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ABSTRACT Due to the uncertain, diverse, and light-attenuating characteristics of the underwater 

environment, underwater images have low contrast and unclear problems. This paper proposes a histogram 

equalization algorithm based on optimized adaptive image quadruple segmentation and cropping (AQSCHE). 

Compared with the traditional histogram equalization underwater image enhancement algorithm, this 

algorithm introduces histogram quadruple segmentation and cropping technology. Using the exposure value 

and segmentation point calculation formula that optimizes the distribution range of the histogram, perform 

quadruple segmentation on the image to obtain a more refined histogram. The adaptive histogram clipping is 

realized by constructing the clipping parameter z to adjust the contrast and brightness of the image. The 

original image is enhanced by the equalization of the sub-histogram and the histogram of each channel. 

Finally, the simulation experiments verify the enhancement effect of the proposed algorithm AQSCHE on 

underwater images. The processed underwater image has higher contrast, clearer and more natural in 

subjective evaluation, and has better visual effect; in the image objective evaluation indicators, information 

entropy (Entropy), peak signal to noise ratio (PSNR), structural similarity index (SSIM) and universal color 

image quality evaluator (UCIQE), etc., this algorithm also outperforms other common algorithms such as HE 

and CLAHE. 

INDEX TERMS Adaptive cropping, double equalization, quadruple segmentation, underwater image 

enhancement.  

I. INTRODUCTION 

Since the 21st century, with the development of the human 

economy and society, the exploration and development of 

marine resources have become increasingly important. The 

ocean covers 70% of the earth's surface and covers a large 

number of natural resources. Therefore, there's a growing 

interest in this mysterious area of the ocean, as one of the most 

important data for people to study underwater resources, 

underwater image is particularly important [1]. However, the 

propagation process of light is quite different underwater and 

in the air. Due to the various media, water absorbs and scatters 

sunlight to varying degrees, and blue and green light are 

absorbed less than other colors, giving the underwater image 

a blue-green hues [2].  

This kind of problem has attracted many domestic and 

foreign scholars to join in the research. Among them, the 

histogram equalization algorithm (HE) [3] 。 

is a technique used for enhancing the contrast of an image. 

This technique first divides the input image into small area 

blocks, then calculates the probability density function (PDF) 

of each histogram, and is used to calculate the cumulative 

distribution function (CDF), and then uses the CDF to map the 

intensity values of each block of pixels to a new range, thus 

creating an image with a more uniform histogram, enabling 

optimized underwater image contrast enhancement [4]. 

However, the HE algorithm only considers the probability 

distribution of pixel values, and does not consider the spatial 

distribution of pixels in the image, which will lead to the 

problem of brightness distortion [5]. Therefore, Pizer and 

others proposed an adaptive histogram equalization (AHE) 

algorithm [6]. The main idea is to equalize the local histogram 

of the underwater image, thereby improving the contrast of the 

underwater image and clarity. The AHE algorithm can avoid 

the noise introduced by the HE algorithm, enhance the local 

detail information of the underwater picture, and improve the 
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visual effect. However, the underwater image enhanced by the 

AHE algorithm will produce artifacts, noise, and other 

problems. Sim et al. proposed recursive sub-image histogram 

equalization (RSIHE), an image enhancement algorithm based 

on hierarchical histogram equalization. Compared with 

several other improved contrast enhancement techniques, 

RSIHE algorithm is the most robust. This algorithm can 

effectively process high dynamic range images while avoiding 

the brightness distortion problem produced by the HE 

algorithm and the artifacts, noise, and other issues produced 

by the AHE algorithm. RSIHE algorithm can effectively 

enhance the contrast and brightness of underwater images, 

making the photos more clear and vivid. However, the RSIHE 

algorithm cannot equalize the entire underwater image but can 

only equalize the local area of the image. Therefore, when 

dealing with some underwater images with global equalization 

requirements, the RSIHE algorithm could not be suitable [7]. 

Kim and others proposed a contrast enhancement algorithm 

based on brightness-preserving bi-histogram equalization 

(BBHE) [8]. This algorithm can maintain the average 

brightness of the original underwater image while increasing 

its contrast. However, the BBHE algorithm must select 

different parameters for different underwater images. The 

selection of parameters needs to be determined by experience 

and experiments, and adjustments may be required for some 

images with severe fogging.  

Although the above algorithms have different degrees and 

aspects of enhancement for underwater images, these 

algorithms have their own limitations, and it is difficult to have 

a very balanced processing effect on the contrast, clarity, and 

brightness of underwater images. This paper will address these 

problems and propose a more balanced optimization algorithm. 

In the second chapter of this paper, the traditional algorithm is 

introduced, followed by a discussion on the limitations of the 

conventional algorithm. This paper also discusses the 

proposed algorithm's direction and advantages. The 

simulation results presented in the third chapter demonstrate 

that the AQSCHE algorithm achieves a more balanced 

enhancement effect for underwater images, resulting in 

superior results compared to traditional methods. Finally, the 

fourth chapter summarizes the full text and proposes the field 

of application of the algorithm and future research direction in 

this paper.  

II. THEORETICAL MODEL 
A. PRINCIPLE OF HISTOGRAM EQUALIZATION 
ALGORITHM 

The traditional histogram equalization algorithm enhances the 

contrast of an image by redistributing its gray levels. The main 

process of the algorithm involves calculating the probability 

density function (PDF) and cumulative distribution function 

(CDF) of the histogram, and then using these values to 

generate a pixel mapping table, which is the conversion 

formula of histogram equalization. Then, using the normalized 

CDF, the intensity values of the pixels in each block are 

mapped to the new section created, thus creating an image 

with a more uniform histogram, resulting in a significant 

increase in the contrast of the enhanced image [8]. 

The calculation formulas for the PDF and CDF of the sub-

histogram corresponding to the [first, last] interval are as 

follows: 

PDF(k) =
nk
N
, (1) 

CDF(k)=∑ PDF(q)
k

q=first

, (2) 

Where k  is the gray level, nk  is the number of pixels 

corresponding to the k gray level in the image histogram, N is 

the total number of pixels in the interval. Therefore, the 

transformation formula for histogram equalization is: 

G(k)=first+CDF(k)×(last-first), (3) 

In the formula, last represents the final value of the mapping 

interval, first  represents the starting value of the mapping 

interval, and the difference between them represents the 

mapping interval. 

The conventional histogram equalization algorithm faces 

difficulties in handling low-exposure and high-exposure 

underwater images, thus requiring the integration of histogram 

segmentation technology into the traditional algorithm. 

Exposure value and exposure threshold are two parameters 

introduced in the histogram segmentation. The exposure value 

indicates how the number of pixels corresponds to each gray 

level in the image histogram, and its value ranges from 0 to 1. 

Calculating the exposure value of the image histogram enables 

the calculation of the exposure threshold, which can be used 

as the segmentation point for the image histogram. This 

segmentation divides the image histogram into low-exposure 

and over-exposure areas, allowing for separate processing of 

each area and improving image accuracy and efficiency [9]. 

The main process of the traditional histogram can be described 

as follows: 

Ex=
∑ nk×kL

k=1

L∑ nk
L
k=1

, (4) 

Where L  represents the total number of gray levels, Ex 

represents the exposure value. The formula for the threshold 

is: 

Xa=L(1-Ex), (5) 

B. CALCULATION METHOD OF EXPOSURE VALUE 
BASED ON OPTIMIZED HISTOGRAM DISTRIBUTION 
RANGE 

When the traditional segmentation algorithm based on 

exposure value encounters a narrow distribution range in the 

histogram [10], the calculated exposure threshold may fall 

outside the area with a non-zero histogram distribution range, 

leading to a failure in histogram segmentation, and when the 

algorithm is dealing with low-illuminance images with 
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interference noise, the calculated exposure threshold 𝑋𝑎 will 

not be ideal, resulting in indirect segmentation failure, thus 

affecting the final image enhancement effect [11].  

Therefore, this paper proposes a calculation method of 

exposure value based on optimizing the distribution range of 

the histogram. In this method, a new histogram distribution 

range is firstly defined, and the histogram distribution range is 

limited by constructing a parameter m, so as to eliminate the 

interference noise existing in the histogram. The optimized 

histogram distribution range is: 

{
SMALL= min(nk≥m), k∈[0,L-1]

BIG= max(nk≥m), k∈[0,L-1]
, (6) 

It can be seen from the formula that the distribution range of 

the optimized histogram is changed to the interval formed by 

the minimum and maximum values of the statistics in the 

histogram not less than m. Different from the distribution 

range of the traditional histogram, the new calculation method 

can effectively remove the interference noise in the histogram. 

Consequently, it improves the accuracy of the exposure value 

calculation and the image enhancement effect. The 

corresponding formula for calculating the new exposure value 

and split point is as follows: 

EX=
∑ nk(kBIG

k=SMALL -SMALL+m)

(BIG-SMALL)×∑ nk
BIG
k=SMALL

, (7) 

Xa=SMALL+(1-EX)×(BIG-SMALL) (8) 

 

FIGURE 1. Optimization comparison chart. 

 

Fig. 1 illustrates the histogram of a low-light underwater 

image affected by interfering noise. It can be observed from 

the figure that using the optimized histogram distribution 

range to calculate the new exposure value and exposure 

threshold results in a more accurate calculation, and the 

optimal position of the exposure threshold can be precisely 

determined based on the distribution characteristics of the 

histogram [12]. 

After the histogram is divided into two sub-histograms, this 

paper uses the mean value of the two sub-histograms as the 

segmentation point. Then, each sub-histogram is further 

divided into four sub-histograms, resulting in a total of four 

sub-histograms to be enhanced. The formula for calculating 

the mean of the two sub-histograms is: 

Xal= ∑ Pdl(k)×k

k=Xa-1

k=SMALL

, (9) 

Xau= ∑ Pdu(k)×k

k=BIG-1

k=Xa

, (10) 

Where Xal  and Xau   represent the means of the lower and 

upper sub-histograms respectively, and Pdl(k)  and Pdu(k) 
represent the PDFs of the lower and upper sub-histograms 

respectively. 

 

FIGURE 2. Location map of each split point. 

 

Fig. 2 clearly displays the three segmentation points calculated 

by the optimization algorithm. From the calculation formula, 

these three segmentation points are all calculated according to 

the distribution characteristics of the histogram, which can 

effectively divide the image's histogram into sub-histograms 

with different features. Then, different enhancement 

processing is performed on the sub-histograms of each distinct 

region to improve the clarity of the enhanced image. 

C. CONSTRUCTION METHOD BASED ON OPTIMAL 
CLIPPING THRESHOLD 

The conventional histogram clipping method is relatively 

simple, and the calculation formula for clipping threshold 

cannot be adapted according to the distribution characteristics 

of the histogram. In addition, the selection of the standard 

clipping threshold includes the average number of gray levels 

but also the average value of the histogram, median and peak 

values, etc. Referring to the traditional clipping threshold 

selection method [13], this paper proposes an adaptive 

histogram clipping algorithm, which uses a value between the 

mean and median of each sub-histogram as the clipping 
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threshold. Among them, z is defined as the clipping parameter 

and a better clipping threshold value can be achieved by 

different values of z [14]. The calculation formula for the 

values in each sub-histogram is: 

Mi=median(histogramofsubimageIi), (11) 

Formulas of Mi represents the ith the median is the histogram. 

The procedure for calculating the clipping threshold of the 

algorithm in this paper is as follows: 

Ti=z (
Q

i

Li

-Mi)+Mi, (12) 

Where Ti  represents the clipping threshold of the ith sub-

histogram, Qi represents the total number of pixels of the ith 

sub-histogram, Li represents the interval length of the ith sub-

histogram, z represents a clipping parameter, and the value 

range is [0, 1], so the value range of the clipping threshold is 

between the median and the mean of a single sub-histogram. 

FIGURE 3. Location map of clipping threshold. 

 

It can be observed from Fig. 3 that the optimized clipping 

threshold is well within the range of the number of pixels in 

each sub-histogram. After calculating the clipping threshold, 

this paper clips each sub-histogram with the method that the 

maximum number of pixels in the histogram is limited to the 

clipping threshold. For the range where the number of pixels 

in the sub-histogram is greater than the clipping threshold, the 

number of pixels in the sub-histogram is defined as Clipping 

threshold; and for the range where the number of pixels in the 

sub-histogram is less than the clipping threshold, no 

processing is performed. The specific calculation formula is: 

y
i
(k)= {

Ti,   if  yi
(k)≥Ti

y
i
(k),   if  y

i
(k)<Ti

 ,i=1,2,3,4 , (13) 

Where yi(k)  represents the clipping histogram and Ti 
represents the clipping threshold represents the clipping 

threshold of the i sub-histogram. 

D. MULTIPART FIGURES 

After clipping the sub-histograms, this paper applies an 

independent equalization process to each sub-histogram. This 

process involves calculating the probability density function 

(PDF) of each sub-histogram [15], and using it to determine 

the cumulative distribution function CDF, so as to obtain the 

equalization transformation of each sub-histogram formula. 

The formulas for calculating the probability density function 

(PDF) and cumulative distribution function (CDF) of each 

sub-histogram are as follows: 

Pdi(k)=
y

i
(k)

Ni

, (14) 

Cdi(k)= ∑ Pdi(k)

k=M

k=N

, (15) 

The value of [N,M] is determined according to the distribution 

range of each sub-histogram after segmentation and clipping. 

Then, based on the CDF and the distribution range of each 

sub-histogram, the conversion formula for each sub-histogram 

is obtained: 

G1(k)=(Xal-1)×Cd1(k) (16) 

G2(k)=((X
a
-1)-Xal)×Cd2(k)+Xal (17) 

G3(k)=((X
au

-1)-Xa)×Cd3(k)+Xa (18) 

G4(k)=((L-1)-Xau)×Cd4(k)+Xau (19) 

Finally, the mapping function used to generate the enhanced 

output image is obtained by combining the mapping functions 

of each sub-image. 

G=G1(k)∪G2(k)∪G3(k)∪G4(k) (20) 

After obtaining the four equalized sub-histograms of each 

channel, this paper combines them to obtain a complete 

histogram of each channel and then applies a second 

equalization on each channel's histogram. This process is 

repeated to get the equalized histogram of each channel. 

Finally, the equalized histograms of the three channels are 

combined to obtain an enhanced histogram, and an enhanced 

color image is produced as output. 

Fig. 4 shows the images cited in this article, in which the 

comparison of the four sub-histograms of the R channel before 

and after equalization, and Fig. 5 shows the comparison of the 

R channel histogram before and after equalization, as can be 

seen from the figure, the first the number of sub-histogram 

pixels after the second equalization becomes uniform. After 

the second R channel histogram equalization, the gray level is 

evenly mapped to the [0,255] interval so that the histogram 

distribution after the original histogram is enhanced is more 

uniform. The enhanced image contrast is more obvious, and 

the display effect is better. 

E. THE OPTIMIZATION ALGORITHM FLOW OF THIS 
PAPER 
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(a) (b) 

FIGURE 4. Four sub-histogram equalization of the R channel.

FIGURE 5. R channel histogram equalization. 

 

The previous sections mainly introduce the three detailed steps 

of the algorithm in this paper image segmentation, cropping, 

and equalization. The following describes the detailed process 

of the algorithm in this paper. As shown in Table I. 

III. RESULTS AND ANALYSIS 

The database selected in this paper is EUVP (European Visual 

Plankton Archive), which is a database that collects images of 

plankton in different waters in Europe, including thousands of 

high-quality, high-resolution images and detailed information 

about image acquisition; among which in the paired data, there 

are 111,670 images of Underwater Dark, 8,670 images of 

Underwater ImageNet, and 4,500 images of Underwater 

Scenes. The unpaired data contains 6,665 images of poor 

quality and good quality, and these images have different 

acquisition times and space. The comprehensive information 

provided by in-depth analysis covers a wide range of scenarios  

and is highly informative, which can be utilized to validate and 

analyze the results of the algorithm proposed in this paper. The 

experimental simulation software and system parameters are 

shown in Table II. 

A. SUBSECTION EVALUATION OF IMAGE QUALITY 

In order to verify whether the subjective evaluation of the 

algorithm in this paper is better for underwater image 

enhancement, this paper conducts comparative experiments 

with six other common underwater image enhancement 

algorithms. These algorithms include CLAHE, RD, AHE, HE, 

BBHE, and RGHS. From the perspective of the universality 

of the verification algorithm, this paper selects some 

representative underwater image data from the three modules 

of Underwater Dark, Underwater ImageNet, and Underwater 

Scenes in the EUVP database for simulation experiments and 

demonstrates the enhancement effect of each algorithm. 

    
(a)Original (b)CLAHE (c)RD (d)AHE 

    
(e)HE (f)BBHE (g)RGHS (h)Our 

FIGURE 6. Example Figure 1 Subjective Comparison Chart 

    
(a)Original (b)CLAHE (c)RD (d)AHE 

    
(e)HE (f)BBHE (g)RGHS (h)Our 

FIGURE 7. Example Figure 2 Subjective Comparison Chart. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290201

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 1 

TABLE I 

ALGORITHM FLOW OF THIS PAPER 

Algorithm steps in this article 

1. Input a color image 

2. Generate the R, G, and B three-channel histograms of the input image respectively 
3. For the histogram of each channel, find the distribution range of the histogram limited by the m value 

4. Use the histogram distribution range limited by the m value to calculate the exposure value and the segmentation point 𝑋𝑎 

5. Calculate the mean value 𝑋𝑎𝑙 and 𝑋𝑎𝑢 of each sub-histogram, and use it as a split point to divide each sub-histogram into two sub-histograms to obtain four sub-

histograms 

6. Use the adaptive clipping parameter 𝑧 to find the clipping threshold, and clip each sub-histogram 

7. Equalize each sub-histogram obtained by splitting and clipping the three channels 

8. Perform secondary equalization on each histogram of the three channels after splicing 
9. Merge the equalized histograms of the three channels to obtain an enhanced histogram 

10. Enhance image output 

 
TABLE II 

ALGORITHM SYSTEM PARAMETERS 

Simulation platform and 

model 
CPU Memory operating system GPU 

MATLAB R2021a Itel(R)Core(TM) i5-12500H 16GB Windows11(64bit) RTX2050-4G 

    
(a)Original (b)CLAHE (c)RD (d)AHE 

    
(e)HE (f)BBHE (g)RGHS (h)Our 

FIGURE 8. Example Figure 3 Subjective Comparison Chart. 

 

    
(a)Original  (b)CLAHE (c)RD (d)AHE 

    
(e)HE (f)BBHE (g)RGHS (h)Our 

FIGURE 9. Example Figure 4 Subjective Comparison Chart. 

 

    
(a)Original  (b)CLAHE (c)RD (d)AHE 

    
(e)HE (f)BBHE (g)RGHS (h)Our 

FIGURE 10. Example Figure 5 Subjective Comparison Chart. 

 

    
(a)Original (b)CLAHE (c)RD (d)AHE 

    
(e)HE (f)BBHE (g)RGHS (h)Our 

FIGURE 11. Example Figure 6 Subjective Comparison Chart. 

 

This article selects six underwater images of different tones, 

and each comparison image shows the comparison between 

the underwater image enhanced by seven algorithms and the 

original image. The results are shown in the above six images. 

While the CLAHE and AHE algorithms enhance image 

contrast and preserve some details and local features, 

excessive enhancement can cause distortion. The RD 

algorithm can adaptively adjust the degree of enhancement, 

avoiding over- and under-enhancement, but may not produce 

significant improvement for images with blue-green tones.  

The HE algorithm can produce clearer images, but may result 

in loss of details in some areas, leading to unnatural visual 

effects. The image enhanced by the BBHE algorithm and the 

RGHS algorithm can enhance the detailed information in the 

image very well, but the enhancement effect of RGHS is not 

good when processing low-contrast images, and the 

phenomenon of gray value aggregation occurs when BBHE 

processes high-contrast images, resulting in Image color is 

distorted. Through the above comparison, it can be seen that 

the contrast of the image processed by the algorithm in this 

paper is enhanced, the problem of image edge blur is improved, 

the image is clearer, the color is more natural, and the local 

details of the image are enhanced, which has a better visual 

effect. 
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TABLE III 

ENTROPY EVALUATION INDEX RESULTS 

Images CLAHE RD AHE HE BBHE RGHS OUR 

Exp.1 

Exp.2 

Exp.3 

Exp.4 

Exp.5 

Exp.6 

7.69 

7.12 

7.84 

7.68 

7.46 

7.12 

7.32 

7.18 

7.41 

7.27 

7.26 

7.31 

7.77 

7.45 

7.39 

7.52 

7.28 

7.82 

7.30 

7.19 

7.42 

7.41 

7.14 

7.34 

7.73 

7.42 

7.54 

7.41 

7.32 

7.24 

7.60 

7.40 

7.77 

7.45 

7.51 

7.31 

7.98 

7.88 

7.89 

7.94 

7.92 

7.92 

 
TABLE IV 

MEAN EVALUATION INDEX RESULTS 

Images CLAHE RD AHE HE BBHE RGHS OUR 

Exp.1 

Exp.2 

Exp.3 

Exp.4 

Exp.5 

Exp.6 

117.18 

115.08 

95.33 

78.36 

77.49 

95.33 

128.54 

127.90 

123.56 

113.48 

114.11 

125.40 

121.48 

122.67 

101.62 

90.31 

88.33 

109.19 

120.04 

127.90 

123.56 

96.49 

114.12 

130.40 

109.45 

125.43 

105.78 

101.35 

92.83 

113.64 

112.36 

106.51 

119.87 

115.62 

96.28 

115.60 

128.02 

128.11 

128.37 

129.16 

128.73 

128.34 

 
TABLE V 

THE AVERAGE RESULTS OF THE UCIQE, PSNR, AND SSIM EVALUATION METRICS 

Target CLAHE RD AHE HE BBHE RGHS         OUR 

UCIQE 

PSNR 

SSIM 

0.433 

29.987 

0.809 

0.445 

29.596 

0.757 

0.387 

30.132 

0.830 

0.443 

30.485 

0.745 

0.415 

30.070 

0.811 

0.396 

28.784 

0.836 

      0.470 

       33.063 

      0.875 

 

B. OBJECTIVE EVALUATION OF IMAGE QUALITY 

In addition to verifying that the improved algorithm in this 

paper is better than the other six enhancement algorithms from 

the subjective comparison chart, this paper also uses some 

mathematical algorithms and models to calculate and analyze 

the image to evaluate the quality of the image. This paper 

selects some image objective evaluation indicators, and each 

image parameter is verified and analyzed. 

Information entropy (Entropy) is a no-reference objective 

index used to evaluate the amount and complexity of image 

information. The higher the information entropy of an image, 

the greater its amount of information and complexity, leading 

to a better visual effect. The mean value, on the other hand, 

represents the overall intensity level of the image. Increasing 

Mean values correspond to higher average brightness of the 

image and generally indicate better image quality; the 

Universal Color Image Quality Index (UCIQE) is a method 

that compares the brightness, contrast, and chromaticity 

differences between the distorted image and the original image. 

To evaluate the objective index of color image quality, its 

value range is [0,1]; the more significant the image quality is 

better; the peak signal-to-noise ratio (PSNR) is a full measure 

of the distortion between the image, and the original image 

Refer to the objective index; the larger the PSNK, the smaller 

the distortion between the image to be evaluated and the 

reference, and the better the quality; the structural similarity 

(SSIM) reflects the structural similarity between the image to 

be evaluated and the reference image, and the value range of 

SSIM It is [0,1], the larger the value, the more similar the 

image is to the image to be evaluated, and the better the quality 

of the image to be evaluated. 

First, this paper uses two non-parametric objective 

evaluation indexes, Entropy and Mean, to analyze the data of 

the six underwater images selected above. According to the 

data in Table III, it can be seen that the Entropy values of the 

six sample images enhanced by the algorithm of this paper are 

greater than those of other algorithms, indicating that the 

distribution of gray levels in the image enhanced by the 

algorithm of this paper is more uniform. The details and 

textures contained are more abundant. From the data in Table 

IV, the Mean value of the algorithm in this paper is relatively 

close to that of the RD algorithm, but judging from the overall 

effect of the six example diagrams, the algorithm in this paper 

is still better than the RD algorithm, and the other five 

algorithms, indicating that the algorithm in this paper is 

enhanced the average brightness of the image is higher, the 

overall brightness is better, and the visual effect is better. 

This paper also selects 300 high-definition underwater 

images in EUVP database for full-parameter image objective 

evaluation. The following are 300 long-length underwater 

images enhanced by seven algorithms and their three full-

parameter objective evaluations of UCIQE, PSNR, and SSIM 

Data analysis of the mean value of the indicator. Table V 

Average results of UCIQE, PSNR and SSIM evaluation 

indicators [16]. 
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FIGURE 12. Entropy and mean average line chart. 

 

According to the data in Table V, the algorithm of this 

paper is superior to other algorithms in terms of three 

comprehensive objective indicators, indicating that the image 

enhanced by the algorithm of this paper has better 

performance in terms of color, contrast, sharpness and details, 

and the overall quality is higher [17]. Compared with the 

selected high-definition image, the image enhanced by the 

algorithm in this paper has the least distortion, is most similar 

to the original high-definition image, and has the highest 

quality. 

C. EXPERIMENTAL ANALYSIS OF DIFFERENT 
CLIPPING PARAMETER Z VALUES 

In this paper, the value range of the clipping parameter 𝑧 is set 

to [0,1], and the clipping parameter is taken from 0.1 to 0.9 

with nine different values. The Entropy and Mean values are 

calculated for the six selected underwater images, and the 

average values of the six images are analyzed to determine the 

optimal range of clipping parameter values. 

Fig. 12 shows the average curves of Entropy and Mean of 

six underwater images obtained by different clipping 

parameter z values. It can be seen from the figure that when z 

is 0.4, the average values of Entropy and Mean both reach the 

highest point. Therefore, in the algorithm of this paper, when 

the clipping parameter z is 0.4, the calculated clipping 

threshold is the optimal value, the clipping effect on the 

histogram is the best, and a better underwater enhanced image 

will be obtained. 

IV. CONCLUSION 

This paper proposes an optimization-based adaptive quadruple 

segmentation and cropping algorithm for histogram 

equalization of underwater images. First, the exposure value 

and split point are calculated by optimizing the distribution 

range of the histogram. The histogram is first segmented, and 

then the sub-histogram is divided into four parts by using the 

mean value of the sub-histogram as the splitting point twice. 

Secondly, use the histogram clipping technique to clip 

different regional features of each sub-histogram, and then 

perform secondary equalization on the clipped histogram. 

Finally, the equalized sub-histograms of each channel are 

combined to obtain an enhanced color image as output. The 

subjective and objective evaluation experiments of the 

algorithm in this paper show that the image output by the 

algorithm in this paper is better than the comparison algorithm 

in terms of Entropy, Mean. Some comprehensive metrics 

show that the proposed algorithm is effective, and it is also 

simple and easy to understand, making it applicable to various 

underwater scenarios, such as deep-sea exploration, 

underwater archaeology, and underwater photography. The 

future research direction is to overcome the limitations of the 

algorithm proposed in this paper in processing the details of 

underwater images, and to develop a more refined histogram 

segmentation and cropping method that can preserve the 

details of underwater images with different characteristics. 
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