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Abstract: 

The relationship between the self-similar propagation region for single pulse and oscillation region for 

a pair of self-similar pulses are first investigated in our paper. By introducing self-similar coefficient F 

and RMS width ratio K, we find that self-similar propagation region starts from z=1.8LD to z=18LD 

while F≤10%. The optimum output of self-similar pulse is also achieved when F and K reach a 

minimum value simultaneously at z=3.5LD. The sinusoidal fit oscillation region of self-similar pulse 

pair ranges from 5/8LD to 2LD while F varies from 40.27% to 7.99%, and the dark soliton fit oscillation 

region ranges from 2LD to 6LD while F varies from 7.99% to 5.32%, indicating that the sinusoidal fit 

oscillation region almost occurs before the pulses enter the self-similar propagation region and the dark 

soliton fit oscillation region occurs within the self-similar pulse propagation region. Furthermore, the 

oscillation characteristics of interacting pulses are also studied numerically by using split-step Fourier 

method. The results are beneficial in Dense Wavelength Division Multiplexing transmission system 

which is in heavy demands of light source in wide-range wavelength. 
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1. Introduction 

Self-similar pulse is a more general class of shape-preserving waves, which 

maintains its parabolic shape of the envelope but the parameters such as amplitude, 

width, and chirp evolve with propagation inside nonlinear media (Barenblatt, G.I. 

1996). The self-similar pulse does not suffer from the deadly effects of optical wave 

breaking (Desaix, M. 1993). These attractive features lead parabolic pulse to a 

wide-range practical significance, such as in the generation of high-power 

femtosecond lasers (Ruehl et al. 2006), spectral broadening and supercontinuum 

generation (Tamura et al. 2000), multi-wavelength source (Ozeki et al. 2004), 

spectrally sliced pulse source generation (Wang et al. 2016) and pulse reshaping 

(Boscolo et al. 2008). Previous researches concerned more with the generation and 

propagation properties of single self-similar pulse in a variety of fibers (Hirooka et al. 

2004; Kibler et al. 2006; Wabnitz et al. 2008; Ghosh et al. 2009; Bale et al. 2010; 

Ghosh et al.2017). Meanwhile, more and more studies also focus on the interaction 

and propagation of a pair of parabolic pulses, such as interaction between parabolic 

pulses based on fiber amplifier (He et al. 2014; Finot et al. 2005; Finot et al. 2006), 

dispersion-managed fiber (Liu et al. 2011; Ponomarenko et al. 2008), nonlinear 

waveguide (Loomba et al. 2014; Kumar et al. 2015), highly nonlinear fibers (Ghosh et 

al. 2015; Krishna et al. 2018) and ND-DDF (Zhang et al. 2011). However, to our 

knowledge, little attention has been given to the relationship between the oscillation 

region of a pair of self-similar pulses and the self-similar pulse propagation region, 

within which the parabolic pulse can keep their shape without distortion and 



 

oscillations, in ND-DDF. In this paper, we first investigate the relationship among the 

self-similar propagation region for single pulse, sinusoidal fit oscillation region and 

asymptotic dark soliton oscillation region for a pair of self-similar pulses. By 

introducing self-similar coefficient F and RMS width ratio K, we demonstrate that 

self-similar propagation is only effective in a limited region and the optimum output 

of self-similar pulse is also achieved. By considering self-similar coefficient F, the 

relationship between the oscillation region and the self-similar propagation region are 

analyzed. Meanwhile, the oscillation characteristics of interacting pulses are also 

studied numerically by using split-step Fourier method.  

2. Self-similar propagation region of single pulse 

evolving in ND-DDF 

The propagation of optical pulses in a ND-DDF is modeled by an NLS (nonlinear 

Schrödinger) equation of the form   
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where z is the fiber length, T is the time measured in a frame of reference moving 

with the pulse at the group velocity vg (T=t-z/vg), and A (z, T) is the slowly varying 

amplitude of the pulse envelope, D (z) represents the variation in the GVD due to 

dispersion tapering and is normalized such that D (0)=1. β2 and γ are the GVD value 

at z＝0 and the nonlinearity coefficient respectively. Due to the special engineering 

requirements and different processes, DDF can be tapered with various dispersion 

profile structures (2006 Silva et al. 1999; Amir et al. 1997; Zhang et al. 2019). Here 

we use hyperbolic dispersion tapering in a passive fiber so that the propagating pulse 



 

obtains the equivalent (noise-free) gain necessary for parabolic pulse generation, it 

means
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= . Here g0 is a constant gain coefficient. The detailed theory 

parabolic asymptotic solution under this condition can be obtained from Hirooka and 

Masataka (2004).  

To study the self-similar propagation region, we suppose that a Gaussian pulse is 

launched into ND-DDF, which has a FWHM (full width at half maximum) of 1.0ps 

and a pulse energy E of 50pJ. The ND-DDF has a β2 =1.3ps2/km, γ=4W-1km-1 and g0 

=0.025m-1. The single pulse evolution in the ND-DDF is showed in Fig.1.  

The self-similar propagation region is determined in which the parabolic 

self-similar pulse has formed before the oscillations occur. Here we introduce 

self-similar coefficient F and RMS width ratio K to judge the effective self-similar 

pulse and then determine self-similar propagation region. A self-similar coefficient is 

to measure the degree of approximation between the numerical output pulse and the 

theoretical self-similar pulse, which is defined as 
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where ( , )A z T  and ˆ ( , )A z T  represent the numerical solution and theoretical solution 

of output amplitude, respectively. Since F is defined as the difference of pulse energy 

between the numerical solution and theoretical solution, the ideal value of F is zero, 

which means numerical output pulse is exactly equal to the theoretical self-similar 

pulse profile. Output pulse is more similar to parabolic profile with a smaller F. We 

perform extensive numerical simulations and find that output pulse exhibits obvious 



 

self-similar features when F≤10%, which implies complete evolution of similariton 

with smooth profile.  

Meanwhile, the width of the pulse is more accurately described by the 

root-mean-square (RMS) width σ, which is defined as           
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To see the deviation between the simulation solution and the parabolic asymptotic 

solution during the pulse’s propagation, we further define K as the RMS width ratio, 
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where 
N

  represents the RMS width of pulse obtained from numerical solution and 

T
  represents RMS width of pulse obtained from parabolic asymptotic solution, 

respectively. The ideal value of K is zero, which means the pulse’s width from the 

numerical simulation is exactly the same as that from theoretical solution. 

The relationship between self-similar coefficient and fiber length, RMS width ratio 

and fiber length can be obtained from the simulation, which is shown in Fig.2 

respectively. 

From Fig.2 (a), self-similar coefficient F begins with a very large value and reduces 

to 10% at z=1.8LD, where the incident pulse starts to represent parabolic intensity 

profile, indicating the pulse entering the self-similar propagation region. From the 

simulation, the self-similar coefficient F achieves a minimum value 0.27% when 

z=3.5LD=0.9707km, while RMS width ratio K achieves a minimum value 0.56% 



 

exactly at the same length, which means the self-similar evolution is basically 

consistent with the theoretical solution, resulting in the optimum output of self-similar 

pulse. The result from Fig.2 also shows that the self-similar coefficient and RMS 

width ratio have the same evolution trend with fiber length, which is further proved 

that the self-similar region of the pulse can be accurately characterized by the 

self-similar coefficient F. The further simulation shows that the pulses can remain 

self-similar evolution up to z=18LD with F≤10%. However, the output waveform 

begins to oscillate when z is greater than 18LD, which means the end of the 

self-similar region. Therefore, from the simulation, the self-similar propagation region 

starts from z=1.8LD and ends at z=18LD. 

3. Pulses oscillation characteristics in the self-similar 

propagation region 

To study the socillation characteristics of pulse pair in the self-similar propagation 

region, we suppose that a pair of Gaussian pulses separated by a time-delay △T=4.5ps 

are launched into ND-DDF, which can be expressed in the follow equation.  
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The two pulses evolution in the ND-DDF is showed in Fig.3. 

Due to the linearly chirped parabolic pulses, the frequency difference between the 

overlapping falling and raising edges of the pulses induces a beating in the resultant 

signal. Zhang and Gao (2011) already showed that the pulses’ overlap region 

oscillates with a sinusoidal fit at the beginning of their overlap and then further 

evolves into a train of asymptotic dark solitons. Here we further study the relationship 



 

between the oscillation regions and self-similar propagation region. 

From Fig.3, the sinusoidal fit oscillating only generates within a short distance, and 

then converts to asymptotic dark solitons oscillating which continues for a long 

distance. Table 1 shows the relationship between the oscillation period and fiber 

length in the sinusoidal fit oscillation region and the asymptotic dark solitons 

oscillation region respectively. The oscillation period sample is taken every 1/8LD 

during the sinusoidal fit oscillation region, while the oscillation period sample is taken 

every 1/2LD as the change of oscillation period slows down in the asymptotic dark 

solitons oscillation region. 

Fig.4 shows the relationship between the oscillation frequency and fiber length. 

The first-order fitting curves in sinusoidal fit oscillation region and asymptotic dark 

solitons oscillation region are illustrated. The fitting function in sinusoidal fit 

oscillation region can be written as   
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While the fitting function in asymptotic dark solitons oscillation region is given by  

( ) 2 5.6 2 6D Df z z L z L    ，                           (7) 

The second-order fitting curve in the entire oscillation region is also defined as  
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The pulses evolution of the overlap region is mainly divided into three parts, namely, 

sinusoidal fit oscillation, asymptotic dark solitons oscillation and irregular oscillation. 

As shown in Fig.4, the decrease rate of the oscillation frequency in the sinusoidal fit 

oscillation region is much higher than that in the asymptotic dark solitons oscillation 



 

region. As the pulses propagate from z=5/8 LD to z=2LD, the oscillation in the overlap 

region performs as sinusoidal evolution with a rapid decreased frequency. When the 

pulses continually propagate from 2LD to 6LD, sinusoidal fit oscillation evolves into 

asymptotic dark solitons oscillation, and the oscillating frequency decreases slowly, 

resulting in a stable pulses transmission. The decrease rate of the sinusoidal frequency 

is about 6.5 times than that of asymptotic dark solitons oscillation frequency, a feature 

clearly seen in the fitting curve slopes of Fig.4.  

This can be interpreted by considering the relationship between dispersion length 

LD and nonlinearity length LNL. We can obtain the two parameters from the initial 

conditions: 
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It can then be used to calculate parameter N using   
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When the fiber length L is such that 
DLL  but

NLLL  , pulse evolution in the fiber 

is governed by SPM that leads to spectral broadening of the pulses. When the fiber 

length is longer than both LD and LNL, dispersion and nonlinearity act together as the 

pulse propagates along the fiber. The interplay of the GVD and SPM effects can lead 

to a qualitatively different behavior compared with that expected from GVD or SPM 

alone. In this condition, both dispersive and nonlinear effects are important to pulse 

evolution in optical fibers, and the GVD effect slowdown the spectral broadening of 

the pulses. When the pulses’ propagation length is more than 6LD, the asymptotic dark 



 

solitons oscillation disappears and the oscillation becomes irregular.  

In order to analyze the relationship between oscillation region and self-similar 

propagation region, we further study self-similar pulses oscillation characteristics in 

the sinusoidal fit oscillation region and the asymptotic dark solitons oscillation region.  

3.1 oscillation characteristics in the sinusoidal fit oscillation region 

We investigate the oscillation characteristics of self-similar pulses in the sinusoidal 

fit oscillation region. From the simulation, sinusoidal oscillation occurs before the 

pulses enter the self-similar region. Fig.5 presents the center part of the intensity 

profiles of a pair of pulses at different fiber length. 

At the first stage, when
DLL  , the amplitude of the interacting pulses increases 

due to the SPM effect. At the second stage, when
DLL  , the amplitude of the pulses 

remains constant due to the interplay of the GVD and SPM effects. Meanwhile, the 

oscillation frequency decreases all the time. 

As Fig.5 shown, when z is equal to 5/8LD, the pulses begin to interact and create 

slight sinusoidal oscillation, which has a frequency of THzf 873.9/62    and an 

oscillation amplitude of 0.5P W   at WP 1 . When z=6/8LD, the sinusoidal 

oscillation becomes obviously, which amplitude increases to 3.5W as the oscillation 

frequency decreases to 9.554f THz , and the oscillation amplitude at the edge is 

much smaller than that at the center. When the propagate distance is z=9/8 LD, the 

sinusoidal oscillation tends to be stable with an oscillation amplitude WP 9 and a 

decreased frequency THzf 325.7 . The overlap region increases with the propagate 

length, and the oscillation amplitude at the edge is almost the same with that at the 



 

center, which means the whole overlap region presents sinusoidal oscillation with the 

same frequency and amplitude, as Fig.5 shown. As the pulses continue to propagate, 

the oscillation amplitude remains unchanged, but the frequency decreases gradually, 

which reduces to 4.777f THz when z=2LD. Fig.5 also shows that the oscillation 

amplitude changes from sinusoidal fit to asymptotic dark solitons fit although the 

oscillation frequency still remains sinusoidal fit.  

From the analyzation of the self-similar propagation region, the self-similar 

coefficient F value varies from 40.27% to 7.99% when z varies from 5/8LD to 2LD. 

This suggests that sinusoidal fit oscillation begins when the pulse has not entered the 

self-similar propagation region, and almost ends when it has just entered the 

self-similar propagation region.  

3.2 oscillation characteristics in the asymptotic dark solitons oscillation 

region 

From table 1, when the overlapping pulses further propagate from z=2LD to z=6LD, 

they evolve into a train of asymptotic dark solitons with intensity 

profile ))*(sec-1()(
22 tchATP  , where A2 is the intensity depth of the hole, whose 

valve is equal to the difference between the maximum and minimum values of pulses’ 

energy. c is a coefficient determining the wave width of the hole (Dianov et al.1989). 

From Fig.6, as the propagation length increases, the intensity depth decreases while 

the period of asymptotic dark solitons increases. What is more, the pulses between the 

adjacent asymptotic dark solitons no longer remain linear propagation, but a slight 

oscillation. Fig.7 shows the dark soliton fitting curves (solid line) and the overlap 



 

pulses oscillation envelope (dotted line) relatively. 

From Fig.7, the coefficient c remains constant while the intensity depth decreases. 

Meanwhile, the distance between the adjacent asymptotic dark solitons increase, 

indicating decreasing of the frequency of asymptotic dark solitons.  

The relationship between intensity depth of the hole and propagation length can be 

seen by referring to Fig.8. When the asymptotic dark solitons propagate from z=2LD 

to z=4LD, the decrease rate is faster than that when the asymptotic dark solitons 

propagate from z=4LD to z=6LD. When the pulses continue to propagate, the 

asymptotic dark solitons oscillation disappears and the oscillation become irregular. 

From the analyzation of the self-similar propagation region, the self-similar 

coefficient F value varies from 7.99% to 5.32% when z varies from 2LD to 6LD. This 

indicates that dark soliton fit oscillations occur within the self-similar pulse 

propagation region with a small F value, and ends because of the energy loss due to 

oscillations.  

4. Summary 

In conclusion, we have analyzed the dynamic evolution of self-similar propagation 

region for single pulse, sinusoidal fit oscillation region and asymptotic dark soliton 

oscillation region for a pair of interacting parabolic pulses.  

The self-similar propagation region starts at z=1.8LD and ends at z=18LD while 

F≤10%. Self-similar coefficient F and RMS width ratio K have the same evolution 

trend with fiber length and achieve a minimum value simultaneously when z=3.5LD, 

indicating optimum output of self-similar pulse. The pulses evolution of the pulses 

http://dict.youdao.com/w/relatively/#keyfrom=E2Ctranslation


 

interacting region is mainly divided into three parts, which are sinusoidal fit 

oscillation, asymptotic dark solitons oscillation and irregular oscillation. The decrease 

rate of the oscillation frequency in the sinusoidal fit oscillation region is about 6.5 

times higher than that in the asymptotic dark solitons oscillation region. The 

sinusoidal fit oscillation region ranges from 5/8LD to 2LD while self-similar 

coefficient F value varies from 40.27% to 7.99%, which indicates that the sinusoidal 

fit oscillation region almost occurs before the pulses enter the self-similar propagation 

region. In the sinusoidal fit oscillation region, the overlap region of self-similar pulses 

increases with the propagate length, and the whole overlap region finally evolves into 

sinusoidal oscillation with the same frequency and amplitude. The amplitude of the 

interacting pulses in the sinusoidal fit oscillation region increases at the first stage and 

remains constant at the second stage while the oscillation frequency decreases all the 

time. The dark soliton fit oscillation region ranges from 2LD to 6LD while self-similar 

coefficient F varies from 7.99% to 5.32%, which means the dark soliton fit oscillation 

region occurs within the self-similar pulse propagation region with a smaller F. The 

train of asymptotic dark solitons evolves with a decreased intensity depth and a 

constant coefficient c while the period of asymptotic dark solitons increases. After 

that, the asymptotic dark solitons oscillation disappears and the oscillation becomes 

irregular because of the energy loss due to oscillations. 

 The results are beneficial in self-similar pulses and high-quality femtosecond 

pulses generation. It is important to Dense Wavelength Division Multiplexing 

transmission system which is in heavy demands of light source in wide-range 



 

wavelength. 
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Figures 

 

Fig.1 Single pulse evolution in the ND-DDF from z=0 to z=6LD 

 

(a)                                      (b) 

Fig.2 (a) Relationship between self-similar coefficient F and fiber length L; (b) Relationship between 

RMS width ratio K and fiber length L. 

 

Fig.3 Waveform evolution of self-similar pulses in DDF 



 

 

Fig. 4 Relationship between the oscillation frequency and propagation length 

 

Fig.5 Center part of the intensity profiles of a pair of pulses at different fiber length in the sinusoidal 

oscillation region: simulations (solid line) and sinusoidal fit (dotted line) 
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Fig.6 Center part of the intensity profiles of a pair of pulses at different fiber length in the asymptotic 

dark solitons oscillation region 



 

 

 

Fig.7 Center part of the intensity profiles of a pair of pulses at different fiber length in the asymptotic 

dark solitons oscillation region: simulations (dotted line) and asymptotic dark solitons fit (solid line) 

 

Fig.8 Relationship between intensity depth of the hole A2 and propagation length 

 

 

 

 



 

 

 

Tables 

Table 1. Relationship between the oscillation period and fiber length 

 Length

（z/Km） 

Oscillation 

period (T/ps) 

 Length

（z/Km） 

Oscillation 

period (T/ps) 

Sinusoidal fit 

oscillation 

region 

5/8LD 0.093 

Asymptotic dark 

solitons oscillation 

region 

2 LD 0.208 

6/8 LD 0.109 2.5 LD 0.235 
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Figures 

 

Fig.1 Single pulse evolution in the ND-DDF from z=0 to z=6LD 

 

(a)                                      (b) 

Fig.2 (a) Relationship between self-similar coefficient F and fiber length L; (b) Relationship between 

RMS width ratio K and fiber length L. 

 

Fig.3 Waveform evolution of self-similar pulses in DDF 

Figure Click here to access/download;Figure;Figures.docx

https://www.editorialmanager.com/oqel/download.aspx?id=147574&guid=7db8c6e4-0b11-4690-a07a-11e87ded8f5b&scheme=1
https://www.editorialmanager.com/oqel/download.aspx?id=147574&guid=7db8c6e4-0b11-4690-a07a-11e87ded8f5b&scheme=1


 

Fig. 4 Relationship between the oscillation frequency and propagation length 

 

Fig.5 Center part of the intensity profiles of a pair of pulses at different fiber length in the sinusoidal 

oscillation region: simulations (solid line) and sinusoidal fit (dotted line) 

 

Fig.6 Center part of the intensity profiles of a pair of pulses at different fiber length in the asymptotic 

dark solitons oscillation region 
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Fig.7 Center part of the intensity profiles of a pair of pulses at different fiber length in the asymptotic 

dark solitons oscillation region: simulations (dotted line) and asymptotic dark solitons fit (solid line) 

 

Fig.8 Relationship between intensity depth of the hole A2 and propagation length 
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Table 1. Relationship between the oscillation period and fiber length 
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