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Health is vital to every human being. To further improve its already respectable medical technology, the medical community is
transitioning towards a proactive approachwhich anticipates andmitigates risks before getting ill.�is approach requiresmeasuring
the physiological signals of human and analyzes these data at regular intervals. In this paper, we present a novel approach to apply
deep learning in physiological signals analysis that allows doctor to identify latent risks. However, extracting high level information
from physiological time-series data is a hard problem faced by the machine learning communities. �erefore, in this approach,
we apply model based on convolutional neural network that can automatically learn features from raw physiological signals in an
unsupervised manner and then based on the learned features use multivariate Gauss distribution anomaly detection method to
detect anomaly data. Our experiment is shown to have a signi	cant performance in physiological signals anomaly detection. So it
is a promising tool for doctor to identify early signs of illness even if the criteria are unknown a priori.

1. Introduction

Over the years, all kinds of intelligent devices and modern
life are more and more inseparable [1]. People can record
various kinds of physiological time-series data through those
devices at any time and any places [2, 3]. Analyzing those
physiological time-series data [4] gets a lot of information
about our body. Although countries invested heavily in the
development of biomedicine, the incidence of various types
of chronic noncommunicable diseases is increasing. So the
medical community is transitioning towards a proactive
direction. Di�erent from the previous one, the approach aims
at analyzing physiological time-series data and identifying
potential risk of illness and mitigation measures are taken
before getting ill.

Many methods can be used to help us get a better under-
standing of our physical condition. Machine learning [5] is
a fundamental and signi	cant research in many 	elds. It is

widely used in industry [6], power system [7, 8], weather
forecast [9], transit systems [10], computer-aided detection
and diagnosis systems [11], and so on. Some companies have
also launched deep learning related project via collecting and
analyzing massive amounts of data and applied to anomaly
detection or others applications. It is also an important assis-
tant means for medical and has important application value
in the 	eld of medical care [12]. In this paper, we propose
a lightweight approach for detecting the anomaly data by
analyzing the physiological signals. Empirically, physiological
signals can be obtained from biosensors in various ways.

�ough anomaly detection is widely used in other 	elds,
the problem of physiological signals anomaly detecting in
the context of human-computer interaction still remains
complex and largely unexplored. �e anomaly detection of
physiological signals is, primarily, by using machine learn-
ing techniques for learning features [13] from physiolog-
ical signals and then constructing computational models [14]
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of anomaly detection. �e main components of the model
consists of two parts: processing of input signals (learned
features) and detecting anomaly data.

Feature extraction and feature selections are the key in
understanding and training an anomaly detection algorithm
[15, 16]. Physiological signals are usually correlated to time
and space [17]; they belong to high-dimensional time-series
data. Time-series data is high-dimensional and complex with
unique properties that make them challenge to analyze and
model. One of the major challenges in healthy anomaly de-
tection is to extract features in multivariate physiological sig-
nals, which can be used to detect the anomaly data correctly
[18]. Traditional approaches for modeling sequential data
include the estimation of parameters from an assumed time-
series model such as autoregressive models and Linear
Dynamical Systems (LDS) and the popular Hidden Markov
Model (HMM). �e estimated parameters can then be used
as features in a classi	er to perform classi	cation. �e rest-
ricted Boltzmann machine (RBM) is a generative proba-
bilistic model between input units (visible), �, and latent
units (hidden). Several RBMs can be stacked and trained
in a greedy manner to form so-called Deep Belief Net-
works (DBN), which are probabilistic generative neural
network composed ofmultiple layers of restricted Boltzmann
machine. DBNs are graphical models which learn to extract a
deep hierarchical representation of the training data. Another
model that had been used for modeling sequential data is
the Recurrent Neural Network (RNN). Generally, an RNN is
obtained from the feed forward network by connecting the
neurons’ output to their inputs. Hand-designed feature ex-
tractors require a human expert to 	nd the suitable data
manipulations that will lead to good evaluation performance.
To determine important features and pick the e�ective ones
to handle a new applicationmay be labor-intensive and time-
consuming. It inherit a number of critical limitations that
make their use cumbersome in highly complex multimodal
input spaces. In this paper, we present a new approach to
the automatic physiological signals anomaly detection. �e
focus is to develop unsupervised feature learning method
to learn meaningful feature representations from unlabeled
physiological signals. Our hypothesis is that use of nonlinear
unsupervised and multivariate Gauss distribution model
methods [19–21] relying on the principle of deep learning can
eliminate the limitations of the current feature extraction and
feature selection in physiological signals anomaly detection.
Unsupervised feature learning techniques [4, 22] are a way
of learning feature representations [23] that a human expert
might not be aware of and could re�ect the essence the
healthy states feature representations. A secondary contribu-
tion of the proposed method is using the features extracting
from convolutional neural network (CNN) feed to anomaly
detection model and giving the anomaly data to doctor to
evaluate mitigating risks before illness. CNN’s convolution
and pooling can help us deal with high-dimensional data
more quickly. By analyzing physiological signals, if anomaly
data occurs, the special prevention should be done in advance
to reduce the risk of disease.
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Preprocessing

CNN

Anomaly 
detection model

Results

Data normalized 

Features learning 
using CNN

Detect anomaly data using 
multivariate Gaussian
distribution

Figure 1: �e block diagram of the algorithm.

2. Materials and Methods

In this section, we describe a common framework used
for feature learning. For concreteness, we will focus on
the application of these algorithms to learn features from
physiological signals, though our approach is applicable to
other forms of data as well. Furthermore, the studies cover
the two key research pillars of this paper: (1) de	ning feature
set to extract relevant bits of information from objective
data signals; (2) creating models that map a feature set into
multivariate Gaussian anomaly detection model to predict
the anomaly physiological signals.

At a high level, our algorithm performs the following
steps (see Figure 1) to learn feature representation:

(a) Dividing physiological signals into a number of seg-
ments from unlabeled training data.

(b) Applying a preprocessing stage to the segments and
normalizing the raw data.

(c) Extracting high level information using an unsuper-
vised learning algorithm.

(d) Using Gauss model to detect the anomaly physiolog-
ical signals.

Now we describe the components of this pipeline and its
parameters in more detail.

2.1. Feature Learning. In the context of healthy state anomaly
detection, feature learning refers to the process of transform-
ing the raw signals captured by the hardware into a set of
inputs suitable for a computational evaluation of anomaly
data. Usually, learning feature from one-dimensional con-
tinuous signals is simple statistical features [24, 25], such
as average and standard deviation values, calculated on the
time or frequency domains of the raw or the normalized
signals. Physiological signals anomaly detection based on
signals withmore than one dimension typically boils down to
physiological anomaly data detection from all kinds of phys-
iological signals. �e focus of this paper is on convolutional
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Figure 2: �e structure of deep ANN architecture.

neural networks [5, 13, 26] methods that can automatically
extract new features or unknown features in an unsupervised
manner from those data.

Convolutional neural networks, as a popular technique,
could be used in many 	elds such as image and video
classi	cation natural language processing, pedestrian detec-
tion, generic visual recognition, face recognition, and image
recognition [10, 27]. �ey are very similar to ordinary neural
networks. It is composed of a number of neurons that have
learnable weights and biases. Each neuron receives some
inputs and performs a dot product with a nonlinearity func-
tion Sigmoid. A convolutional neural network is comprised of
one or more convolutional layers (o�en with a subsampling
step) and then followed by one ormore fully connected layers
as in a standard multilayer neural network. �e architecture
of an ANN is designed to include both the feature extractor
and the anomaly detection, as shown in Figure 2.

Usually, in convolutional neural networks, each layer is
composed of two operations: convolution and max-pooling.
At a convolution layer, the previous layer feature maps are
convolved with learnable kernels and then put through the
activation function to form the output feature map. Each
output map may combine convolutions with multiple input
maps. Supposing � denote the input signal is 2-dimensional
data of size � × �, where � and � are positive integers. A
feature map is obtained by convolution of the input signal
with a linear 	lter, adding a bias term and then applying a
nonlinear function �. If we denote the �th feature map at a

given layer as ℎ�, whose 	lters are determined by the weights

	� and bias 
�,��means the selection of input maps in layer� − 1. �en the feature map ℎ� is obtained as follows:

ℎ�� = �( ∑
�∈��

��−1� ∗ ���� + 
�) . (1)

Sensitivity computation process:

��� = ��+1� (�� ∘ up (��+1� )) . (2)

up(⋅) function is exactly an inverse process of the downsam-
pling.

Compute the gradient,

������� = ∑��� ∗ ��−1� ,
���
�� = ∑��� .

(3)

�(⋅) is cost function.�e new variable��−1� here, whichmeans

the patch in��−1� that was multiplied element wise by���� .
Gradients in subsampling layers:

ℎ�� = � (��� down (ℎ�−1� ) + 
�� ) . (4)

Here, down(⋅) means the subsampling function, such as
average-pooling or max-pooling.

��� = �� ∘ ��� . (5)

��� is a matrix which has the same size of ��� , and its element is

the convolution between all sensitivities of nodes in layer �+1
that have connection with the node in layer � and the weights
are de	ned as��� , and we could compute the gradients for �
and 
 in subsampling layers as the following equations:

������ = ∑��� ∘ down (ℎ��) ,
���
� = ∑��� .

(6)

�e input of each neuron determines the size of patch.
Each neuron contains a number of trainable weights equal
to the number of its inputs and additional bias parameter;
the output is calculated by applying an activation function to
the weighted sum of the input and bias. (Activation function:
tanh, ReLU, Sigmoid, and So�plus. tanh: � = (exp(�) −
exp(−�))/(exp(�) + exp(−�)). �e real worth to compress
input ranges in −1 to 1, so that it is substantially 0 mean;
ReLU: � = max(0, �). �e network can be introduced into
the sparsity, and the performance of ReLU is better than
other activation functions in the case of no pretraining;

Sigmoid: � = (1 + exp(−�))−1. �e activation function in
the neural network learning can push towards key features
to the central and the nonkey features to both sides of the
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zone; So�plus: � = log(1 + exp(�)). �e activation function
makes the relationship between output and input keep the
nonlinear monotonic rise and fall and fault tolerance of
neural network is good.) Each neuron scans sequentially
the input, assessing at each patch location the similarity to
the pattern encoded on weights. �e consecutive outputs
generated at every location of the input assemble a feature
map. �e output of convolution layers is the set of feature
maps repeated application of a nonfunction across subregions
of entire input. In the following, we provide details on CNN
architectures in Figure 2. �e neurons in the convolutional
layer take as input a patch 8 × 1 on the input time-series data.
�e input patch is applied with a sliding-window stride of 8

along time-axis. Each of the neurons calculates ℎ� and then
obtains features.

As soon as feature maps have been generated, a pooling
layer aggregates consecutive values of the feature maps
resulting from the previous convolution layer, reducing their
resolution with a pooling function.�emaximum or average
values are the two most commonly used pooling functions
providing max-pooling and average-pooling layers, respec-
tively. It is common to periodically insert a pooling layer in
between successive convolutional layer in a ConvNet archi-
tecture. Its function is to progressively reduce the spatial size
of the representation to reduce the amount of parameters and
computation in the network and hence to also control over	t-
ting. In this paper, the pooling layer operates independently
on every depth slice of the input and resizes it spatially, using
the MAX operation. �e most common form is a pooling
layer with 	lters of size 2 × 2 applied with a stride of 2 down-
samples in every depth slice in the input by 2 along bothwidth
and height, discarding 75% of the activation. Because physio-
logical signals are time-series data, we designed the 	lters of
size 2 × 1 with a stride of 2 downsamples along time-axis.

As we described above, a simple CNN is a sequence of
layers, and each layer of a CNN transforms one volume of
activation to another through a di�erentiable function. We
use three main types of layers to build CNN architectures:
convolutional layer, pooling layer, and fully connected layer
(exactly as seen in regular neural networks). In our work, it is
a hierarchical model that alternate convolution and pooling
layers in order to process large input spaces in which a
spatial or temporal relation among the input exists such as
time-series data, speech, or physiological signals. �erefore,
hierarchical analysis and learning architectures are the key to
success in anomaly detection.

2.2. Autoencoders. We must train our network weights with
a kind of unsupervised method because our training set is
unlabeled. Usually physiological signals are unlabeled, so we
need to take other methods to train ConvNet weights. An
autoencoder neural network (see Figure 3) is an unsupervised
learning algorithm that applies backpropagation, setting the
target values to be equal to the inputs [28]. In this paper,
we use autoencoders to train all convolution layers of our
CNN. Now we have only a set of unlabeled training examples{�(1), �(2), �(3), . . .}, where �(�) ∈ ��. An autoencoder takes
an input � ∈ [1, 0]	 and 	rst maps it (with an encoder) to
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x y z

Figure 3: �e block diagram of autoencoders.
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Figure 4: �e structure of autoencoder.

a hidden representation � ∈ [1, 0]	� through a deterministic
mapping:

� = � (�� + 
) , (7)

where � is a nonlinearity function Sigmoid. �e latent repre-
sentation� or code is thenmapped back (with a decoder) into
construction � of the same shape as �. �e mapping happens
through a similar transformation:

� = � (��� + 
�) . (8)

� should be seen as a prediction of �, given the code �.
An autoencoder is a model that transforms an input

space into a new distributed representation by applying a
deterministic parameterized function called the encoder (see
Figure 4). �e autoencoder learns how to map the output
of the encoder into the input space, with a parameterized
decoder, to have small reconstruction error on the training
examples; that is, the original and corresponding decoded
inputs are similar. �e encoder weights (used to obtain the
output representation) are also used to reconstruct the input.
By de	ning the reconstruction error as the sum of squared
di�erences between the inputs and the reconstructed input,
then use gradient descent method such as backpropagation
to train the weights of the ConvNet.�e reconstruction error
can bemeasured inmanyways, depending on the appropriate
distributional assumptions on the input given the code. �e
traditional squared error cost function is given by

� (��) = ‖� − �‖2 . (9)

Here � is raw data and � is reconstruction data.
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In this paper, autoencoders are used to train unsupervised
CNN to transpose subsets of the raw input signals into
learned features. In turn, the outputs of learned features
extracted from the input layer may feed any function approx-
imation or classi	er that attempts to 	nd a mapping between
the input signal and a target output. In this paper, we use
multivariate Gaussian anomaly detection model to detect the
anomaly physiological signals for a user based on the learned
features of his physiological signals.

2.3. Multivariate Gaussian Distribution. �e multivariate
Gaussian distribution is a generalization of the univariate
normal to two or more variables. It is a distribution for
random vectors of correlated variables, each element of
which has a univariate normal distribution. A vector-valued
random variable � = [�1, �2, . . . , ��]
 is said to have a
multivariate Gaussian distribution with mean vector ! ∈ ��
and covariance matrix Σ. Its probability density function is
given by

� (�, !, Σ)
= 1(2%)�/2 |Σ|−1 exp (−12 (� − !)
 Σ−1 (� − !)) ,

Σ = * [(� − !) (� − !)
] .
(10)

We write this as� ∼ 5(!, Σ).
Anomaly detection is an unsupervised learning method,

using density estimation to evaluate data is normal or not.�e
expression is as follows:

if � (�){{{
≤ ; anomaly

> ; normal. (11)

When �(�) is greater than threshold ;, the data is normal and�(�) is less than threshold ;, and the data is anomaly.

3. Results and Discussion

In the experiments, we focused on evaluating the e�cacy
of using CNN to construct a model of physiological signals
anomaly detection and we test our algorithm on eight
physiological signals on DEAP dataset, a dataset for emotion
analysis using EEG, physiological, and video signals. We
expect that information relevant to anomaly detection can
be extracted more e�ectively using CNN methods directly
on the raw physiological signals automatic selection of
features than on a set of designer-selected extracted features.
�e hardware and so�ware environment in experiment are
as follows: hardware environment: Intel(R) Core(TM) i3-
2330 CPU @ 2.2GHz RAM 2.00GB; so�ware environment:
Windows 7, Python 2.7, and Matlab R2014a.

3.1. Training Models of Physiological Signals Anomaly Detec-
tion. In the approach presented here, we investigate an e�ect-
ive method of learning models that map signals of user
physiological to detect anomaly data. In the feature extraction
stage, we use a deep model composed from a multilayer
convolutional neural network that transforms the raw signals
into reduced set features. In the anomaly detection stage,
we feed those features to an anomaly detection model
which uses the multivariate Gaussian distribution to detect
anomaly physiological signals (see Figure 2). Before new
unlabeled time-series physiological signals enter the model,
	rst, make the time-series physiological signals normal.�en
extract features in the original network parameters. �en
last, use multivariate Gaussian distribution to detect anomaly
data in new unlabeled time-series physiological signals. �e
deep ANN architecture contains two convolutional layers,
two pooling layers, and a multivariate Gaussian anomaly
detectionmodel.�e	rst convolutional layer (patch length of
12 raw physiological signals) processes physiological signals,
which is then propagated forward to a maximum-pooling
layer (window length of 2 features).�e second convolutional
layer (patch length of 5 subsampled features) processes the
subsampled feature maps and the resulting feature maps of
the second pooling layer (window length of 2 features). �e
	nal subsampled feature maps form the outputs of the CNN
which provides a number of learning features feeding the
input of Gaussian anomaly detection model. Our hypothesis
is that the automation of feature extraction via deep learning
will yield anomaly physiological signals of higher predictive
power, which, in turn, deliver evaluation models of higher
accuracy.

Before feeding the raw data to CNN, in order to cause
the reconstruction error convergence, we normalized the raw
data use:

� norm = � − !
std (�) . (12)

! and std, respectively, represent the average value of raw
data and the standard deviation of raw data. �en feed
the normalized data � norm to CNN learning features of
raw data. By analyzing the reconstruction error Jw between
the inputs data � and the reconstruction inputs < and
the number of iterations, we can obtain preferable learned
features. In theory, the greater the iterations number, the
smaller the reconstruction error Jw.

With the increase of the number of iterations, the cost
function Jw is tending towards zeros and then keeping
stability, we can draw a conclusion that the reconstruction
data are nearly the same.�erefore, the learned features from
raw data are e�ective and we can view those features as high
level expression of the raw data. As Figure 5 shows, we take
5000 iterations, the cost function Jw is tending to zeros, and
we can get the weights of the ConvNet and high level features
of the eight physiological signals.

As soon as features have been learned, feed them to
Gaussianmixtures models to detect the anomaly features and
get the coordinate. We consider the data and the learned
features to be subject to Gauss distribution.
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Figure 6: Gauss distribution of features.

As Figure 6 shows, the features of the eight physiological
signals are subject to Gauss distribution signals.

3.2. Results. �en we choose a 	ne threshold ; to get the
features which is �(��) ≤ ; and then get the coordinate
and the corresponding raw data. All anomaly detection
algorithms can be set at di�erent threshold ;, which may
make results correspond to reality. If the ratio of anomaly data
is 1% and threshold ; = 0.2 we can get the anomaly features
and the coordinate of raw physiological signals. In addition,
if the ratio of anomaly data is 5% and threshold ; = 0.3
we can get other anomaly features and the coordinate of raw
physiological.

In this paper, we use a series of detection thresholds ; 0.2,
0.23, 0.25, and 0.26, and the ratios of anomaly data are 1%, 2%,
3%, and 5%, respectively.�e percentage controls the number
of physiological signals to be considered anomaly ranked by
severity. We get four sets of anomaly data as Figure 7 shows,
(a) and (b), (c) and (d), (e) and (f), and (g) and (h). Finally,
it is easy to obtain the anomaly raw physiological signals
according to anomaly features point coordinate and doctor
can quickly analyze those anomaly physiological signals to
help users understand the healthy states at present.

3.3. Discussion. �e testing on dataset showed that the
method can detect anomaly physiological signals and some
may exhibit early signs of illness.�erefore, themethod could
be a tool to help doctor identify the underlying disease.

�ere is no “medical instance” for performance evalu-
ation or a benchmark dataset in which every physiological
signal is labeled “normal or anomaly” in de	nitive terms. In
this paper, the detection threshold ; is arti	cially chosen to
evaluate physiological signals normally or anomaly. �ere-
fore, one limitation of this paper is that we do not provide
an evaluation of the detection accuracy in a traditional sense,
such as false negatives and false positives. A new method is
needed to evaluate the performance of an anomaly detection
method that does not rely on preexisting criteria but is
capable of detecting unknown issues.

4. Conclusions

�is paper introduces the application of deep learning to
the construction of an anomaly detection model built on
physiological signals manifestations of anomaly data. To
detect the anomaly data, key point is learning e�ective
features in the raw feature. �e algorithm proposed employs
a number of convolution layers that learn to extract relevant
features from the input signal and then feed those features
to multivariate Gaussian distribution to detect anomaly fea-
tures.�e algorithmwas tested on eight physiological signals.
Result, in general, suggests that algorithm is highly e�cient to
learn high level features from raw physiological signals and
multivariate Gaussian distribution anomaly detection.

Feature learning directions in our algorithm can be
outlined as follows. First, a wide range of datasets each of
which has di�erent characteristics from di�erent part of body
should be employed in order to demonstrate the e�ectiveness
of the method. Second, since the database is a key in our
method, the collecting of data is still going on. We cannot
really evaluate the results because of the database being
unlabeled.�erefore, collecting of some labeled physiological
signals is a way to enhance the performance of the algorithm.
Further research is needed to comprehensively evaluate the
performance of the algorithm in detecting unknown issues.
Based on this paper, future research can be from the following
aspects: 	rst, collecting of some labeled physiological signals
to comprehensively evaluate and improve the performance of
the algorithm; second, because of lack of comparative tests, it
is necessary to do comparative tests with other algorithms to
verify the performance of the algorithm.



Scienti	c Programming 7

Features
Anomaly point

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

h
E

O
G

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

R
es

p
ir

at
io

n

0
0.4
0.8

E
E

G

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

vE
O

G
b

el
t

(a)

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

T
em

p
er

at
u

re

0
0.4
0.8

P
le

th
ys

m
o

gr
ap

h

0
0.4
0.8

tE
M

G

0
0.4
0.8

zE
M

G

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

Features
Anomaly point

(b)

vE
O

G

0 400 600 800 1000 1200 1400 1600 1800 2000200

Number of features

0
0.4
0.8

E
E

G
R

es
p

ir
at

io
n

0
0.4
0.8

b
el

t

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

h
E

O
G

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

Features
Anomaly point

(c)

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

T
em

p
er

at
u

re

0
0.4
0.8

P
le

th
ys

m
o

gr
ap

h

0
0.4
0.8

tE
M

G
0

0.4
0.8

zE
M

G

Features
Anomaly point

(d)

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

vE
O

G

0
0.4
0.8

h
E

O
G

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

R
es

p
ir

at
io

n

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

E
E

G

0
0.4
0.8

b
el

t

Features
Anomaly point

(e)

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

T
em

p
er

at
u

re

0
0.4
0.8

P
le

th
ys

m
o

gr
ap

h

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

tE
M

G

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

200 400 600 800 1000 1200 1400 1600 1800 20000

Number of features

0
0.4
0.8

zE
M

G

Features
Anomaly point

(f)

Figure 7: Continued.
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Figure 7: Anomaly features detection with di�erent thresholds.
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