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Abstract: To address the problems of the large positioning error and long positioning time of the
traditional positioning strategy, namely, the two-phase simultaneous power-off method (TPSPM), a
new positioning strategy, called the first single-phase then two-phase power-off method (FSPTTPPM),
based on the ultrasonic friction reduction theory, has been proposed in this work. This method
realizes zero sliding displacement between the friction material and the stator during the torsional
oscillation of the shaft by controlling the driving circle frequency and the duration of the single-
phase power-off period, which reduces the deviation of the displacement reservation value. In
order to verify the correctness of the driving mechanism, a test platform has been built, and two
positioning strategies have been used for experimental verification. The following experimental
results have been obtained: compared to TPSPM, FSPTTPPM has the advantages of higher positioning
accuracy and short positioning time. In terms of the positioning accuracy, the relative errors of the
displacement reservation values of FSPTTPPM and TPSPM vary with the initial angular velocity
(0.24 to 1.18 rad/s) in the range of −0.4 to 0.1 and −0.8 to 0.8, respectively. In addition, the relative
error of the displacement reservation value is closer to zero than that of TPSPM at the same initial
angular velocity. In terms of the positioning time, when the initial angular velocity is greater
than 0.7 rad/s, the positioning time of the FSPTTPPM is approximately 10 ms smaller than that of
the TPSPM.

Keywords: precision positioning; ultrasonic motor; displacement reservation value; positioning time

1. Introduction

With the development in the field of nanofabrication, the precision table technology is
imposing increasingly higher requirements for the stroke, speed, and accuracy of precision
positioning systems, with the control accuracy required to be in the micrometer or even
nanometer range [1–3]. With their advantages of simple structure, fast response, and high
positioning accuracy, ultrasonic motors meet the requirements of precision positioning [4–6]
and have a wide range of applications in precision instruments, aerospace, robotics, and
biomedicine [7–10]. The common positioning strategy in engineering is TPSPM, and based
on this strategy, many scholars have adopted various control methods for positioning.
Gencer constructed an electrical model of an ultrasonic motor using the MATLAB Simulink
environment and used the driving frequency, phase difference, and duty cycle of the motor
as the input quantities for proportional-integral-derivative (PID) control studies. In the
position control process, the experimental data has demonstrated that the phase difference
can be used as the control variable for positioning the control in the low-speed stage.
However, a problem of low positioning accuracy was encountered [11,12]. Bal used a fuzzy
control for the position study, taking the angular error and rotation angle frequency as
the input and drive frequency as the output. The results thus obtained demonstrated that
although the ultrasonic motor was able to track the reference positions for all of the ramp
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responses quickly [13], a large difference between the reference position and the actual
position was observed. Senjyu studied the difference between the output of the reference
model and the actual output and adjusted the parameters of the controller to compensate
for the parameter changes of the controlled object to achieve motor position control. In
addition, they combined fuzzy inference with model-referenced adaptive control to study
the position control of the motor [14]. The results thus obtained demonstrated that the
rotor position had good agreement with the ideal trajectory, and although it could achieve
fast positioning, there was a large positioning error. The above analysis demonstrates that
although a variety of control methods can be used for positioning based on TPSPM, there
is a large positioning error, which indicates that it is not caused by the control algorithm
but by the defects in the positioning strategy.

To solve the problem of the large relative position error, some researchers have pro-
posed a high precision positioning strategy, namely, the microstepping positioning strat-
egy [15], which greatly reduces the positioning error and lays a good foundation for
expanding the application of traveling-wave ultrasonic motors. Based on this position-
ing strategy, many researchers have also adopted various control methods. Shi chose
the motor driving voltage as the control variable and conducted experiments at different
initial angular velocities. The experimental results demonstrated that when the motor
speed is 10 µm/s, the maximum velocity error and coefficient of variation at a steady
state are relatively small, but the positioning time reaches at least 20 ms. Chen achieved
high precision control of the motor position from continuous motion and stepping motion
using the segmental approximation strategy [16]. By choosing a specific number of pulses
for multiple sets of experiments, the experimental displacement plots demonstrated that
the accurate stepping resolution in both directions could reach 3.3 µrad, and this method
achieved high precision localization resolution. In addition, a positioning time of at least
30 ms was taken for each set of experiments. Wang achieved control of the motor speed and
displacement by controlling the number of driving waves, driving voltage, pre-pressure,
and drive frequency [17]. Their experiments demonstrated that the step distance increases
with the increase in the number of sinusoidal signals, which coincides with the transient
analysis results. The proposed motor can output a microstep distance of approximately
0.26 µm when the number of the sinusoidal signals is 1; thus, achieving a high accuracy
positioning resolution but a long positioning time of at least 30 ms is taken for each set of
experiments. Shi proposed a closed-loop control strategy by using both the step control
and the fuzzy PID control [18], and the controller was constructed with the function of
providing a closed-loop control of the speed by adjusting the driving voltage amplitude
in the stepping driving mode. Comprehensive experiments on the developed control
strategy were conducted under different target speeds. There was a maximum of 24.5%
speed error at the target speed of 10 µm/s, meanwhile, the coefficient of variation and
the response time were 16.3% and 0.11 s, respectively. Snitka proposed the concept of a
linear ultrasonic motor drive capable of nanometric steps, long-range travel and reversible
controlled motion, and the motor concept developed is based on the superposition of a
longitudinal and bending vibrations of a rectangular resonator [19]. The open loop posi-
tioning system with a designed stepper ultrasonic drive produced 10 nm resolution and
5% displacement repeatability. The system with computer-controlled position feedback
has demonstrated 0.3 mm positioning accuracy over the 100 mm positioning range. In
summary, the microstepping positioning strategy uses the transient characteristics of the
ultrasonic motor and the stepping characteristics for positioning control.

In addition, Delibas proposed a new driving method for resonance drive type piezo-
electric motors [20], in which the piezoelectric vibrator was excited using two driving
sources at two different frequencies, and the difference between the two excitation frequen-
cies was synchronized to the servo sampling frequency of the digital control unit. The
performance of the proposed driving method was compared with those of the conventional
driving methods, and it was obtained that the positioning error for the linear movements
between the desired and actual positions decreased to less than 10 nm for velocities ranging
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from 1 mm/s to 0.001 mm/s. Giraud proposed a position-control scheme of an inertial
load [21], and the guideline used for this control was a rotation of 90 degrees in a response
time of about 200 ms with a position error of 0.6 mrad, targeting a typical application
for avionics. Although this method has a high positioning accuracy, the problem of long
positioning time exists. This method cannot provide fast positioning, and thus, in the
following will not be discussed in detail.

The present study combines the advantages of the above two positioning strategies
and proposes a new positioning strategy, namely, the first single-phase then two-phase
power-off method (FSPTTPPM), which can achieve fast positioning and ensure small po-
sitioning errors. This paper has been divided into five sections: An introduction to the
driving mechanism of the TPSPM and a detailed description of the motion characteristics
of the particle of the rotor has been given in Section 2. The different torsion angle expres-
sions, obtained on the basis of the relationship between the torque of the shaft and the
maximum static friction torque, have also been described in this section. The advantages
and disadvantages of the TPSPM have been summarized once again, and optimization
methods have been proposed to address the shortcomings of this positioning strategy. In
Section 3, a new positioning strategy, namely, the FSPTTPPM, has been proposed based on
the principle of ultrasonic friction reduction, and its driving mechanism has been analyzed.
In Section 4, a description of the test platform established in this work has been given, and
the experimental results obtained using this platform have been presented. A comparison
of the experimental results verified the correctness of the theoretical analysis. Conclusions
from this study have been given in Section 5.

2. Characteristics of TPSPM

TPSPM is widely used in engineering applications. This method benefits from the
advantage of fast response and high braking force of an ultrasonic motor power-off self-
locking [22]. However, when using this method for positioning, a large torsional vibration
of the shaft and sliding motion between the stator and the friction material occurs, re-
sulting in poor positioning accuracy and long positioning time. The following section
describes the characteristics of this driving method first and then analyzes the reasons for
the abovementioned drawbacks.

2.1. Assembly Structure System of the Motor and Definition of Particles

As shown in Figure 1, one end of the rotor is connected to the rotor of the motor, and
the hollow-type encoder is set on the outer side of the other end of the rotor. A particle, Q,
is set on the surface of the friction material on the rotor, and a particle, W, is set on the shaft.
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Figure 1. Assembly structure system of the motor and definition of particles. 
Figure 1. Assembly structure system of the motor and definition of particles.

According to material mechanics, there are differences in the rotational speed and
displacement at the two ends of the rotor because of the elastic element of the rotor. The
rotational angles of the shaft and the rotor are set as γro(t) and γst(t), respectively, and
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the theoretical position value is set as γzw, as shown in Figure 1. The rotational angular
velocities of the shaft and the rotor are ωro(t) and ωst(t), respectively, as shown in Figure 2.
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2.2. Introduction to TPSPM

The driving mode of the TPSPM is shown in Figure 3. The two driving ports, sin-
phase and cos-phase, are connected to the polarization regions of phase A and phase
B, respectively, in the stator. The signal-driving time of the TPSPM is divided into two
stages: the driving period (ton) and the stopping period (to f f ). In the driving period, the
two driving ports simultaneously input sinusoidal waves with a 90◦ phase difference for
driving the ultrasonic motor. In the stopping period, the two driving ports simultaneously
stop inputting the sine wave signal.
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method TPSPM and (b) shows the polarized region of the two phases in the stator.

2.3. Analysis of the Driving Mechanism of the TPSPM

The displacement and angular velocity of the axis obtained from the positioning
experiment with the TPSPM are shown in Figure 4. The initial angular velocity of the
shaft is maintained at ωro(t2) when the signal-driving time is in the driving period (ton)
and a switch from the driving period to the stopping period occurs when the two-phase
is powered off at the same time. The stopping period (to f f ) is divided into two periods,
namely, the deceleration period (td) and the attenuated resonance period (tu). As shown in
Figure 4a, the angular velocity of the rotor decreases sharply from t2 under the action of the
friction torque and the shaft begins to deform and generate the torsion angle, γro(t), and
torsion torque, Tro, around the centerline. The angular velocity of the rotor drops to zero at
t3, the rotation angle of the rotor shaft changes from γro(t2) to γro(t3) at t3, and the angular
velocity decreases from ωro(t2) to ωro(t3). The shaft continues to deform from t3 and the
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rotation angle changes from γro(t3) to γro(t4) at t4. In addition, the angular velocity of the
shaft decreases from ωro(t3) to zero. This period is defined as the deceleration period.
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Figure 4. Motion characteristics of the (a) displacement and (b) angular velocity of the shaft as a
function of time based on TPSPM.

The shaft returns to the original state from the torsional deformation from t4 and
performs a damped torsional vibration until t5, when the vibration stops. The above period
is defined as the attenuated resonance period (tu). In addition, the rotation angle of the
rotary axis changes from γro(t4) to γro(t5). The motion characteristics of the stopping
period will be described in detail in the following section.

2.4. Motion Characteristics of the Particle in the Stopping Period
2.4.1. Analysis of the Driving Mechanism of the Deceleration Section

As shown in Figure 5, the kinematic characteristics of the deceleration period td and
the attenuated resonance period tu are shown in Figure 5. The relative sliding occurs
between the friction material and the stator, and the angular velocity of the rotor and
the shaft decreases sharply in the exponential form under the action of sliding friction in
the period t2 ∼ t3. The expression for the angular velocity derived from the equation of
motion is {

ωro(t) = ωro(t2)e−τrot, (t ∈ [t2, t3])

ωst(t) = ωst(t2)e−τstt, (t ∈ [t2, t3])
, (1)

where τro = cro
Jro

, τst =
cst
Jst

, cro and cst represent the damping coefficients of the shaft and
the rotor, respectively, and Jro and Jst represent the rotational inertia of the shaft and the
rotor, respectively. The motion characteristics of the particle W during the time period tu
are shown in Figure 5.

As shown in Figure 1, the encoder is installed at the periphery of the shaft in the
assembly structure system of the motor in this paper, and which measures the rotation
angle of the shaft and the Angular velocity over time. However, the curves of the rotation
angle and angular velocity of rotor particle Q change with time, which cannot be measured
directly by the encoder. If the rotor speed is measured, the encoder needs to be directly
installed on the rotor to accurately measure the motor speed. In addition, considering the
weight of the rotor is very light, the encoder needs to be very precise and lightweight. If the
weight of the encoder is large, the weight of the rotor installed with the encoder will be far
greater than its own weight, which will cause the change of the moment of inertia, and then
an inaccurate data measurements. Due to the limitation of experimental conditions, in order
to reflect the changing trend of rotor speed, Figure 6 only shows the schematic diagram of
displacement and speed, which lays the groundwork for the theoretical analysis below.
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As shown in Figure 6, the power-off position has been set to γzs. Since the inertia, Jst,
of the rotor is very small and much smaller than that of the shaft, i.e., Jro, the particle Q
stops rotating at t3 and is positioned at γzw, and there is no sliding displacement between
the friction material and the stator. The shaft is elastic and connected to the rotor by the thin
aluminum material, and the angular velocity of the particle W is ωro(t3) at t3. As shown in
Figure 1, the expressions for γro(t), torsional shear stress, τro(t), and the torsional torque,
Tro(t), resulting from the deformation of the shaft, are obtained according to the mechanics
of the materials [23], respectively, as follows:{

τro(t) = Groγro(t)

γro(t) =
Tro(t)hro

Gro Iro

, (2)

where hro, Gro, and Iro represent the length, shear modulus, and cross-sectional polar
moment of inertia of the shaft, respectively [24], and are expressed as follows: Gro =

Ero
2(1+µro)

Iro =
πDro

4

64

, (3)
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where Rro, Ero, and µro represent the radius, Young’s modulus, and Poisson’s ratio of the
shaft, respectively. The maximum static friction force, fsmax, is the critical point of the static
friction and sliding friction. The expression of the sliding friction force, fslid, fsmax, and the
maximum static friction torque, Tromax, without the effect of ultrasonic friction reduction
are as follows: {

fslid ≤ fsmax = Fcµ0(t)
Tromax = fsmaxR

, (4)

where R represent stator radius. When the torque, Tro(t), of the shaft is not greater than
Tromax, there is no sliding between the friction material and the stator, whereas when Tro(t)
exceeds Tromax, the friction between the stator and the friction material becomes the sliding
friction, and relative sliding occurs. Both these aspects are described in detail below.

1. Dynamic analysis of Tro(t) < Tromax;

As shown in Figure 5a, during the period t3 to t4, Tro(t) is always less than Tsmax, and
there is no sliding between the friction material and the stator. The shaft still keeps rotating
and undergoes torsional deformation, and the torsional angle, γro(t), of the particle W
changes from γzw to γz0. As shown in Figure 5b, the angular velocity, ωro(t), of the particle
W decreases from ωro(t3) to zero under the action of the torque of the shaft. In addition to
this, the rotational kinetic energy is converted to the shear strain energy during torsional
deformation. The expressions for the rotational kinetic energy, Evro, and the shear strain
energy, Ezro, are shown below:

Evro =
Jro(ωro(t3))

2

2

Ezro =
(τro(t))

2

2Gro
=

γro(t)
2Gro

2

, (5)

According to the law of conservation of energy, the expression for γro(t) generated by
deformation is as follows:

γro(t) =

√
Jro

Gro
ωro(t3), (6)

When Tro(t) = Tromax, the torsion angle of the shaft deformation is defined as the
critical torsion angle, γromax. The critical torsional shear stress, τromax, and γromax are
obtained according to Equation (2) as follows:

τromax = γromaxGro

γromax =
Tromaxhro

Gro Iro

, (7)

The critical rotational angular velocity, ωromax, which produces sliding at t3, is obtained
by combining Equations (4), (6) and (7) as follows:

ωromax =
RFcµ0hro

Iro
√

JroGro
, (8)

The critical torsion angle, γromax, for generating sliding is obtained by combining
Equations (4) and (7) as follows:

γromax =
hroRFcµ0

IroGro
, (9)

2. Dynamic analysis of Tro(t) > Tromax;

As shown in Figure 7a, when Tro(t) > Tromax, the frictional force changes from static
friction to sliding friction and generates relative sliding during the period ty to t4, and
the rotation angle of the particle Q changes from γzw to γzwro. As shown in Figure 7b, the
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angular velocity of the particle Q is first accelerated and then decelerated by the correlation
of the torque and the static friction torque of the shaft.
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The rotation angle of the shaft changes from γzw to γzwro in the period t3 to ty, as
shown by the blue curve in Figure 7a. γro(t) of the shaft starts increasing from t3 until
γromax, which causes the torque of the shaft to be increased to the maximum static friction
torque, Tromax, at the same time.

In the period ty to t4, the shaft continues to twist when Tro(t) exceeds Tromax, which
causes relative sliding between the friction material and the stator. In addition, the position
of the particle W changes from γzw to γzwro. Since the frictional force between the stator and
the friction material is the sliding friction in this process, the torsion angle of the rotating
shaft is kept as γromax.

The red and blue curves in Figure 8 represent the rotational angle and angular velocity
curves of the stator and the friction material without and with the sliding displacement,
respectively. From a comparison of the red and blue curves, it can be observed that
the kinetic energy of the shaft is converted into the internal energy in the process of
relative sliding, and the amplitude of the angular velocity of the shaft demonstrates a
significant decay.
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2.4.2. Analysis of the Driving Mechanism of the Attenuated Resonant Period

As shown in Figures 5 and 8, during the period tu (t4 to t5), the shaft performs
damped torsional vibration. The damped free vibration of the torsional oscillation system
is expressed as follows [25]:

Jro
dγro

2(t)
dt2 + cro

dγro(t)
dt

+ kroγro(t) = 0, (t ∈ (t4, t5]), (10)

where kro represents the stiffness coefficient of the shaft and γp(t) represents the torsional
angle of the shaft. Since the vibration of the torsional pendulum system belongs to the
underdamped vibration, the following expression is obtained by solving Equation (10):

γro(t) = Are−ξroωnrot sin(ωdrot + ϕdro), (t ∈ (t4, t5]), (11)

where Ar represents the initial value of the amplitude of the torsional vibration and ϕdro
represents the phase angle of the torsional vibration. These parameters are expressed
as follows: 

Ar =

√√√√√√γ02 +

 dγro(t)
dt

|t=t4 + ξroωnroγ0

ωdro


2

tan ϕdro =
γ0ωdro

ξroωnroγ0 +
dγro(t)

dt
|t=t4

, (12)

The initial conditions of the torsion pendulum system in the above equation are
as follows: 

γ0 =

√
Jro

Gro
ωro(t4)

dγro(t)
dt

|t=t4 = ωro(t4)

, (13)

In Equation (12), ξro represents the damping ratio of the shaft, ωnro represents the
undamped resonance frequency of the shaft, and ωdro represents the damped resonance
frequency of the shaft. These parameters are expressed as follows:

ωnro =

√
kro

Jro
=

ωdro√
1− ξro2

ξro =
cro

2
√

kro Jro

, (14)

The resonance period of the shaft in the process of torsional vibration is expressed
as follows: 

Tnro =
2π

ωnro
, Tdz =

2π

ωdro

Tdro =
Tnro√

1− ξro2

, (15)

where Tnro represents the undamped resonance period of the shaft and Tdro represents the
damped resonance period of the shaft. The entire positioning process is finished when the
rotor shaft and rotor completely stop torsional vibration (t5 in Figure 8).

2.5. Analysis of the Twist Angle of the Rotor
2.5.1. Torsional Angle Analysis When the Torque of the Shaft Is Not Greater than Tromax

As shown in Figure 6a, the angular velocity of the particle Q starts from t2 and
decelerates to zero at t3. Since the rotational inertia, Jst, of the rotor is extremely small, the
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angular velocity of the particle Q varies approximately linearly with time and td can be
expressed as

td =
Jstωst(t2)

Tzu(t) + Tload
, (16)

where Tzu(t) and Tlaod(t) represent the friction torque and load torque, respectively, where
Tzu(t) = R fsmax, and R represents the stator radius. As shown in Figure 6b, the expression
for the rotation angle, ∆γd, of the rotor during td can be expressed as

∆γd =
1
2

ωst(t2)td =
1
2

Jst(ωst(t2))
2

Tzu(t) + Tload
, (17)

During the time period tu, since the shaft has a large rotational inertia, Jro, and the
torsional angle position value of the rotor remains constant, it needs to go through several
cycles of torsional vibration to stop the vibration, and particles of the rotor are finally
positioned at γzw. In the positioning process, the power needs to be cut off in advance
before the rotor reaches the target position in order to leave the required displacement
reserve value for the rotor to slow down. In this work, the displacement reserve value
derived from the theoretical formula has been defined as the theoretical displacement
reserve value, ∆γo, whereas that obtained from the experiment has been defined as the
measured displacement reserve value, ∆γoc. According to Figure 6a, the expression for
∆γo is

∆γ0 = ∆γd =
1
2

Jst(ωst(t2))
2

Tzu(t) + Tload
, (18)

2.5.2. Dynamic Analysis When the Torque of the Shaft Is Greater than Tromax

When the torque of the shaft is greater than Tromax, the torque transmitted by the
shaft to the rotor causes relative sliding between the friction material and the stator, and
thus γro(t) of the shaft maintains the value of γromax. The expressions of the resulting
sliding displacement, ∆γzw, and the theoretical displacement reservation, ∆γo, according
to Figure 8a, are as follows: {

∆γzw = γzwro − γzw
∆γ0 = γromax + ∆γzw

, (19)

The shaft requires multiple cycles of damped decaying vibration to reach the stop
position, and multiple slides occur between the friction material and the stator. Since
the friction force will switch back and forth between sliding friction and static friction
during this period, resulting in a relatively strong nonlinear creep between the stator and
the friction material [26,27], it is difficult to find a theoretical formula that can accurately
calculate the misaligned sliding displacement.

To solve this problem, a new positioning strategy, namely, FSPTTPPM, has been
proposed in this study, which can ensure that the crawling between the friction material
and the stator is avoided during the torsional oscillation of the shaft so that the value of
the sliding displacement, ∆γzw, tends to zero ( ∆γzw →0). In addition, it is necessary to
calculate the rotation angle, ∆γo f f , of the speed reduction period to obtain an accurate
displacement reservation value, ∆γo, and avoid the search for a theoretical formula that
can accurately calculate the misaligned sliding displacement, ∆γzw. The mechanism of this
positioning strategy is described in detail in the following section.

3. Introduction to FSPTTPPM and Analysis of Its Driving Mechanism
3.1. Introduction to the FSPTTPPM Driving Method

The signal-driving time of FSPTTPPM is divided into two periods, the driving period
(tson) and the stopping period (tso f f ), where the stopping period is divided into the single-
phase power-off period (tsd) and the two-phase power-off period (tsu), as shown in Figure 9.



Micromachines 2022, 13, 1542 11 of 25

During the time period tson, the motor speed is in a steady state, and the driving circle
frequency is set to ωq. When the signal-driving time starts to enter tsd, the two driving ports
of the motor output only one driving signal during tsd and the driving circle frequency is set
to ωu. When ωro(t03) is much smaller than ωromax, the two driving ports stop outputting the
driving signals, and the signal-driving time enters the time period tsu. In addition, the shaft
stops rotating at t04. The entire positioning process is completed after the above process.
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3.2. Principal Analysis of the FSPTTPPM

The displacement and angular velocity of the axis obtained from the positioning
experiment, performed by employing FSPTTPPM, is shown in Figure 10. The angular
velocity of the shaft is stabilized at the initial angular velocity ωro(t02) during tson, and the
rotation angle changes from γro(t01) to γro(t02). When the signal-driving time is in the time
period tsd, the rotation angle changes from γro(t02) to γro(t03).
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The control system keeps the stator and the friction material in the ultrasonic friction
reduction by controlling the driving circle frequency, ωu [28,29], such that the equivalent
friction coefficient, µw, (Equation (S1) in the Supplementary Material) is smaller than
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the sliding friction coefficient, µ0. The sliding friction force, fslidc, and the maximum
static friction force, fscmax, in the case of ultrasonic friction reduction can be obtained by
multiplying both sides of Equation (S1) by the pre-pressure, Fc, as follows:

fscmax = fslidc = Fcµw(t) < fsmax, (20)

According to Equation (20), the maximum static friction, fscmax, generated during tsd
in Figure 9 under the effect of ultrasonic friction reduction is smaller than the maximum
static friction, fsmax, during tsd in Figure 3, such that the stator and the friction material
are in a relative sliding state. In addition, the torsion angle and angular velocity of the
shaft connected with the rotor are the critical torsion angle γcmax and critical rotational
angular velocity ωrocmax under ultrasonic friction reduction, respectively. Further, the
torque generated by the torsional deformation of the rotor during this time is the critical
torsional torque, Trocmax, in the case of ultrasonic friction reduction. The expressions for
γcmax and Trocmax are as follows:

γcmax =
RhcoFcµw(t)

Gro

ωrocmax =
RFcµw(t)hro

Iro
√

JroGro

Trocmax =
IroGroγcmax

hro

, (21)

On combining Equations (4), (9), (20) and (21), it is found that γcmax between the stator
and the friction material with sliding during tsd is less than γromax given by Equation (9).
The critical torque, Trocmax, of the shaft with the effect of ultrasonic friction reduction is less
than the critical torque, Tpmax, without the effect of ultrasonic friction reduction obtained
by combining Equations (4) and (21), i.e.,{

γcmax < γromax

Trocmax < Tromax
, (22)

As shown in Figure 10, the stator and the friction material come in complete contact
during tsu, the control system decelerates the angular velocity of the particle W from
ωro(t02) to ωro(t03), and makes ωromax > ωro(t03) during tsd. Since the angular velocity of
the particle W is much smaller than ωromax after deceleration in the time period tsd and
γro(t) is proportional to ωro(t3) according to Equation (6), γro(t) is smaller than γromax. The
following inequality is obtained by combining Equations (6) and (22):

γro(t) =

√
Jro

Gro
ωp(t3) <

√
Jro

Gro
ωromax = γromax, (23)

Since the stator and rotor are sliding during tsd, the torque, Tro(t), of the shaft is greater
than Trocmax, and the expression obtained by combining Equations (21)–(23) is as follows:

Trocmax < Tro < Tromax, (24)

The critical torque for the occurrence of the sliding motion between the friction material
and the stator changes from Trocmax to Tromax during tsu. According to Equation (24), the
torque of the shaft during tsu is less than the critical torque, Tromax, which changes the
friction force between the stator and the friction material from sliding friction to static
friction. Thus, the friction material and stator will not slide during the torsional vibration
of the shaft.
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3.3. Motion Characteristics of the Shaft

The blue and red curves in Figures 11 and 12 represent the characteristic curves of the
motion of the particle W (blue curve in Figure 7) and particle Q (blue curve in Figure 6)
when the angular velocity, ωro(t3), of the particle W is greater than ωromax using TPSPM
and FSPTTPPM, respectively.
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velocity as a function of time.
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velocity as a function of time.

As shown in Figure 11, when the signal-driving time is between t03 to th, the rotation
angle of the particle Q changes from zero to γzws and the angular velocity of the particle W
decreases from ωro(t02) to ωro(t03) under the action of the friction torque. In addition, as
shown in Figure 12, the angular velocity of the particle W decreases from ωro(t02) to zero.
tsd can be expressed as

tsd =
Jstωst(t02)

Tszu + Tload
, (25)

where Tszu represents the resistance torque in tsd that can be expressed as

Tszu = Fcµw(t)R, (26)
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The angular velocity of the particle W decreases approximately linearly. The ex-
pressions for the torsion angle during tsd and the theoretical displacement reservation,
∆γo, are

∆γ0 = γzws − γzw =
1
2

ωp(t2)tso f f =
1
2

Jst
(
ωp(t2)

)2

Tszu + Tload
, (27)

For the signal-driving time during tsu, the angular velocity of the particle W decreases
from ωro(t03) to zero during the damped vibration, and the rotation angle changes from
γzw to γzws. Based on the above analysis, the expressions for the positioning time (Tdj) are
obtained from the analysis of the driving mechanisms shown in Figures 4 and 10, as follows:

Tdj =

{
td + tu
tsd + tsu

, (28)

When TPSPM is used for positioning, the positioning time is the sum of td and tu.
When FSPTTPPM is used for positioning, the positioning time is the sum of tsd and tsu.
The total time when the amplitude of torsional oscillation of the shaft decays to less than
5 arcsec from to f f is defined as the positioning time.

3.4. Parameter Setting and Analysis of the Theoretical Equations

In this study, the pre-pressure and load torque between the stator and the rotor
were taken to be Fc = 180 N and Tload = 0.2 N·m, respectively. The parameters in the
abovementioned equations have been listed in Table 1.

Table 1. Parameter values.

Parameter Description Numerical Value (Unit)

Jro Moment of inertia of the shaft 1.7 × 10−4 (kg·m2)
Jst Rotational inertia of the rotor 8 × 10−8 (kg·m2)
µ0 Sliding friction coefficient 0.3
cst Damping coefficient of the rotation direction of the rotor 0.05
cro Damping coefficient of the shaft direction 0.04
hro Length of the shaft 180 (mm)
µro Poisson’s ratio of the shaft material 0.31
Ero Young’s modulus of the shaft material 20 (GPa)
R Stator radius 30 (mm)

Dro Shaft diameter 50 (mm)
kro Stiffness factor of the shaft direction 200 (GPa)

Firstly, the two positioning strategies are used at critical angular velocity, respectively,
in the following sections; then, the parameters listed in Table 1 are substituted into the
theoretical formula above; finally, the position and angular velocity are simulated with
time by MATLAB, as shown in Figure 13. In the simulation, the critical angular velocity
ωromax and ωrocmax are set as 1.35 × 10−3 rad/s and 0.38 × 10−3 rad/s, respectively, and
the driving circle frequency in tsd is set as ωu = 2π × 42, 000 rad/s, and Tszu = 0.7 N·m is
obtained, which is shown in Figure S4 in the Supplementary Material. The following three
points are obtained:

When TPSPM is used for positioning, the initial angular velocity ωro(t3) of the shaft
in (tu) is related to the initial angular velocity ωro(t2) and the parameters listed in Table 1
after two driving ports stop outputting the driving signals; thus, ωro(t3) is not controllable.
When FSPTTPPM is used for positioning, the initial angular velocity ωro(t03) of the shaft in
(tsu) is not only related to the initial angular velocity ωro(t02) and the parameters listed in
Table 1, moreover, it is related to driving circle frequency (ωu) and the duration of tst, so
ωro(t03) is parameterable.

When TPSPM is used for positioning, and the initial angular velocity is large, the
sliding motion between the friction material and the stator during the torsional vibration of
the shaft can lead to poor positioning accuracy. If FSPTTPPM is employed for positioning,
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no sliding displacement occurs between the friction material and the stator regardless
of the rotational inertia and the initial angular speed of the shaft, and thus the sliding
displacement is zero ( ∆γzw → 0). Hence, the search for a theoretical formula that can
accurately calculate the sliding displacement is avoided.
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LAB simulation. (a) the position value of the simulation and (b) the angular velocity of the simulation.

When TPSPM is used for positioning, the angular velocity of the rotor drops sharply to
zero in an exponential manner during tsd, making td very short. According to Equations (12)
and (15), Ar is positively correlated with Jro, Tdro, and ωro(t3), respectively, and Tdro is
proportional to

√
Jro. In addition, the initial angular velocities, ωro(t2) and ωro(t3), are

positively correlated according to Newton’s law. When the rotational inertia of the shaft
and Ar are large, the torsional vibration amplitude of the shaft needs to decay to zero
after several oscillation cycles. When FSPTTPPM is used for positioning, the angular
velocity of the rotor is decelerated during tsd based on the ultrasonic friction reduction
mechanism. Although tsd is slightly larger than td, Ar becomes small after deceleration
during tsd, making tsu smaller than tu. According to the definition given in Equation (28),
the positioning time of FSPTTPPM is smaller than that of TPSPM.

The above three advantages were found from the theoretical analysis. To verify the
correctness of the above analysis conclusions, an experimental platform was set up for
experimental verification, which has been described in the following section.

4. Construction of the Test Platform
4.1. Introduction to the Test Platform

As shown in Figure 14, the test platform consists of a motor driving control system, a
high-precision measuring device, a pressure measuring device, and a host computer testing
system. The high-precision measuring device consists of a high-precision encoder and a
shaft to measure the motor speed. The pressure measuring device consists of a pressure
sensor, a torque disk, a load, a fixed vertical plate, a shaft, and mechanical connecting
parts for fixing each device. The weight is pulled by the string on the outer ring of the
torque disk, and the load torque is obtained by the product of the pressure measured by the
pressure sensor and the rotor radius. The motor driving control system consists of the core
board circuit, driving control circuit, push-pull circuit, and serial communication circuit.
The host computer test system has been written by the upper computer program based on
LabVIEW, which is used for sending the control instructions to the digital signal processor
(DSP) and receiving data for real-time display and storage.
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Figure 14. Construction of the experimental platform.

4.2. Framework of the Test System

To be able to use both TPSPM and FSPTTPPM positioning strategies for positioning,
the host computer needs to send commands to the serial communication unit of the
DSP28335 core board according to the communication protocol command format. After
receiving the command, the control unit of the core board sends different parameters to
the driving control board according to different positioning strategies, and the ultrasonic
motor works under the control of the driving control board. The block diagram of the
motor position test system is shown in Figure 15.
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4.3. Structure of the Control System in the Test System

To enable the use of the two positioning strategies for performing comparative ex-
periments, the control system of the developed test platform uses a proportional-integral-
derivative (PID) closed-loop controller to control the angular speed of the motor and an
open-loop method to control the angular position of the motor. The structure of the control
system is shown in Figure 16.
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Figure 16. Block diagram of the control system for positioning control.

As shown in Figure 16, the angular velocity of the motor is first controlled by a PID
controller and kept in a steady state to provide different initial angular velocities for the
experiments described in Section 4.4 below. Then, the power-off position value, Sdw, is
set, and, finally, the two positioning strategies are used for positioning at a certain angular
speed, respectively. The open-loop position resolution of the ultrasonic motor is 1 arcsec,
and the sampling time is 160 µs.

4.4. Experiments and Analysis
4.4.1. Definition of the Power-Off Reservation Value

As shown in Figure 17, γzc, γzs, and γzw represent the measured position value, the
power-off position value, and the theoretical position value, respectively. ∆γo and ∆γoc
represent the reserved value of the theoretical and measured displacement, respectively.
The power-off position value of γzs= 623,782 arcsec was set in the experimental process
described below. Due to the deviation between the theoretical calculation and the measured
position, the reserved deviation of the theoretical displacement, ∆γolc, is defined as the
difference between ∆soc and ∆sol , i.e.,

∆γolc = ∆γoc − ∆γo, (29)
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In this study, the deviation error rate of the theoretical displacement reserve value has
been defined to measure the positioning accuracy at different initial angular speeds, which
is expressed as

σy =
∆γolc
∆γo

, (30)
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According to the above equation, the closer the value of σy is to 0, the smaller is the
value of ∆γolc.

4.4.2. Experimental Test and Analysis of the Positioning Method Based on TPSPM

Based on the reasons for the low positioning accuracy mentioned in Section 2.5.2,
five sets of experiments were carried out at different initial angular velocities. Figure 18
shows the measurement chart of the position value and the angular velocity as a function
of time based on TPSPM at different initial angular velocities.
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Figure 18. Measured values of the TPSPM (a) position and (b) angular rotation speed as a function 

of time at different initial angular velocities. 
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Figure 19. Changing trend of the displacement reservation value and positioning time. (a) Shows 

the trend of Δ𝛾𝑜 and Δ𝛾𝑜𝑐, whereas (b) shows the trend of 𝑇𝑑𝑗 and Δ𝛾𝑜𝑙𝑐 with increasing initial 

angular velocity. 

Figure 19 shows that Δ𝛾𝑜𝑐 , Δ𝛾𝑜, 𝑇𝑑𝑗 , and Δ𝛾𝑜𝑙𝑐 are positively correlated with the in-

itial angular velocity, which confirms that the sliding displacement, Δ𝛾𝑧𝑤, is the reason 

for the large deviation of the theoretical displacement reservation value. In addition, the 

experimentally measured positioning time and the variation trend of Equation (16) are 

also correlated. 

4.4.3. Setting Experiment of the Driving Circle Frequency during 𝑡𝑠𝑑 

Figure 18. Measured values of the TPSPM (a) position and (b) angular rotation speed as a function of
time at different initial angular velocities.

Based on the values of ∆γo and ∆γolc obtained from Equations (27) and (29), respec-
tively, and the changing trend of Tdj and ∆γoc with the increasing initial angular velocity
obtained by Equation (28), the results obtained from the experimental measurements are
shown in Figure 19.
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Figure 18. Measured values of the TPSPM (a) position and (b) angular rotation speed as a function 

of time at different initial angular velocities. 
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Figure 19. Changing trend of the displacement reservation value and positioning time. (a) Shows 

the trend of Δ𝛾𝑜 and Δ𝛾𝑜𝑐, whereas (b) shows the trend of 𝑇𝑑𝑗 and Δ𝛾𝑜𝑙𝑐 with increasing initial 

angular velocity. 

Figure 19 shows that Δ𝛾𝑜𝑐 , Δ𝛾𝑜, 𝑇𝑑𝑗 , and Δ𝛾𝑜𝑙𝑐 are positively correlated with the in-

itial angular velocity, which confirms that the sliding displacement, Δ𝛾𝑧𝑤, is the reason 

for the large deviation of the theoretical displacement reservation value. In addition, the 

experimentally measured positioning time and the variation trend of Equation (16) are 

also correlated. 

4.4.3. Setting Experiment of the Driving Circle Frequency during 𝑡𝑠𝑑 

Figure 19. Changing trend of the displacement reservation value and positioning time. (a) Shows
the trend of ∆γo and ∆γoc, whereas (b) shows the trend of Tdj and ∆γolc with increasing initial
angular velocity.
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Figure 19 shows that ∆γoc, ∆γo, Tdj, and ∆γolc are positively correlated with the initial
angular velocity, which confirms that the sliding displacement, ∆γzw, is the reason for
the large deviation of the theoretical displacement reservation value. In addition, the
experimentally measured positioning time and the variation trend of Equation (16) are
also correlated.

4.4.3. Setting Experiment of the Driving Circle Frequency during tsd

To achieve positioning with a short positioning time and a small deviation of ∆solc,
five sets of single-phase power-off positioning experiments based on FSPTTPPM and at
different driving circle frequencies, ωu, were conducted, as shown in Figure 20.
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Figure 20. Measurement of the positioning of the single-phase power-off period in terms of the
(a) measured position value and (b) angular velocity at different driving circle frequencies as a
function of time.

From Figure 19, it can be observed that at the same initial angular velocity, Tdj increases
with increasing circle frequency difference between the driving circle frequency, ωu, and
the resonance frequency (40,900 Hz). To achieve a shorter positioning time, the driving
circle frequency of tsd is set to the driving circle frequency that is closer to the resonant
frequency (ωu = 2π × 41, 000 rad/s). This has been conducted based on the conclusion
that the resistance torque between the stator and the friction material is positively related
to the circle frequency difference obtained from the trend of the variation curve in the
Supplementary Material (Figure S4).

4.4.4. Experiments Employing the Two Positioning Strategies

To verify that the deviation of the theoretical displacement reservation value, ∆solc,
of FSPTTPPM is smaller than that of TPSPM, the superposition drive method [9] and the
driving control by the PID controller were used to obtain five sets of different initial angular
velocities, which are 0.24, 0.36, 0.72, 1.09, and 1.18 rad/s. Figure 21 shows the positioning
value and the angular velocity obtained for different initial angular velocities when the two
positioning strategies are employed.
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Figure 21. Cont.
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Figure 21. Measured position and angular velocity values obtained by applying the two positioning 

strategies investigated in this study. (a) Position curve for the initial angular velocity of 0.24 rad/s; 

(b) angular velocity curve for the initial angular velocity of 0.24 rad/s; (c) position curve for the 

initial angular velocity of 0.36 rad/s; (d) angular velocity curve for the initial angular velocity of 0.36 

rad/s; (e) position curve for the initial angular velocity of 0.72 rad/s; (f) angular velocity curve for 

the initial angular velocity of 0.72 rad/s; (g) position curve for the initial angular velocity of 1.09 

rad/s; (h) angular velocity curve for the initial angular velocity of 1.09 rad/s; (i) position curve for 

the initial angular velocity of 1.18 rad/s; (j) angular velocity curve for the initial angular velocity of 

1.18 rad/s. 

To analyze the experimentally measured results shown above in detail, firstly, Δ𝛾𝑜𝑐  

was obtained from the difference between 𝛾𝑧𝑠 and 𝛾𝑧𝑐 in Figure 20. Secondly, Δ𝛾𝑜 was 

obtained for TPSPM and FSPTTPPM using Equations (19) and (27), respectively, and they 

represent the friction torque 𝑇𝑧𝑢 and 𝑇𝑠𝑧𝑢 in Equation (26). Equation (26) was obtained 

from the resistive friction torque measurement value in Figure S.4 from the Supplemen-
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Figure 21. Measured position and angular velocity values obtained by applying the two positioning
strategies investigated in this study. (a) Position curve for the initial angular velocity of 0.24 rad/s;
(b) angular velocity curve for the initial angular velocity of 0.24 rad/s; (c) position curve for the initial
angular velocity of 0.36 rad/s; (d) angular velocity curve for the initial angular velocity of 0.36 rad/s;
(e) position curve for the initial angular velocity of 0.72 rad/s; (f) angular velocity curve for the
initial angular velocity of 0.72 rad/s; (g) position curve for the initial angular velocity of 1.09 rad/s;
(h) angular velocity curve for the initial angular velocity of 1.09 rad/s; (i) position curve for the initial
angular velocity of 1.18 rad/s; (j) angular velocity curve for the initial angular velocity of 1.18 rad/s.

To analyze the experimentally measured results shown above in detail, firstly, ∆γoc
was obtained from the difference between γzs and γzc in Figure 20. Secondly, ∆γo was
obtained for TPSPM and FSPTTPPM using Equations (19) and (27), respectively, and they
represent the friction torque Tzu and Tszu in Equation (26). Equation (26) was obtained
from the resistive friction torque measurement value in Figure S4 from the Supplementary
Material. ∆solc of the two positioning strategies were obtained using Equation (29) and then
σy of the two positioning strategies was obtained using Equation (30). Finally, Tdj values
for the two positioning strategies were obtained using Equation (28). It has been observed
that when the initial angular velocity changes from 0.24 to 1.18 rad/s, ∆γoc, ∆γo, ∆γolc,
and Tdj increase with the increasing initial angular velocity, as shown in Figure 22.
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Δ𝛾𝑜, and Δ𝛾𝑜𝑙𝑐 based on FSPTTPPM, and (c) 𝑇𝑑𝑗 based on the two positioning strategies. 
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served value based on FSPTTPPM is more than that of TPSPM. 

Figure 22. Analysis of the changing trend of (a) ∆γoc, ∆γo, and ∆γolc based on TPSPM, (b) ∆γoc, ∆γo,
and ∆γolc based on FSPTTPPM, and (c) Tdj based on the two positioning strategies.

As shown in Figure 22, when the angular velocity of the driving period is less than
0.3 rad/s, the difference in the positioning time between the two positioning strategies is
very small, whereas when the initial angular velocity is greater than 0.7 rad/s, the position-
ing time of FSPTTPPM is 10 ms, which is less than that of TPSPM. Using the experimental
values plotted in Figure 21, σy was calculated for the two positioning strategies, as shown in
Figure 23. When the initial angular velocity is less than 0.44 rad/s or more than 0.73 rad/s,
the error rate of the theoretical displacement reserved value based on FSPTTPPM is less
than that of TPSPM. However, when the initial angular velocity is more than 0.44 rad/s
and less than 0.52 rad/s, the error rate of the theoretical displacement reserved value based
on FSPTTPPM is more than that of TPSPM.
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4.4.5. Conclusions from the Experimental Measurements Using the Two Positioning Strategies

The following three conclusions were obtained after analyzing the experimental data:

1. When the initial angular velocity is greater than 0.7 rad/s, the positioning time of
FSPTTPPM is less than that of TPSPM.

2. σy of FSPTTPPM and TPSPM for the initial angular velocity from 0.24 to 1.18 rad/s
varies in the ranges of −0.4 to 0.1 and −0.8 to 0.8, respectively. Compared to TPSPM,
σy of FSPTTPPM is closer to zero.

3. When the motor is used for positioning on a project, the initial angular velocity of the
most closed-loop positioning controller is quite slow. According to the variation trend
of the above curve, the error rate of the theoretical displacement reserved value based
on TPSPM is less than that of FSPTTPPM at low speed.

In summary, FSPTTPPM not only has a shorter positioning time but also leads to the
error rate of reservation deviation to be close to zero.

5. Conclusions

In this study, a new positioning strategy based on the principle of ultrasonic friction
reduction, namely FSPTTPPM, has been proposed, which has the following advantages
compared to the traditional TPSPM strategy:

1. From the analysis of the experiment of the driving circle frequency setting of tsd, it
is found that Tdj increases with increasing circle frequency difference between the
driving circle frequency, ωu, and the resonant resonance frequency for the same initial
angular velocity. A driving circle frequency set to ωu = 2π × 41, 000 rad/s in this
study thus realizes positioning with a shorter positioning time.

2. When the TPSPM strategy is used for positioning and the torque of the shaft is greater
than Tromax, the torque transmitted by the shaft to the rotor causes relative sliding
between the friction material and the stator, and the shaft requires several cycles of
damped vibration attenuation to reach the stopping position. Due to the relatively
strong nonlinear creeping between the stator and the friction material during this
process, it is difficult to find a theoretical formula that can accurately calculate the
misaligned sliding displacement. To solve this problem, a new positioning strategy,
namely, FSPTTPPM, has been proposed in this study, which is based on the principle
of ultrasonic friction reduction. It keeps the friction material and the stator in a sliding
state by controlling the driving circle frequency, ωu, such that that no sliding occurs
between the friction material and the stator during the torsional vibration of the shaft
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and the sliding displacement ∆γzw tends to zero. Thus, the search for a theoretical
formula that can accurately calculate the sliding displacement is avoided, and by
simply using Equation (27), an accurate displacement reservation value, ∆γo, can
be obtained.

3. When the two positioning strategies are used for positioning, td and tsd are almost
equal, but tsu is significantly smaller than tu. Thus, the positioning time of FSPTTPPM
is smaller than that of TPSPM. In addition, when using TPSPM for positioning, the
positioning time is not only positively related to the initial angular velocity but also
positively related to the rotational inertia of the shaft. However, FSPTTPPM not only
has the advantage of short positioning time but also a significantly reduced influence
of the rotational inertia of the shaft on the positioning.
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