in turn till 4 men are connected horizontal-

ly, vertically or diagonally. Once a man is put in one of the columns, it will fall 

down to the lowest unoccupied square in the column.  

In our research, we designed an intelligent program to seek for the best move, 

using Minimax and heuristic search. The main steps for solving the best move 

are summarized in Figure 1. 

Therein, the Minimax and the heuristic functions are expanded in the follow-

ing sections. 

 

 

Figure 1. Pseudo-code of minimax. 
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3.2. Minimax 

Minimax is used in artificial intelligence for decision making. In most cases, it is 

applied in turn-based two player games such as Tic-Tac-Toe, chess, etc. In our 

Connect-4 chess game, Minimax aims to find the optimal move for a player, as-

suming that the opponent also plays optimally. 

In Minimax, there are two players called Max and Min. Starting with Max 

trying its first move, Minimax algorithm will try all the possibilities of combina-

tion of Max’s and Min’s move. When either one wins or the game comes to a 

draw, an evaluation value of the board will be given to indicate the situation of 

the board. If some features on the board are in favor of Max, a positive value will 

be given to that feature. Otherwise, a negative value will be given. The final 

evaluation value is the summation of all the values of features. Max will choose 

the maximum evaluation value and Min will choose the otherwise. Eventually, 

Max will decide the best move. A descriptive figure is shown below. 

Figure 2 is a possible game tree. When it is Max’s turn, he has two possible 

moves. It can either result in the left situation or the right situation in the second 

layer of Figure 2. Then, it is Min’s turn. Under each of the two situations, Min 

also has two possible moves. And it will result in four possible situations which 

are terminal nodes that indicate the search stops because of either the game ends 

or the maximum search depth is reached. Then, the evaluation value will be 

given according to the features of the situation. Evaluation of the situation will 

be discussed in section 3.3. The numbers in the circles of the third layer are the 

final evaluation value. Min in the second layer will choose the minimum number 

from its children. Therefore, −20 and −10 are chosen. Then, Max in the first 

layer will choose the maximum number from its children. Therefore, −10 is 

chosen. Eventually, Max will decide that the right path is the best choice. 

The flowchart for Minimax algorithm is illustrated as following Figure 3. 

In our research, this algorithm is specifically for Connect-4 chess game. To de-

cide which column to play, it creates a game tree by trying out all the possibilities  

 

 

Figure 2. A possible game tree. 
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Figure 3. Flowchart for minimax algorithm. 

 

of combination of Max’s and Min’s moves. Each node of the game tree is initially 

given a heuristic value. If it is Max node, it’s given minus infinity. If it is Min 

node, it’s given infinity. When the pre-set depth is reached or the game ends, the 

heuristic value will be returned to its father node. The father node compares the 

returned value and its value and chooses the bigger one. When the root node 

receives a returned heuristic value, it will record not only the bigger heuristic 

value but also the column number corresponding to the value. After the root 

node tries out all the seven columns, the best column is recorded. Hence, the al-

gorithm finds out the best move. 

However, this algorithm is time-consuming and space-wasting. Figure 4 de-

monstrates the inefficiency of the algorithm. 

When the game tree reaches its terminal nodes in the third layer, heuristic 

values are given to the nodes. Min on the left in the second layer chooses the 

lowest value (−10) and returns it to the father node. The father node chooses the  
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Figure 4. A possible game tree. 

 

bigger one from the returned value (−10) and its initial value (−∞). After the 

right Min node receives its left child’s value (−100) and finds out it is lower than 

the value of Max in the first layer, it should not search its right child, because the 

root node will never choose the value returned by the right Min node. Therefore, 

the algorithm can be optimized in such a way which is called alpha-beta pruning. 

3.3. Heuristics 

Heuristic function is used in Minimax for evaluation of the current situation of 

the game. The final decision made by Minimax largely depends on how well the 

heuristic function is. Therefore, designing a reasonable heuristic function is pa-

ramount. In our research, we designed a heuristic function for Connect-4. To 

evaluate the current situation of the game, the heuristic function firstly looks for 

different features on the board and then gives them proper values. Finally, the 

heuristic function returns a summation of all the values of features on the chess 

board. We also introduced another heuristic function in [14]. It evaluates the 

board in a different way. It doesn’t look for features on the board. Instead, it 

evaluates each square on the board and gives them a proper value. We want the 

two heuristic functions to fight against each other so that we can assess them. 

First, we will introduce the way for locating a chessman on the board. Then 

we will discuss the two heuristic functions separately in Section 3.3.1 and Section 

3.3.2. 

Figure 5 shows the way we locate the chessman on the board. For example, 

the red chessman on the left bottom corner is located as (a, 1). 

3.3.1. Heuristics-1 

In our research, we look for 4 kinds of different features from the board. They 

are listed in Table 1 below. 

For these 4 features, we give them different values listed in Table 2 below. 

Now we will expand on the four features.  

Feature 1 shows that one of the two players wins the game. The winner has 

absolute advantage over the game. Therefore, Infinity is given to the feature to  
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Figure 5. A typical way to locate the chessman. 

 

Table 1. Different features on board. 

Feature 1: Absolute win 

Four chessmen are connected horizontally, vertically or diagonally as shown in  

Figure 5: (a, 1)-(b, 2)-(c, 3)-(d, 4). 

Feature 2: Three connected chessmen 

Three chessmen are connected horizontally, vertically or diagonally as shown in  

Figure 5: (c, 2)-(d, 2)-(e, 2) or (c, 1)-(d, 2)-(f, 4). 

Feature 3: Two connected chessmen 

Two chessmen are connected horizontally, vertically or diagonally as shown in  

Figure 5: (b, 1)-(c, 1). 

Feature 4: Single chessman 

A chessman that is not connected to another same chessman horizontally, vertically  

or diagonally as shown in Figure 5: (d, 1). 

 

Table 2. Values assigned to different features. 

Feature 1 Infinity 

Feature 2 

A move can be made on either  

immediately adjacent columns. 
Infinity 

A move can only be made on one of  

the immediately adjacent columns. 
900,000 

A same chessman can be found a  

square away from two connected men. 
900,000 

Feature 3 

A move can be made on either  

immediately adjacent columns. 
50,000 

A move can only be made on one of  

the immediately adjacent columns. 

(The value depends on the number of 

available squares along the direction  

till an unavailable square is met.) 

Number of available squares Values 

5 40,000 

4 30,000 

3 20,000 

2 10,000 

Feature 4 

In column d 200 

In column a or g 40 

In column b or f 70 

In column c or e 120 
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indicate the winner’s absolute win. In Figure 5, (a, 1)-(b, 2)-(c, 3)-(d, 4) are 

connected, which indicates the red player’s win. 

Feature 2 is the occasion when a player have three men connected. We gener-

ally give this feature a score of 900,000 or Infinity because there is probably 

going to be a winner. For example, if three men are connected horizontally, its 

horizontally adjacent squares have three possibilities listed below. 

Figure 6 shows the availability of the three connected men’s immediately ad-

jacent squares. In the Left board, (c, 1)-(d, 1)-(e, 1) are connected. (b, 1) and (f, 

1) are available. The red player’s win is unstoppable. Therefore, this feature will 

be given Infinity. In the Middle board, (a, 1)-(b, 1)-(c, 1) are connected. Only (d, 

1) is available. The red player is probably going to win at (d, 1) in the next move 

or be stopped by the opponent. Therefore, this feature will be given a lower 

score, 900,000. In the Right board, (d, 1)-(e, 1)-(f, 1) are connected. Both squares 

adjacent to these three men are not available. It has no promising future hori-

zontally. Therefore, this feature will be given 0.  

The unavailability of a square not only depends on if there is an opponent 

chessman in that square but also depends on if the square can be put a chessman 

immediately. In Figure 7, for (c, 2)-(d, 2)-(e, 2), (b, 2) is not available because 

there cannot be put a chessman immediately. The chessman put in the column 

will fall down to (b, 1). 

One special situation in Feature 2 is that a same chessman is met one square 

away from the direction of two connected men. It is shown in Figure 8. This 

special situation is (b, 1)-(c, 2)-(e, 4). For this situation, the red player can win 

the game at (d, 3). It only needs to force the other player to play at (d, 2). But we  

 

 

Figure 6. Three possibilities of the adjacent squares for feature 2. 

 

 

Figure 7. Unavailable squares (b, 2) and (f, 2) for the three connected men (c, 2)-(d, 

2)-(e, 2), (b, 2). 
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Figure 8. One special situation in Feature 2. 

 

are not sure if red will play at (d, 3). Actually, red’s win can be stopped, which is 

just like the situation in the Middle board of Figure 6. Therefore, we give it 

900,000. 

Feature 3 is the occasion when two men are connected. We discussed 3 situa-

tions of Feature 3 because they will have different influence on the game. The 3 

situations are listed in Figure 9. 

The most promising future for the Left situation in Figure 8 is that it can 

form three connected men (b, 1)-(c, 1)-(d, 1) in the row. And a chessman can be 

put in either adjacent columns (a, 1) and (e, 1). For the Middle situation it will 

form three connected men (b, 2)-(c, 2)-(d, 2) with only one adjacent column (e, 

1) in which there can be put a chessman. However, for the Right situation, there 

cannot be put a chessman in the adjacent columns (a, 2) and (d, 2) of the two 

connected men (b, 2)-(c, 2). Therefore, we give this feature in the Left situation a 

bigger value than the other two features. And the value for the feature in the 

Middle situation is also bigger than in the Right situation. 

For the Middle situation, we consider the number of available squares to the 

two connected men’s right till an unavailable square. If there are more available 

squares, the player has more choices to make a move, which guarantees a more 

promising future, hence a higher score. 

However, the value for Feature 3 should be much lower than Feature 2. Fea-

ture 3 and Feature 2 are separately considered because Feature 2 provides more 

threats than Feature 3. Besides, for a certain search depth, Feature 3 in a terminal 

node is never going to become Feature 2 due to the limited depth. 

Feature 4 is the occasion when a chessman is not adjacently connected to any 

other same chessman. It is shown in Figure 10. Feature 1 has 4 situations: (d, 1), 

(c, 1) and (e, 1), (b, 1) and (f, 1), (a, 1) and (g, 1). We will discuss how we give 

them values in the following. 

The values for this feature are much lower than Feature 3 because Feature 4 is 

much less powerful than any combinations. If the chessman is put in the middle, 

it can form 4 connected men horizontally, vertically, diagonally. Therefore, we 

give it biggest value among the 4 situations. If the chessman is in column c or e, 

it cannot form 4 connected men in one of the diagonal line. Therefore, it is given 

a lower value. If the chessman is in column b or f, it has less expansion space in 

one of the directions in its row and diagonal lines. Therefore, it is given a lower 

value. The value for the last situation is lower for the same reason. 
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Figure 9. Three of the situations of Feature 3. 

 

 

Figure 10. Single chessman. 

 

Now values for all the features are given. In the heuristic function, it looks for 

all the features and calculates the summation of the values for the detected fea-

tures. If the feature is in favor of us, it has a positive value. Otherwise, it has a 

negative value. The flowchart for the heuristic function is shown below (Figure 

11). 

3.3.2. Heuristics-2 

Different to heuristic 1, heuristic 2 doesn’t look for specific features on the 

board. Instead, it looks into every square on the board and gives them different 

evaluation values. If the square is more promising, it will get a higher value. The 

value for each square is shown in the following matrix. 

3 4 5 7 5 4 3

4 6 8 10 8 6 4

5 8 11 13 11 8 5

5 8 11 13 11 8 5

4 6 8 10 8 6 4

3 4 5 7 5 4 3

 
 
 
 
 
 
 
 
  

 

If the square is close to the middle column and row, it has a bigger value. For 

example, if a chessman is at (d, 3) or (d, 4), it has the biggest expansion space. It 

can form 4 connected men in its whole horizontal line, whole vertical line and 

whole diagonal line. However, if a chessman is put at (a, 1), it can only form 4 

connected men in its half horizontal line, half vertical line and half diagonal line. 

This square has much less possibility in forming 4 connected men than middle 

squares. Therefore, the values are corresponding to the square’s expansion space.  
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Figure 11. Flowchart for heuristic function. 

 

If the expansion space is larger, it has a bigger value. Otherwise, it has a lower 

value. In other words, this gives a measurement of how useful each square is for 

winning the game, so it helps decide the strategy. 

3.4. Assessment 

In order to assess a heuristic function, we put forward 3 indexes to evaluate it. 

We discuss changes of the 3 indexes under different situations. In each situation, 

we fix other variables and let one variable vary to see how the indexes change. 

The 3 indexes and 4 variables are listed below Table 3 and Table 4. 

We will discuss changes of indexes under the following situations. 

4. Experiment Design & Results & Analysis 

Using visual studio 2015, we made a program and assessed the two heuristics 

under the situations in Table 5. The results are shown below. 

In situation 1, in order to find out the influence of depth on its winning per-

centage, we let two H1s fight again each other using different depths. H11 plays 

the first move. Table 6 is the result. In Table 6, the first row is the depth for the 

first H1 and the first column is the depth for the second H1. The left values in 

the bracket are the winning percentage of the first H1. And the right values are 

the winning percentage of the second H2. 

From the table, we can observe that in the same column, if the depth is higher, 

it tends to have a higher winning percentage. It is mainly because that if the  
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Table 3. Indexes used to evaluate a heuristic function. 

Time Time that it takes to make a decision 

The number of nodes The number of nodes that Minimax creates to make a decision 

Winning percentage The number of winning rounds/the number of total rounds 

 

Table 4. Four controlled variables. 

Depth Depth that Minimax searches to 

Random move 
In our research, we set Random move = 3. Then, Minimax chooses 

randomly from the first two best columns at 3th, 6th, 9th, ... move. 

The number of features The 4 features can be included or excluded in the heuristic function. 

Heuristic function 
In our research, we will let two different heuristic functions fight 

against each other to see how the indexes change. 

 

Table 5. Situations of which we discussed the influence on the indexes. 

Heuristic 1 

Situation 1 

Use all features. Let heuristic 1 with different even depth fight against each other 

for 100 rounds. The depths can be 2, 4, 6 and 8. We will discuss the influence of 

depth on the winning percentage, the number of nodes Minimax searched at  

each move, time Minimax consumed to make a decision. 

Situation 2 

Let Depth = 4. Discuss the winning percentage under the following situations:  

Use only one of the features, Use feature 4 and feature 3, Use feature 4 and 

feature 3 and feature 2, use all the features. 

Situation 3 

Let Depth = 2, 4, 6, 8 separately. Let heuristic 1 fight against heuristic 2 with  

a same depth for 100 rounds. Discuss the influence of different views of the  

features of the board on the winning percentage. 

 

Table 6. Winning percentage of each depth pair when H1 fights against itself for 10 

rounds. 

Depth (h12) 

Depth (h11) 
2 4 6 8 

2 (0.5, 0.5) (0.5, 0.3) (0.9, 0.1) (0.8, 0.2) 

4 (0.2, 0.7) (0.5, 0.4) (0.6, 0.4) (0.7, 0.3) 

6 (0.1, 0.9) (0.4, 0.6) (0.5, 0.5) (0.5, 0.3) 

8 (0.0, 1.0) (0.3, 0.7) (0.2, 0.8) (0.4, 0.4) 

 

depth is higher, it can search more situations and thus make better decisions. 

However, the winning percentage of a heuristic with higher depth sometimes 

can be larger than the other heuristic. It is mainly because that the two heuristics 

will make a random move every three moves and the rounds of combat are 

small. If we increase the number of rounds, the winning percentage of a heuristic 

with larger depth is bigger than the one with lower depth. 

We set depth = 4. And we let two heuristic 1 with the same depth fight against 
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each other. Figure 12 is the result of it. It shows the change of the node numbers 

and time at each move. From the figure, we can see that time and the node 

numbers decrease with the increase of moves. It is because that if there are many 

chessmen on the board, only a small number of squares are available. Besides, 

there is a positive correlation between the number of nodes and time.  

We set depth = 6. Figure 13 is similar to Figure 12. It shows similar features 

as Figure 12 for similar reasons. 

In situation 2, we discussed the winning percentage of H1 with different fea-

tures over H2. The results are listed below.  

Form Table 7, we can observe that only a single feature of H1 is not powerful 

enough to defeat H2. And Feature 1 has a similar winning percentage as Feature 

3, which indicates the two features are approximately equally strong. And Fea-

ture 2 is also similar to Feature 4 in terms of their winning percentage. 

From Table 8, we can observe that the winning percentage increases when 

more features are combined. And if we only use Feature 1 and Feature 2 for H1, 

the performance of H1 is close to H2. 

In situation 3, we set Depth = 2, 4, 6 and 8, and discussed the winning per-

centage of H1 over H2 to compare the two heuristics to see which way of eva-

luating the board is better. 

From Table 9, we can see that when Depth = 2, our heuristic H1 is so much 

weaker than H2 due to there are less features on the board. When the game just 

begins, there are not so many features on the board. And Minimax with depth 2 

can only search the situations abundant in feature 4 or 3. It might make some 

wrong moves at the beginning, thus losing the game. And when the Depth = 4, 

our heuristic is a little stronger than H2. The overall tendency is that when the 

Depth is 4 or larger, Minimax can search more situations. Therefore Minimax 

can go for the right path, which guarantees a higher winning percentage. 

 

Table 7. Winning percentage of using single feature of H1 over H2. 

Feature1 Feature 2 Feature 3 Feature 4 

0.48 0.40 0.48 0.40 

 

Table 8. Winning percentage of using combined features of H1 over H2. 

Feature 1 & 2 Feature 1 & 2 & 3 All features 

0.54 0.60 0.80 

 

Table 9. Winning percentage of H1 and H2 when let them fight against each other at 

same depths. 

Depth = 2 0.24 for H1, 0.76 for H2 

Depth = 4 0.60 for H1, 0.39 for H2 

Depth = 6 0.76 for H1, 0.22 for H2 

Depth = 8 0.81 for H1, 0.19 for H2 
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Figure 12. Node number and time of each move at depth 4 

 

 

Figure 13. Node number and time of each move at depth 6. 

5. Conclusions 

In this paper, we have conducted three experiments on the relationship among 

functionality, depth of searching, and number of features. As most previous 

works focused on winning algorithms and knowledge based approaches, we 

complement these works with analysis of heuristics.  

Furthermore, we find out that as depth of searching keeps increasing, a heu-

ristic has better functionality. Moreover, we also find out that as number of fea-

tures rises up, a heuristic becomes more optimal. Besides, if we increase the 

search depth of a relatively weaker heuristic with much less number of features, 

that “weaker” heuristic can beat its opponent with more features. 

Finally, even though heuristics has been successfully applied to minimax in 

Connect-4, there is significant room for future improvement such as tuning 

method. For example, if one of the heuristics loses the game, we can adjust its 

heuristic value by 1% higher or lower to make it sounder. In the future, we can 

apply tuning method into minimax to make that algorithm more optimal. 
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