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According to the characteristics of fault diagnosis for pumping station, such as the complex structure, multiple mappings, and
numerous uncertainties, a new approach combining T-S fuzzy gate fault tree and Bayesian network (BN) is proposed. On the one
hand, traditional fault tree method needs the logical relationship between events and probability value of events and can only
represent the events with two states. T-S fuzzy gate fault tree method can solve these disadvantages but still has weaknesses in
complex reasoning and only one-way reasoning. On the other hand, the BN is suitable for fault diagnosis of pumping station
because of its powerful ability to deal with uncertain information. However, it is di�cult to determine the structure and conditional
probability tables of the BN. �erefore, the proposed method integrates the advantages of the two methods. Finally, the feasibility
of the method is veri	ed through a fault diagnosis model of the rotor in the pumping unit, the accuracy of the method is veri	ed
by comparing with the methods based on traditional Bayesian network and BP neural network, respectively, when the historical
data is su�cient, and the results are more superior to the above two when the historical data is insu�cient.

1. Introduction

With the operation of the 	rst phase of the South-to-North
Water Diversion Project, the reliability and ability to achieve
preset functions of the pumping stations and units at every
level will a
ect the e
ectiveness of the whole project, while
the faults of each pumping station may cause major issues
about engineering safety, signi	cant economic losses, and
serious social impact if expanded further. �erefore, it is of
great signi	cance to monitor, evaluate, predict, and diagnose
the running state of the pumping stations and units.

�e operating state of the large-scale pumping station is
a
ected by the coupling of hydraulic, mechanical, and elec-
tromagnetic factors. And the factors that a
ect its e�ciency
or failure are o�en multiple. At the same time, there is dif-
ferent steady status or transition status corresponding to dif-
ferent conditions like starting and stopping and blade adjust-
ment in the course of operating.�erefore, the fault diagnosis
of pumping station (group) can be divided into conventional
fault diagnosis and uncertain fault diagnosis.�e former such
as electrical equipment has been solved because it is possessed

in its computer monitoring system. However, these uncertain
fault diagnoses under the coupling of mechanical, hydraulic,
and electromagnetic factors are di�cult [1–3].

Bayesian network is an intelligent method combin-
ing probability theory, graph theory, and decision theory.
Recently, many researchers focus on the 	eld of fault diag-
nosis, especially in the complex systems with large amount
of uncertain information [4–6]. But its application in large
pumping and drainage pumps is very little. In paper [7],
Bayesian network is 	rstly applied to the fault diagnosis of
the hydrogenerator by constructing a simple fault diagnosis
system for the hydrogenerator set, SmartHydro, which uses
vibration of di
erent frequency as the fault features to realize
the diagnosis of several major faults caused by factors that
are mechanical, hydraulic, electromagnetic, etc. �is method
makes full use of the advantage of Bayesian network to solve
the problem of uncertain fault diagnosis in pumping unit.
However, the fault mechanism of a real pumping unit is
far more complicated. A large number of nodes and condi-
tional probability tables are required to construct a complete
Bayesian network. So Bayesian network is combined with
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the Noisy Or model in paper [8] to calculate the connection
probability between a single node and the result in the whole
system with formula only by determining the probability
relationship between every node and the result. It is veri	ed
that this model greatly reduces the amount of conditional
probabilities that need to be determined and advances the
application of Bayesian network in fault diagnosis in pump-
ing units. However, it is di�cult to understand the fault
mechanism and build a Bayesian network accurately in large
complex systems such as pumping stations. �at needs the
assistance of experienced experts and learning based on a
large number of historical data, especially historical fault
data. As a newly developed large-scale complex system, the
number of historical fault data of pumping station (group)
in the South-to-North Water Diversion Project is very little.
In addition, the number of nodes in constructed Bayesian
network is very large. �erefore, it is more di�cult to
determine the structure and conditional probability tables.

Some researchers have combined the traditional fault tree
theory with the Bayesian network to solve the problem of
constructing a Bayesian network. However, there are many
shortcomings in the traditional fault tree: (1) the logical
relationships and probability between events need to be
known exactly. (2) Compatibility is not strong. �at means
the existing data is not applicable when the system conditions
are changed. (3) Every event can be described only with two
states: {0, 1}. �e T-S fuzzy gate fault tree analysis method
proposed by Song et al. [9] integrates the fuzzy theory into
the fault tree, which can not only overcome shortcoming
(1) through describing the connection between events as an
uncertain item but also describe multiple states of the system
conveniently. But there are still some disadvantages, such as
poor compatibility, complex reasoning process, and only one-
way reasoning.

�erefore, this paper combines T-S fuzzy gate fault tree
method and Bayesian network method [10] that can convert
the fuzzy gate rule of T-S fuzzy gate fault tree into the
conditional probability table of Bayesian network and make
full use of the e�cient parallel two-way reasoning ability of
Bayesian network to realize the uncertain fault diagnosis of
pumping station. Finally, the Bayesian network is constructed
according to the above method, and the fault diagnosis of the
rotor, which is one of the most important and most faulty
components of the pump unit, proves the correctness and
superiority of the network.

�e remainder of this paper is outlined as follows: 	rst,
the T-S fuzzy gate fault tree and Bayesian network are brie�y
reviewed. �en, the concrete steps of transforming the T-
S fuzzy gate fault tree to Bayesian network are described.
Finally, the e
ectiveness and superiority of the proposed
approach are illustrated by taking the rotor which is one of
themost important andmost prone to fault in the pump unit.

2. T-S Fuzzy Gate Fault Tree

Compared with the traditional fault tree method, T-S fuzzy
gate fault tree method combines the fuzzy theory with
the fault tree method, provides the relationships between
upper and lower events with uncertainties, and expresses
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Figure 1: T-S fuzzy fault tree.

Table 1: Rules for T-S gate �.
Rules �1 �2 �3 �2�� ��1�1 ��2�1 ��3�3 ��� (��2�2 )

fault probabilities with fuzzy numbers. �ese events between
layers are connected through the fuzzy gate, which is a
production rule de	ning the probability of di
erent states
of the top event caused by di
erent combinations of bottom
events. A typical T-S fuzzy gate fault tree model is depicted in
this section. Figure 1 shows a T-S fuzzy fault tree model.

In Figure 1, �1, �2, . . . , �5 are 	ve bottom events, each

with �� (� = 1, 2, . . . , 5) values of state described as ��1�1 , ��2�2 ,. . . , ��5�5 , respectively. �� (	 = 1, 2, 3) is the number of fault
states for the top event �1, and the intermediate events �2, �3
can be described as��1�1 ,��2�2 , and��3�3 .��,��, and�� represent
fuzzy rules of T-S gates 
, �, and �, respectively.�e fuzzy rules
of the local T-S fuzzy gate fault tree composed of �2, T-S gates�, and �1, �2, and �3 can be represented in Table 1.

T-S gate has the following rule or formula, which is also
the conditional probability of the corresponding nodes in BN:

��� (��212 ) = � (�2 = ��212 | �1 = ��1�1 , . . . , �3 = ��3�3 )
��� (��222 ) = � (�2 = ��222 | �1 = ��1�1 , . . . , �3 = ��3�3 )

...
��� (��2�2 ) = � (�2 = ��2�2 | �1 = ��1�1 , . . . , �3 = ��3�3 ) .

(1)

3. BN

3.1. Overview of Bayesian Network. �e Bayesian network
uses a graphical mode to express the joint probability of
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Figure 2: A typical Bayesian network structure.

multiple variables, and the causality between variables is
represented by directional connection lines. Give each root
node a prior probability, and each child node takes the
conditional probability Table 9. A Bayesian network can be
represented by a multiple tuple ⟨�,�, �⟩ where � is the
node variable, � is the directional connection line between
nodes, � is the conditional probability table representing the
connection strength between nodes. It combines directional
acyclic graph with probability theory. It is more objective and
scienti	c with the formal probability theory foundation, and
its knowledge representation form is also more intuitive. �e
Bayesian network is more objective with the combination of
the prior knowledge of experts and the posterior data. �e
prior knowledge dominates when the posterior data is less,
while the posterior knowledge dominates when the posterior
knowledge is abundant. A typical Bayesian network structure
is depicted in Figure 2.

3.2. Construction of Bayesian Network. �ree parts should
be determined when building a complete Bayesian network:
the node variables, the structure of the network, and the
conditional probability table for every node. �ere are three
main methods to determine the latter two.

(1) �rough Experts’ Experience Completely. �is method
is a
ected by the limitation of human’s knowledge, and the
bias of a network can be found easily in practical application.

(2) Learning through Historical Data Completely. When
the historical data is su�cient, this method has strong
adaptability by reasoning the structure and parameters of BN
scienti	cally.

(3) Combining the above Two. �e historical data is o�en
insu�cient, so the nodes and structure of BN can be deter-
mined by experts, and the parameters can be determined
through learning from data. �is method is applied more in
practice because it can reduce the di�culty of determining
parameters of the network and the structural learning error
caused by insu�cient data.

Parameter learning methods of data-driven BN are
mainly the following two:

(1) Maximum-likelihood estimation method and Baye-
sian method can be used when data is su�cient.�ey
are shown, respectively, in

� (� | �) = � (� | �) = 	∏
�=1

� (�� | �) (2)

� (� | �) ∝ � (�) � (� | �) , (3)

where � is a random variable, � = (�1, �2, �3, . . . ,�	) is a data set, and �(� | �) is the maximum-
likelihood function of �.

(2) When data is insu�cient, if the topology of the
network is known, EM (expectation maximization)
can be used to calculate the parameters. If the struc-
ture of network is unknown, the structure maximum
expectationmethod can be used. Speci	c steps are not
detailed here, which can be found in related literature.

3.3. Bayesian Network Inference. �ere are three kinds of
inference in Bayesian network: support inference, causal
inference, and diagnostic inference. �is section focuses on
the last one, which determines the cause according to the
measured characteristic node with abnormal phenomenon
when the fault occurs. Steps are as follows:

(1) Obtain the state fact of the feature node, and let its
probability value be 1.

(2) Let the obtained fact node be �, and then themarginal
probability of any node � is

� (��) = � (�, �)� (�) . (4)

(3) According to the given �(�), �(�, �) can be calculated
by marginalizing the joint probability density of all
nodes.

�e formula used in the process of fault diagnosis
include the following:

Bayesian formula is

� (���) = � (��) � (� | ��)
∑
�=1 � (��) � (� | ��) . (5)

Chain rules are

� (�1�2, . . . , �
) =

∏
�=1

� (�� |  (��)) . (6)

4. Transformation from T-S Fuzzy Tree to BN

In the process of transforming T-S fuzzy fault tree to BN,
the top event, middle event, and bottom event of the T-S
fuzzy fault tree correspond to the leaf node, the intermediate
node, and the root node of the Bayesian network. For
the fuzzy rules between events, they correspond to the
conditional probability tables between nodes. According to
the relationship between the top events and themiddle events
and the relationship between the middle events and the
bottom events, the root nodes, the intermediate nodes, and
the leaf nodes are connected with the directed connection
lines to form a complete BN [10, 11].�e �ow chart is depicted
in Figure 3.
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Figure 3: T-S fuzzy tree converted into BN.

Given the leaf node’s fault state!�, the posterior probabil-
ity �(�� = ���� | ! = !�) of the root node �� with fault state ����
can be obtained by Bayesian conditional probability formula:

� (�� = ���� | ! = !�) = "[[
�̃ (�� = ���� , ! = !�)

�̃ (! = !�) ]
]
, (7)

where "[�̃(�� = ���� , ! = !�)/�̃(! = !�)] is the center of
gravity of the fuzzy subset, which converts the fuzzy subset
into an exact value.

If the fault probability fuzzy subset of all the root nodes
is known, then the fault probability fuzzy subset of the leaf
node ! = !� can be obtained through the conditional inde-
pendence of Bayesian networks and chain rules. It is
expressed by the following formula:

�̃ (! = !�)
= ∑
�1 ,�2,...,��1 ,2 ,...,�

�̃ (�1, �2, . . . , �
; �1, �2, . . . , �	; ! = !�)

= ∑
�(�)

�̃ (! = !� |  (!)) × ∑
�(1)

�̃ (�1 |  (�1))
× ⋅ ⋅ ⋅ × ∑

�(�)
�̃ (�1 |  (�	)) �̃ (��11 ) ⋅ ⋅ ⋅ �̃ (���
 ) ,

(8)

where  (!) represents the set of all parent nodes of the leaf
node ! and �̃(���� ) is the fault probability fuzzy subset if fault
state of the root node �� is denoted as ���� .
5. Fault Diagnosis of Rotor Based on T-S Fuzzy

Gate Fault Tree and BN

5.1. Rotor Fault Diagnosis of Water Pump. Buildings, electri-
cal and mechanical equipment, and auxiliary equipment are
the main components of the pump station. �e mechanical
and electrical equipment mainly includes the main water
pump, the power machine, the electrical equipment, and

the metal structure [12]. As the direct work part of the
operation of the unit, the main water pump and motor are
the most prone to failure of the pumping station, whether
they can operate safely a
ects the function and e�ciency
of the pumping unit directly. Studies have shown that more
than half of faults of rotating machinery are caused by the
fault of the rotor, which is a major component of a pump
unit [13]. �erefore, the fault diagnosis of rotor is the most
important part of the fault diagnosis of the whole pump unit.
When there is a fault in the rotor, it not only does great
harm to the whole pump unit but also a
ects the task of
watering and drainage of pump unit seriously so as to result
in immeasurable losses. So it is necessary to implement fault
diagnosis for rotor. Vibration is the main form of faults in the
rotor and abnormal increase in amplitude of power frequency
is the most common phenomenon. In the following, the
e
ectiveness of the proposed method in fault diagnosis is
illustrated through the phenomenon that the amplitude of
power frequency of the rotor increases.

�e common faults that cause the abnormal increase
in amplitude of the rotor’s power frequency are the mass
imbalance and thermal bending of the rotor. And the reasons
for the mass imbalance are the fouling, breakage, or shedding
of components and initial eccentricity, while the causes of
the thermal bending are the inappropriate parking of unit
and uneven heat in movement. �e T-S fuzzy gate fault tree
constructed with this method is depicted in Figure 1. Table 2
represents the corresponding modes or causes and states of
faults of each node.�ere are two states (yes, no) in the events
of an abnormal increase in amplitude of the rotor’s power
frequency and a breakage or shedding of the component and
three states (severe, general, and none) for the other fault
events. �en, the T-S fuzzy gate fault tree is transformed into
a Bayesian network depicted in Figure 4 according to the
method depicted in Figure 3.

Table 3 shows the fault data of some root nodes.�is data
comes from some large pumping stations in Jiangsu Province
in recent years and is sorted out by using statistics. When
the fault state of fundamental frequency is 1, combine these
data and consultations with experts, and the possible fault
probability fuzzy subset of the rotor system are shown in
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Figure 4: Bayesian network for fault diagnosis when the amplitude
of the rotor’s power frequency increased.

Table 2: �e fault modes and cause for increased amplitude of the
rotor’s power frequency.

Symbol Node events
State(1, 0.5, 0)

�1 Abnormal increase in
fundamental frequency

(Yes, No)

�2 Quality imbalance
(Serious, General,

No)

�3 Rotor thermal bending
(Serious, General,

No)

�1 Fouling
(Serious, General,

No)

�2 Parts break or fall o
 (Yes, No)

�3 Initial eccentricity
(Serious, General,

No)

�4 Improper starting and stopping
(Serious, General,

No)

�5 Uneven heat in the movement
(Serious, General,

No)

Table 3: Partial characteristic data of fault state of rotor system of
some large pumping stations in Jiangsu Province.

Node �1 �2 �3 �1 �2 �3 �4 �5

State

1 1 0 1 0 0.5 0 0

1 0 1 0 0 0 0.5 0.5

0 0 0 0 0 0.5 0 0

0 0.5 0 0.5 0 0 0 0

0 0 0.5 0 0 0 0.5 0

. . . . . . . . . . . . . . . . . . . . . . . .
Table 4: Fault probability fuzzy subset of root node with fault state
1.

Rules �� �� fault probability fuzzy subset of �� (/h)�1 {3.95 × 10−6, 4.0 × 10−6, 4.05 × 10−6}
�2 {0.98 × 10−6, 1.0 × 10−6, 1.02 × 10−6}
�3 {2.47 × 10−6, 2.5 × 10−6, 2.53 × 10−6}
�4 {2.47 × 10−6, 2.5 × 10−6, 2.53 × 10−6}
�5 {2.96 × 10−6, 3.0 × 10−6, 3.04 × 10−6}

Table 4, where the central value of every fuzzy probability
subset is the maximum possible value of probability of fault,
and the le� is the lower limit, and right is the upper limit.

Table 5: �e fuzzy gate rules for imbalance of rotor’s quality.

Rules �1 �2 �3 �2
0 0.5 1

1 0 0 0 1 0 0

2 0 0 0.5 0.55 0.25 0.2

3 0 0 1 0.1 0.35 0.55... . . . . . .
16 1 1 0 0.05 0.05 0.9

17 1 1 0.5 0 0.05 0.95

18 1 1 1 0 0 1

Table 6: �e fuzzy gate rules for thermal bending of rotor’s quality.

Rules �4 �5 �3
0 0.5 1

1 0 0 1 0 0

2 0 0.5 0.5 0.3 0.2

3 0 1 0.1 0.3 0.6

4 0.5 0 0.5 0.3 0.2

5 0.5 0.5 0.2 0.3 0.5

6 0.5 1 0.05 0.15 0.8

7 1 0 0.1 0.3 0.6

8 1 0.5 0.05 0.15 0.8

9 1 1 0 0 1

Table 7: �e fuzzy gate rules for increased amplitude of the rotor’s
power frequency.

Rules �2 �3 �1
0 1

1 0 0 1 0

2 0 0.5 0.6 0.4

3 0 1 0.4 0.6

4 0.5 0 0.65 0.35

5 0.5 0.5 0.3 0.7

6 0.5 1 0.2 0.8

7 1 0 0.3 0.7

8 1 0.5 0.2 0.8

9 1 1 0 1

Tables 5∼7 are the fuzzy gate rule corresponding to the
constructed T-S fuzzy gate fault tree. For example, rule 1 in
Table 5 indicates that when the state of (�1, �2, �3) is (0,0,0),
the probability that the upper event takes 0, 0.5, and 1 is 1, 0,
and 0, respectively.

�e fault probability fuzzy subsets of �1, �2, and �3 can be
obtained in Table 8 by (1) and (8).

When the fault state of the leaf node �1 is 1, the fault
probability of the root node �1 = 1 can be obtained by (7).

� (�1 = 1 | �1 = 1) = "[�̃ (�1 = 1, �1 = 1)�̃ (�1 = 1) ]
= 0.11649.

(9)
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Table 8: Probabilities fuzzy subsets of leaf nodes and intermediate
nodes.

Node state Fault probability fuzzy subset

�̃(�1 = 1) {9.264 × 10−6, 9.385 × 10−6, 9.507 × 10−6}
�̃(�2 = 0.5) {4.195 × 10−6, 4.250 × 10−6, 4.305 × 10−6}
�̃(�2 = 1) {5.552 × 10−6, 5.625 × 10−6, 5.699 × 10−6}
�̃(�3 = 0.5) {3.258 × 10−6, 3.300 × 10−6, 3.342 × 10−6}
�̃(�3 = 1) {4.344 × 10−6, 4.400 × 10−6, 4.456 × 10−6}

Table 9: Conditional probability table of root nodes.

Unit �� �e probability of failure of �� (/h)�1 0.11649

�2 0.43342

�3 0.42758

�4 0.22761

�5 0.22421

Similarly, the fault probability of the remaining root nodes is
shown in Table 9.

In the case where the amplitude of the acquired rotor’s
power frequency increased abnormally, the probability of
fault of each root node is obtained through the above
reasoning. From Table 9, the order from large to small is �2 >�3 > �4 > �5 > �1. So the most likely cause of the abnormal
increase in the amplitude of the rotor’s power frequency is
breakage or shedding of components and then is eccentric.

5.2. Algorithm Comparison and Analysis. In the case of com-
plete historical data, the structure of BN is constructed by
experts’ experience, and the conditional probability table of
every node is obtained through learning from the data.When
the leaf nodes are abnormal, the traditional fault diagnosis
method based on BN is built through this method, and it
calculates the fault probability of leaf nodes shown inTable 10.
In addition, the BP neural network is trained for the same
data, and the results of fault diagnosis are also shown in
Table 10. Considering the incomplete data, the states of some
nodes are set as unknown, and the results of fault diagnosis
through themethod this papermentions, traditional BN, and
BP neural network are also shown in Table 10.

For ease of analysis, the results in Table 10 are converted
into the line chart shown in Figure 5. It can be seen from
the 	gure that when the historical data is complete, the
results of the method proposed in this paper are similar to
that of traditional fault diagnosis method based on BN, so
the e
ectiveness of the method proposed in this paper is
demonstrated. But the results of the method based on BP
neural network have errors with both, because fault diagnosis
based on BP neural network requires a lot of e
ective
historical data, which is not available in reality. When the
historical data is incomplete, the results obtained by the three
methods are all in error with that obtained when the data
is complete. But the diagnosis results of the method in this
paper are closer to that with complete data. �e reason is
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Figure 5: �e fault probability of root nodes when the leaf nodes
state is 1.

that when the data is incomplete, the accuracy of diagnosis
result through traditional BN is a
ected by the increasing
error in parameter learning, and the diagnosis result of BP
neural network is more inaccurate because of the incomplete
data. �e method in this paper can reduce the impact of data
loss e
ectively for the integration of experts’ experience and
T-S fuzzy fault tree.

In this paper, T-S fuzzy fault tree is used in construction,
and the advantage of BN is used in reasoning. At present,
the reasoning algorithm based on joint tree is the fastest in
calculation and the most widely used in BN. �e computa-
tional complexity of the method is exponentially increasing
with the increase of the largest agglomeration in the joint tree.
In dealing with general BN, the computing speed of current
computers can meet the requirements.

6. Conclusions

�is paper combines the T-S fuzzy fault tree method with
Bayesian network method to solve the problem of fault
diagnosis of pumping unit. �is method overcomes not only
the complex reasoning of T-S fuzzy fault tree method but also
the di�culty of determining the structure and conditional
probability table of Bayesian network.�e e
ectiveness of the
method is veri	ed by fault diagnosis of the rotor, which is
one of the most prone parts in the pump unit. �e results are
superior to the simple Bayesian network method when the
data is insu�cient. �is method can be applied to the fault
diagnosis of pumping station with complex structure, many
uncertainties, and multiple mapping.
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Table 10: Fault probability of root node when the state of leaf nodes is 1.

Root node �� Complete data Incomplete data

BN FFTA&BN BPNN BN FFTA&BN BPNN

�1 0.11721 0.11649 0.11525 0.12412 0.12018 0.10525

�2 0.45258 0.43342 0.46220 0.42775 0.44785 0.42550

�3 0.42334 0.42758 0.42353 0.42123 0.43002 0.42023

�4 0.23002 0.22761 0.21002 0.24024 0.22886 0.20236

�5 0.22358 0.22421 0.22350 0.19583 0.22410 0.22965
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