
Citation: Cheng, W.; Wang, X.; Mao,

B. Research on Lane Line Detection

Algorithm Based on Instance

Segmentation. Sensors 2023, 23, 789.

https://doi.org/10.3390/s23020789

Academic Editor: George Yannis

Received: 13 December 2022

Revised: 2 January 2023

Accepted: 4 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Lane Line Detection Algorithm Based on
Instance Segmentation
Wangfeng Cheng 1, Xuanyao Wang 1,2,3,* and Bangguo Mao 1

1 School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
2 Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and

Technology, Wuhu 241000, China
3 Shaanxi Automobile Holding Group Huainan Special Purpose Vehicle Co., Ltd., Huainan 232001, China
* Correspondence: xuanyaowang@126.com

Abstract: Aiming at the current lane line detection algorithm in complex traffic scenes, such as lane
lines being blocked by shadows, blurred roads, and road sparseness, which lead to low lane line
detection accuracy and poor real-time detection speed, this paper proposes a lane line detection
algorithm based on instance segmentation. Firstly, the improved lightweight network RepVgg-A0 is
used to encode road images, which expands the receptive field of the network; secondly, a multi-size
asymmetric shuffling convolution model is proposed for the characteristics of sparse and slender lane
lines, which enhances the ability to extract lane line features; an adaptive upsampling model is further
proposed as a decoder, which upsamples the feature map to the original resolution for pixel-level
classification and detection, and adds the lane line prediction branch to output the confidence of the
lane line; and finally, the instance segmentation-based lane line detection algorithm is successfully
deployed on the embedded platform Jetson Nano, and half-precision acceleration is performed using
NVDIA’s TensorRT framework. The experimental results show that the Acc value of the lane line
detection algorithm based on instance segmentation is 96.7%, and the FPS is 77.5 fps/s. The detection
speed deployed on the embedded platform Jetson Nano reaches 27 fps/s.

Keywords: autonomous driving; complex road environment; lane line detection; instance segmentation

1. Introduction

Lane line detection is a crucial component of the road surface information and en-
vironment perception used in autonomous driving technology, which contains semantic
information about road areas, identifies the direction of travel, and enhances guidance
data. Because deep learning and artificial intelligence have advanced so quickly, lane line
detection technology is now able to provide automated driving vehicles with collision
warning, lane departure warning, and auxiliary environment perception information, as
well as to help the system realize lane path planning [1,2]. This increases the safety of
automated driving.

Lane lines, the most important road traffic signs, constrain vehicles’ driving paths.
Traditional lane detection algorithms based on features and models and deep learning-
based lane line detection algorithms are the two broad categories of current mainstream
lane line detection algorithms.

The traditional lane line detection algorithms first needed to preprocess the image
according to the specific use scene to eliminate noise interference; then, used the preset
shape, color, or spatial features to match the road image for feature extraction; and finally,
used the least-squares algorithm to simulate the lane line. Mammeri et al. [3] proposed a
lane line detection system combining the most stable extremal region and Hough transform,
which used matching features such as the color and shape of lane lines, to detect lane
lines. Sotelo et al. [4] developed a road segmentation algorithm based on an HIS color
space and a two-dimensional constrained space for obtaining the lane line information.

Sensors 2023, 23, 789. https://doi.org/10.3390/s23020789 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23020789
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020789?type=check_update&version=1

Sensors 2023, 23, 789 2 of 21

Ozgunalp et al. [5] proposed a feature-map-based lane detection algorithm that used an
inverse perspective transformation method. Chi et al. [6] proposed the use of the road
vanishing point estimation algorithm to detect lane lines, but the model-based algorithm
was computationally complex. In addition, the model-based detection algorithm was
computationally intensive and could only deal with problems such as road occlusion in
specific environments, thus making the results somewhat limited. Traditional lane line
detection algorithms based on features and models [7–11] were easily affected by external
environmental factors. When the lane line was broken, blocked, or unpainted, its robustness
was extremely low, which would lead to incorrect lane line detection or even make it
impossible. To solve the problem of low accuracy of lane line detection in complex road
environments, convolutional neural networks based on deep learning were widely used in
lane line detection because of their powerful feature detection capabilities. Aly et al. [12]
used Gaussian filtering and detected street lanes using line detection and a new RANSAC
spline-fitting technique. Kim et al. [13] combined convolutional neural networks with the
RANSAC algorithm and proposed a continuous end-to-end migration learning method that
can detect both left and right lane lines of the current lane. Neven et al. [14] transformed
the lane line detection problem into an instance segmentation problem that distinguished
the lane lines and their background using a binary classification principle. Ren et al. [15]
proposed a Fast-RCNN network, which used a multi-task loss function for training, which
allowed all layers to be updated and reduced the number of parameters in fully connected
layers, improving detection performance. However, the two-stage-based network detection
was slow. He et al. [16] proposed the use of SPP-Net to improve the detection speed. By
introducing the pooling layer to reduce the parameter amount of the model, the speed of the
model was improved to a certain extent, but the detection accuracy decreased to a certain
extent. Hairs et al. [17] proposed an ak-cnn model for lane line detection, which had an
auxiliary loss, which reduced parameters and running time while improving detection and
estimation indicators and had an excellent real-time performance. However, it was prone to
a lack of flexibility in complex traffic conditions. Liu et al. [18] proposed a transformer-based
network structure to better learn lane structure information and context information and
directly output the parameter information of lane lines to avoid additional post-processing,
and improved the overall detection speed. However, due to the large number of candidate
lane lines generated in the network, post-processing methods (NMS) were still required
to filter redundant lane lines, and the real-time performance was poor. Chao et al. [19]
proposed a VGG-ss model to build an encoder–decoder structure to improve the accuracy
and real-time performance of lane line detection. However, when the lane line was blocked
or destroyed, the precision measurement accuracy and real-time speed dropped slightly,
and this experiment was only used for pictures and had not been studied on videos, sports,
and other images.

In summarizing the aforementioned literature, it can be seen that the current lane line
detection algorithms based on deep learning use data to extract features adaptively, which
makes the lane line detection accuracy and real-time detection speed significantly improved
compared with traditional lane line detection algorithms. However, under factors such
as road occlusion, road blur, and the characteristics of slender and sparse lane lines, it
is difficult for ordinary convolutional neural networks to extract accurate road features
from road images, and cannot achieve satisfactory accuracy and real-time performance.
Aiming at the above problems, this paper proposes a lane line detection algorithm based
on instance segmentation. The contributions part of this paper includes the succeeding
three points:

1. Improve the RepVgg-A0 network to expand the receptive field of the network without
increasing the amount of calculations, and propose a multi-size asymmetric shuffled
convolution model to enhance the extraction of sparse and slender lane lines ability.

2. An adaptive upsampling model is proposed, which allows the network to select the
weight of the two upsampling methods at each position; at the same time, a lane line
prediction branch is added to facilitate the output of lane line confidence.

Sensors 2023, 23, 789 3 of 21

3. Deploy the lane line detection algorithm to the embedded platform Jetson Nano,
and use the TensorRT framework for half-precision acceleration to make its detection
speed meet the needs of real-time detection.

This paper is arranged as follows: A lane line detection model based on instance
segmentation is designed in Section 2. In Section 3, the lane line detection experiment is
carried out by combining the Tusimple extended dataset and the video collected by the real
car and deployed to the mobile terminal. Finally, in Section 4, the content of this paper is
summarized and directions for future work are provided.

2. Design of Lane Line Detection Model

Refer to the encoder–decoder network structure [19] to build a lane line detection
instance segmentation model. The lane line detection model framework based on instance
segmentation includes an encoder, a feature enhancement model, a decoder, and a lane
prediction branch. Firstly, the encoder part uses the improved lightweight network RepVgg-
A0 to encode the road image; secondly, the feature enhancement model uses a multi-
scale asymmetric shuffled convolution model to enhance the ability to extract lane line
features; further, the adaptive upsampling model is used as the decoder, the feature map is
upsampled to the original resolution for pixel-level classification and detection, and the
lane line prediction branch is added to output the lane line confidence.

2.1. Design of Encoder Network Structure

After the road image is input, the lightweight network RepVgg-A0 is used as the
encoder of the model to initially extract the features of the lane line. RepVgg follows the
lightweight model design guidelines proposed in ShuffleNet V2 [20] and proposes the
idea of structural reparameterization. Different model structures are used in the training
and inference stages, and different branch structures are cleverly fused during inference to
reduce memory usage and speed up model inference. This is also one of the reasons why
the lane line detection algorithm in this paper has a faster inference speed.

The lightweight RepVgg-A0 [21] network downsamples and compresses the input
image to 1/32 of the original image through 3 convolutional layers with a step size of 2,
reducing the image resolution while increasing the receptive field. However, too small a
resolution will, as a result, cause the encoded image to lose a lot of spatial information,
and it is difficult for the subsequent decoding process to repair this information, which
affects the accuracy of lane line detection. Therefore, the RepVgg-A0 network structure
is adjusted, and the step size of the convolution in the last 2 layers of the network is set
to 1 so that the downsampling ratio is reduced from 32 times to 8 times. After the above
operations, the size of the encoded feature map is relatively increased, and more original
information about the lane line is retained, but another problem arises. The receptive field
of the network becomes smaller, and it is difficult for it to learn global features. Therefore,
the hole convolution is introduced in the last 2 layers of the network, and the conventional
3× 3 convolutions in the last 2 layers of the RepVgg-A0 network are replaced by 3× 3-hole
convolutions with a hole rate of 2 and 4, without introducing additional calculations.

After the input 3-channel image is initially extracted by the improved RepVgg-A0
network, the number of channels becomes 1280, and the resolution is reduced to 1/8 of the
original. To reduce the calculation amount of subsequent operations and fuse the extracted
features at the same time, 1 × 1’s convolutions are added to the last layer of the encoder to
compress the number of channels to 128. After the above steps, the overall structure of the
encoder is shown in Table 1, and its network structure is shown in Figure 1 below.

Sensors 2023, 23, 789 4 of 21

Table 1. Overall structure of the encoder.

Stage Output
Size

Convolution
Kernel Step Hole Rate Number

of Stacks
Output

Channels

Input 368 × 640 3
Stage0 184 × 320 3 × 3 2 1 1 48
Stage1 92 × 160 3 × 3 2 1 2 48
Stage2 46 × 80 3 × 3 2 2 4 96
Stage3 46 × 80 3 × 3 1 2 14 192
Stage4 46 × 80 3 × 3 1 4 1 1280
Conv5 46 × 80 1 × 1 1 1 1 128

Sensors 2023, 22, x FOR PEER REVIEW 4 of 21

encoder to compress the number of channels to 128. After the above steps, the overall
structure of the encoder is shown in Table 1, and its network structure is shown in Figure
1 below.

Table 1. Overall structure of the encoder.

Stage Output Size Convolution Kernel Step Hole Rate Number of Stacks Output Channels
Input 368 × 640 3
Stage0 184 × 320 3 × 3 2 1 1 48
Stage1 92 × 160 3 × 3 2 1 2 48
Stage2 46 × 80 3 × 3 2 2 4 96
Stage3 46 × 80 3 × 3 1 2 14 192
Stage4 46 × 80 3 × 3 1 4 1 1280
Conv5 46 × 80 1 × 1 1 1 1 128

184×320×64

92×160×64

46×80

368×640×3

128 256 512 128

Encoder
Input

Output

Figure 1. Improved encoder network structure diagram.

2.2. Design of Feature Enhancement Model
Lane line detection is different from conventional object detection. A lane line usually

spans the entire image, which requires the network to have a large enough receptive field.
For the instance segmentation network, an effective way to increase the receptive field is
to use a larger convolution kernel. Inspired by the ShuffleNet V2 network, this paper de-
signs a multi-size shuffled convolution module containing 3 sizes of convolution kernels
of 3 × 3, 5 × 5, and 7 × 7. Among them, 3 × 3 convolutions are used to extract the detailed
features of lane lines, and 5 × 5 and 7 × 7 convolutions have larger receptive fields, which
can capture larger-scale lane line features. The multi-size shuffling convolution module
structure is shown in Figure 2a. After the feature map is input, firstly, the channel is di-
vided into two branches, and the secondary branch performs the same mapping. Sec-
ondly, the main branch performs convolutions of three sizes of 3 × 3, 5 × 5, and 7 × 7 in
sequence, and uses the FReLu activation function [22] to add nonlinear factors after each
convolution. Finally, after splicing the main branch and the second branch channels, the
full channel shuffling operation is performed to promote the fusion of feature information
between channels.

The computational cost of using shuffled convolution modules is somewhat lower
than using large convolution kernels directly, but the 5 × 5 and 7 × 7 convolutions still
require a lot of calculations. In order to further simplify calculations, asymmetric convo-
lutions are introduced in this paper. Asymmetric convolution reduces the amount of cal-
culation by substituting k × 1 and 1 × k convolutions for traditional k × k convolutions.
The convolution calculations and parameters for the standard k × k convolutions are as
follows:

Figure 1. Improved encoder network structure diagram.

2.2. Design of Feature Enhancement Model

Lane line detection is different from conventional object detection. A lane line usually
spans the entire image, which requires the network to have a large enough receptive field.
For the instance segmentation network, an effective way to increase the receptive field
is to use a larger convolution kernel. Inspired by the ShuffleNet V2 network, this paper
designs a multi-size shuffled convolution module containing 3 sizes of convolution kernels
of 3 × 3, 5 × 5, and 7 × 7. Among them, 3 × 3 convolutions are used to extract the detailed
features of lane lines, and 5 × 5 and 7 × 7 convolutions have larger receptive fields, which
can capture larger-scale lane line features. The multi-size shuffling convolution module
structure is shown in Figure 2a. After the feature map is input, firstly, the channel is divided
into two branches, and the secondary branch performs the same mapping. Secondly, the
main branch performs convolutions of three sizes of 3 × 3, 5 × 5, and 7 × 7 in sequence,
and uses the FReLu activation function [22] to add nonlinear factors after each convolution.
Finally, after splicing the main branch and the second branch channels, the full channel
shuffling operation is performed to promote the fusion of feature information between
channels.

The computational cost of using shuffled convolution modules is somewhat lower than
using large convolution kernels directly, but the 5 × 5 and 7 × 7 convolutions still require
a lot of calculations. In order to further simplify calculations, asymmetric convolutions
are introduced in this paper. Asymmetric convolution reduces the amount of calculation
by substituting k × 1 and 1 × k convolutions for traditional k × k convolutions. The
convolution calculations and parameters for the standard k × k convolutions are as follows:

Params = k2CiCo (1)

FLOPs = k2CiCo HoWo (2)

Sensors 2023, 23, 789 5 of 21

Among them are the height and width of the input feature map, respectively, and
the channel numbers of the input and output feature maps, respectively. The asymmetric
convolution parameters and calculations equivalent to k × k convolution are as follows:

Paramsa = 2kCiCo (3)

FLOPsa = kCiCo Ho(2Wo + k− 1) (4)

It can be seen from Formulas (1)–(4) that the larger the size of the convolution kernel,
the more obvious the number of parameters and calculations that can be reduced by
converting it into an asymmetric convolution. In addition, some studies have shown that
the asymmetric effect of convolution applied to the middle layer of the network is better [23].
Therefore, the 5 × 5 and 7 × 7 convolutions in the multi-size shuffled convolution module
are replaced by asymmetric convolution, and a multi-size asymmetric shuffled convolution
module, as shown in Figure 2b, is designed. For fixed 46 × 80 × 128 input feature maps,
the number of module parameters and calculations are reduced by 60.24% and 61.47%,
respectively.

Sensors 2023, 22, x FOR PEER REVIEW 5 of 21

2
i oParams= k CC (1)

2
i o o oFLOPs= k CC H W (2)

Among them are the height and width of the input feature map, respectively, and the
channel numbers of the input and output feature maps, respectively. The asymmetric con-
volution parameters and calculations equivalent to k × k convolution are as follows:

2a i oParams kCC= (3)

(2 1)a i o o oFLOPs kCC H W k= + − (4)

It can be seen from Formulas (1)–(4) that the larger the size of the convolution kernel,
the more obvious the number of parameters and calculations that can be reduced by con-
verting it into an asymmetric convolution. In addition, some studies have shown that the
asymmetric effect of convolution applied to the middle layer of the network is better [23].
Therefore, the 5 × 5 and 7 × 7 convolutions in the multi-size shuffled convolution module
are replaced by asymmetric convolution, and a multi-size asymmetric shuffled convolu-
tion module, as shown in Figure 2b, is designed. For fixed 46 × 80 × 128 input feature maps,
the number of module parameters and calculations are reduced by 60.24% and 61.47%,
respectively.

5×5 Conv

7×7 Conv

Concat

BN FReLU

FReLU

BN FReLU

BN FReLU

3×3 Conv

Channel Split

Channel Shuffle

5×1 Conv

Concat

ReLU

BN FReLU

3×3 Conv

Channel Split

Channel Shuffle

1×5 Conv

7×1 Conv

BN FReLU

1×7 Conv

BN FReLU

FReLU

FReLU

(a) (b)

Figure 2. Multi-scale shuffled convolution module and multi-scale asymmetric shuffled convolution
module. (a) Multi-scale shuffled convolution module. (b) Multi-scale asymmetric shuffled convolu-
tion module.

Stack 6 multi-size asymmetric shuffled convolution models are used to form the fea-
ture enhancement model of the lane line detection model in this paper. Among them, the
last 5 modules use hole convolution to further expand the receptive field, and the hole
rates are set to 2, 4, 6, 8, and 10, respectively. The feature enhancement module further
extracts the lane line information existing in the feature map output by the encoder and

Figure 2. Multi-scale shuffled convolution module and multi-scale asymmetric shuffled convolu-
tion module. (a) Multi-scale shuffled convolution module. (b) Multi-scale asymmetric shuffled
convolution module.

Stack 6 multi-size asymmetric shuffled convolution models are used to form the feature
enhancement model of the lane line detection model in this paper. Among them, the last
5 modules use hole convolution to further expand the receptive field, and the hole rates
are set to 2, 4, 6, 8, and 10, respectively. The feature enhancement module further extracts
the lane line information existing in the feature map output by the encoder and inputs the
result into the lane line prediction branch and decoder structure, and its corresponding
network structure is shown in Figure 3 below.

Sensors 2023, 23, 789 6 of 21

Sensors 2023, 22, x FOR PEER REVIEW 6 of 21

inputs the result into the lane line prediction branch and decoder structure, and its corre-
sponding network structure is shown in Figure 3 below.

46×80×128
128

Feature Enhancement Module

Input

Output

6 multi-scale asymmetric shuffled convolution modules

Figure 3. Feature enhancement module.

2.3. Design of Decoder Network Structure
The decoder’s job is to classify each pixel in the feature map by upsampling the low-

resolution feature map, which contains rich feature information, to the size of the input
image. The two most popular upsampling algorithms are bilinear interpolation and trans-
position convolution. However, these algorithms ignore the impact of the gradient in pixel
values between adjacent points, which will degrade the sampled image’s detailed fea-
tures. It is also simple to ignore coarse-grained features and other issues. To solve the
above problems, Zheng et al. [24] proposed a bilateral upsampling module, which directly
adds bilinear interpolation and transposed convolution upsampling results, and achieved
certain results, but did not consider the two kinds of upsampling based on the applicabil-
ity of the method to a specific image area. To effectively extract image features, this paper
suggests an adaptive upsampling module that enables the network to choose the weight
of the two upsampling methods at each location.

The adaptive upsampling module structure is shown in Figure 4. After inputting the
H x W x C feature map, firstly, use bilinear interpolation and transposed convolution to
perform upsampling, and initially obtain two 2H × 2W × C/2 upsampling feature maps, E
and F; then, splice E and F at the channel dimension to obtain a 2H × 2W × C feature map
G, perform 3 × 3 convolutions on G to extract the spatial attention description S (2H × 2W
× 2), and use the Softmax function to extract two attention weights of 2H × 2W × 1 for S;
finally, the attention weights are weighted and summed with E and F, respectively, to
obtain the final upsampling result (2H × 2W × C/2).

Figure 3. Feature enhancement module.

2.3. Design of Decoder Network Structure

The decoder’s job is to classify each pixel in the feature map by upsampling the
low-resolution feature map, which contains rich feature information, to the size of the
input image. The two most popular upsampling algorithms are bilinear interpolation and
transposition convolution. However, these algorithms ignore the impact of the gradient in
pixel values between adjacent points, which will degrade the sampled image’s detailed
features. It is also simple to ignore coarse-grained features and other issues. To solve the
above problems, Zheng et al. [24] proposed a bilateral upsampling module, which directly
adds bilinear interpolation and transposed convolution upsampling results, and achieved
certain results, but did not consider the two kinds of upsampling based on the applicability
of the method to a specific image area. To effectively extract image features, this paper
suggests an adaptive upsampling module that enables the network to choose the weight of
the two upsampling methods at each location.

The adaptive upsampling module structure is shown in Figure 4. After inputting the
H ×W × C feature map, firstly, use bilinear interpolation and transposed convolution to
perform upsampling, and initially obtain two 2H × 2W × C/2 upsampling feature maps, E
and F; then, splice E and F at the channel dimension to obtain a 2H× 2W× C feature map G,
perform 3× 3 convolutions on G to extract the spatial attention description S (2H× 2W× 2),
and use the Softmax function to extract two attention weights of 2H × 2W × 1 for S; finally,
the attention weights are weighted and summed with E and F, respectively, to obtain the
final upsampling result (2H × 2W × C/2).

Sensors 2023, 22, x FOR PEER REVIEW 7 of 21

´

Bilinear
interpolation
upsampling

Transposed
Convolution
Upsampling

SoftmaxConcat +

´

 H´W´C

 2H×2W×C/2

2H×2W×C/2

Add

2H×2W×C

2H×2W×C/2

2H×2W×C/2

2H×2W×C/2 2H×2W×2

E

F

G S
Conv
3 × 3

Figure 4. Adaptive upsampling module.

The bilinear interpolation upsampling structure in the adaptive upsampling module
is shown in Figure 5a. Firstly, 1 × 1 convolutions are used to reduce the number of channels
to a half, and then bilinear interpolation is performed to double the size of the feature
map. The upsampling structure of the transposed convolution is shown in Figure 5b. The
transposed convolution with a step size of 2 is used to expand the size of the feature map
by 2 times while compressing the number of channels, and then accessing two asymmetric
convolutions-Non-bt-1D modules [25].

Non-bt-1D

Non-bt-1D

BN
ReLU

3×3 TConv
Stride=2

Input

Output

Bilinear
Interpolate

BN ReLU

1×1 Conv

Input

Output

(a) (b)

Figure 5. The specific structure of the two upsampling modules. (a) Bilinear interpolation upsam-
pling. (b) Transposed convolution upsampling.

The adaptive upsampling module is superimposed three times to form the decoder
of the lane line detection model in this paper, and its corresponding network structure is
shown in Figure 6. The input feature map is decoded by the decoder and upsampled to
the original image size, and the number of channels is reduced to 7. The first channel is
used to predict the background of the lane line, and the other channels directly predict the
pixel coordinates of the lane line instance, which has a faster detection speed than the
algorithm that is first semantically segmented and then fits the lane line.

Figure 4. Adaptive upsampling module.

Sensors 2023, 23, 789 7 of 21

The bilinear interpolation upsampling structure in the adaptive upsampling module is
shown in Figure 5a. Firstly, 1 × 1 convolutions are used to reduce the number of channels
to a half, and then bilinear interpolation is performed to double the size of the feature
map. The upsampling structure of the transposed convolution is shown in Figure 5b. The
transposed convolution with a step size of 2 is used to expand the size of the feature map
by 2 times while compressing the number of channels, and then accessing two asymmetric
convolutions-Non-bt-1D modules [25].

Sensors 2023, 22, x FOR PEER REVIEW 7 of 21

´

Bilinear
interpolation
upsampling

Transposed
Convolution
Upsampling

SoftmaxConcat +

´

 H´W´C

 2H×2W×C/2

2H×2W×C/2

Add

2H×2W×C

2H×2W×C/2

2H×2W×C/2

2H×2W×C/2 2H×2W×2

E

F

G S
Conv
3 × 3

Figure 4. Adaptive upsampling module.

The bilinear interpolation upsampling structure in the adaptive upsampling module
is shown in Figure 5a. Firstly, 1 × 1 convolutions are used to reduce the number of channels
to a half, and then bilinear interpolation is performed to double the size of the feature
map. The upsampling structure of the transposed convolution is shown in Figure 5b. The
transposed convolution with a step size of 2 is used to expand the size of the feature map
by 2 times while compressing the number of channels, and then accessing two asymmetric
convolutions-Non-bt-1D modules [25].

Non-bt-1D

Non-bt-1D

BN
ReLU

3×3 TConv
Stride=2

Input

Output

Bilinear
Interpolate

BN ReLU

1×1 Conv

Input

Output

(a) (b)

Figure 5. The specific structure of the two upsampling modules. (a) Bilinear interpolation upsam-
pling. (b) Transposed convolution upsampling.

The adaptive upsampling module is superimposed three times to form the decoder
of the lane line detection model in this paper, and its corresponding network structure is
shown in Figure 6. The input feature map is decoded by the decoder and upsampled to
the original image size, and the number of channels is reduced to 7. The first channel is
used to predict the background of the lane line, and the other channels directly predict the
pixel coordinates of the lane line instance, which has a faster detection speed than the
algorithm that is first semantically segmented and then fits the lane line.

Figure 5. The specific structure of the two upsampling modules. (a) Bilinear interpolation upsampling.
(b) Transposed convolution upsampling.

The adaptive upsampling module is superimposed three times to form the decoder
of the lane line detection model in this paper, and its corresponding network structure is
shown in Figure 6. The input feature map is decoded by the decoder and upsampled to the
original image size, and the number of channels is reduced to 7. The first channel is used to
predict the background of the lane line, and the other channels directly predict the pixel
coordinates of the lane line instance, which has a faster detection speed than the algorithm
that is first semantically segmented and then fits the lane line.

Sensors 2023, 22, x FOR PEER REVIEW 8 of 21

184×320×64

368×640×7

Decoder

92×160×64

46×80×128

Input

368×640×3

Output

Adaptive Upsampling Module for Triple Stacking

Figure 6. Decoder network structure.

2.4. Design of Lane Line Prediction Branch
This paper develops a lane line prediction branch to assess the existence of each lane

line and determine the degree of confidence in the existence of output lane lines. Figure
7a depicts the network’s internal structure, and Figure 7b depicts the network’s external
structure. Firstly, the number of channels is reduced to 7 through 1 × 1 convolution, and
after activation by Softmax, average pooling with a step size of 2 is used to downsample
to 23 × 40 × 7; then, two fully connected layers are used continuously and activated by
ReLU and Sigmoid, respectively, and output length is a one-dimensional feature vector of
6, respectively, representing the probability of the existence of 6 pre-selected lane lines. In
actual use, set a confidence threshold. When the confidence is greater than the threshold,
it means that the lane line exists, otherwise it does not exist. This paper sets the threshold
to 0.5.

23×40×7

1

6440 128 6

46×80×7
46×80×128

Input

Output

Avg Pool
Stride=2

Fc

Fc

ReLU

Softmax

1×1 Conv

Sigmoid

46×80×128

46×80×7

23×40×7

128

6

Input

Output

(a) (b)

Figure 7. Lane line prediction branch. (a) Internal structure of lane line prediction branch. (b) Exter-
nal structure of lane line prediction branch.

2.5. Proposed Lane Detection Model

Figure 6. Decoder network structure.

Sensors 2023, 23, 789 8 of 21

2.4. Design of Lane Line Prediction Branch

This paper develops a lane line prediction branch to assess the existence of each lane
line and determine the degree of confidence in the existence of output lane lines. Figure 7a
depicts the network’s internal structure, and Figure 7b depicts the network’s external
structure. Firstly, the number of channels is reduced to 7 through 1 × 1 convolution, and
after activation by Softmax, average pooling with a step size of 2 is used to downsample
to 23 × 40 × 7; then, two fully connected layers are used continuously and activated by
ReLU and Sigmoid, respectively, and output length is a one-dimensional feature vector of
6, respectively, representing the probability of the existence of 6 pre-selected lane lines. In
actual use, set a confidence threshold. When the confidence is greater than the threshold, it
means that the lane line exists, otherwise it does not exist. This paper sets the threshold
to 0.5.

Sensors 2023, 22, x FOR PEER REVIEW 8 of 21

184×320×64

368×640×7

Decoder

92×160×64

46×80×128

Input

368×640×3

Output

Adaptive Upsampling Module for Triple Stacking

Figure 6. Decoder network structure.

2.4. Design of Lane Line Prediction Branch
This paper develops a lane line prediction branch to assess the existence of each lane

line and determine the degree of confidence in the existence of output lane lines. Figure
7a depicts the network’s internal structure, and Figure 7b depicts the network’s external
structure. Firstly, the number of channels is reduced to 7 through 1 × 1 convolution, and
after activation by Softmax, average pooling with a step size of 2 is used to downsample
to 23 × 40 × 7; then, two fully connected layers are used continuously and activated by
ReLU and Sigmoid, respectively, and output length is a one-dimensional feature vector of
6, respectively, representing the probability of the existence of 6 pre-selected lane lines. In
actual use, set a confidence threshold. When the confidence is greater than the threshold,
it means that the lane line exists, otherwise it does not exist. This paper sets the threshold
to 0.5.

23×40×7

1

6440 128 6

46×80×7
46×80×128

Input

Output

Avg Pool
Stride=2

Fc

Fc

ReLU

Softmax

1×1 Conv

Sigmoid

46×80×128

46×80×7

23×40×7

128

6

Input

Output

(a) (b)

Figure 7. Lane line prediction branch. (a) Internal structure of lane line prediction branch. (b) Exter-
nal structure of lane line prediction branch.

2.5. Proposed Lane Detection Model

Figure 7. Lane line prediction branch. (a) Internal structure of lane line prediction branch. (b) External
structure of lane line prediction branch.

2.5. Proposed Lane Detection Model

Figure 8 depicts the lane line detection model based on instance segmentation. This
model uses ReLU as the activation function and primarily consists of 12 convolutional lay-
ers, 3 upsampling layers, and 5 pooling layers. The input feature map is compressed three
times by the encoder, and the output feature map is stacked by six multi-size asymmetric
shuffled convolutions through the feature enhancement model. Part of the output feature
map is passed to the decoder, and the other part is passed to the lane line prediction branch.
The output feature map is adaptively up-sampled 3 times by the decoder, and the result of
the instance segmentation of the feature map is output. The lane line prediction branch
outputs the lane line confidence through maximum pooling 5 times. The encoder network
structure and the decoder network structure present an asymmetric state, which effectively
reduces the number of parameters and computation of the model.

Sensors 2023, 23, 789 9 of 21

Sensors 2023, 22, x FOR PEER REVIEW 9 of 21

Figure 8 depicts the lane line detection model based on instance segmentation. This
model uses ReLU as the activation function and primarily consists of 12 convolutional
layers, 3 upsampling layers, and 5 pooling layers. The input feature map is compressed
three times by the encoder, and the output feature map is stacked by six multi-size asym-
metric shuffled convolutions through the feature enhancement model. Part of the output
feature map is passed to the decoder, and the other part is passed to the lane line predic-
tion branch. The output feature map is adaptively up-sampled 3 times by the decoder,
and the result of the instance segmentation of the feature map is output. The lane line
prediction branch outputs the lane line confidence through maximum pooling 5 times.
The encoder network structure and the decoder network structure present an asymmetric
state, which effectively reduces the number of parameters and computation of the model.

184×320×64

92×160×64

46×80

46×80×128 92×160×64

184×320×64

368×640×7

128 256 512 128

Encoder Feature Enhancement Module Decoder

46×80×7
23×40×7

1

6440 128 6

Lane Line Prediction Branch

Input Output

Multi-Scale Asymmetric
Shuffled Convolution

Convolution

Adaptive
Upsampling

Maximum
Pooling

Figure 8. Lane detection model.

3. Experimental Results and Analysis
3.1. Dataset and Preprocessing

This paper is based on the TuSimple [26] dataset, which comprises video images col-
lected on American highways. There are 20 frames in each segment. The original dataset
only marked the final frame of the 20 frames because there are many video frame data
points. The first frame and the images of the tenth and eleventh frames in the middle are
chosen for labeling to improve the dataset’s generalizability. The labeling file is in json
format, and for every ten pixels in the expanded (vertical) direction, a point is marked.
There are 25,632 pictures of roads. Different from the original dataset, 14,504 pictures are
selected for training, 2325 pictures are used for verification, and 8803 pictures are used for
testing. To enhance the diversity of the data and improve the robust effect of the model,
data enhancement processing is performed on the training set, including random rotation
and random horizontal deflection. Figure 9 shows some common scenes in the dataset.
Each image has 2 to 5 marked lane lines. In this paper, these discrete lane line coordinate
points are connected to form an example image as a real mark.

Figure 8. Lane detection model.

3. Experimental Results and Analysis
3.1. Dataset and Preprocessing

This paper is based on the TuSimple [26] dataset, which comprises video images
collected on American highways. There are 20 frames in each segment. The original dataset
only marked the final frame of the 20 frames because there are many video frame data
points. The first frame and the images of the tenth and eleventh frames in the middle are
chosen for labeling to improve the dataset’s generalizability. The labeling file is in json
format, and for every ten pixels in the expanded (vertical) direction, a point is marked.
There are 25,632 pictures of roads. Different from the original dataset, 14,504 pictures are
selected for training, 2325 pictures are used for verification, and 8803 pictures are used for
testing. To enhance the diversity of the data and improve the robust effect of the model,
data enhancement processing is performed on the training set, including random rotation
and random horizontal deflection. Figure 9 shows some common scenes in the dataset.
Each image has 2 to 5 marked lane lines. In this paper, these discrete lane line coordinate
points are connected to form an example image as a real mark.

Sensors 2023, 22, x FOR PEER REVIEW 10 of 21

Figure 9. Display of some scenes from the TuSimple dataset.

3.2. Experiment Preparation
The server used in the experiment is the 11th Gen Intel (R) Core (TM) i5-11400H @

2.70 GHz 2.69 GHz, 512 GB memory, and NVIDIA GeForce RTX3050 graphics processor.
The operating system is Windows 10 professional version, the deep learning framework
is tensorflow2.4-GPU, and CUDA version is 11.0.

The video acquisition device used in the experiment is a front-view camera, as shown
in Figure 10, with a resolution of 2592 × 1944. The experimental vehicle is a Volkswagen
Sagitar, the embedded platform Jetson Nano is used for mobile deployment, and the op-
erating system is ubuntu18.0.4. The details are shown in Figure 11.

Figure 10. Image acquisition equipment.

Figure 11. Experimental vehicle and Jetson Nano embedded platform.

Table 2 displays the lane line detection model’s hyperparameter settings. For lane
line image segmentation and lane line confidence prediction, different loss functions—the
cross-entropy loss function and binary cross-entropy loss function, respectively—are
used. Use each batch for training after updating the model parameters, and record it as a
training session. Set the maximum number of iterations to 300, and the maximum number
of training times to 80,000. When the number of training times is greater than this value,
stop training. The learning rate is determined by the following formula:

0.9(1)sL
p

= − (5)

Figure 9. Display of some scenes from the TuSimple dataset.

Sensors 2023, 23, 789 10 of 21

3.2. Experiment Preparation

The server used in the experiment is the 11th Gen Intel (R) Core (TM) i5-11400H @
2.70 GHz 2.69 GHz, 512 GB memory, and NVIDIA GeForce RTX3050 graphics processor.
The operating system is Windows 10 professional version, the deep learning framework is
tensorflow2.4-GPU, and CUDA version is 11.0.

The video acquisition device used in the experiment is a front-view camera, as shown
in Figure 10, with a resolution of 2592 × 1944. The experimental vehicle is a Volkswagen
Sagitar, the embedded platform Jetson Nano is used for mobile deployment, and the
operating system is ubuntu18.0.4. The details are shown in Figure 11.

Sensors 2023, 22, x FOR PEER REVIEW 10 of 21

Figure 9. Display of some scenes from the TuSimple dataset.

3.2. Experiment Preparation
The server used in the experiment is the 11th Gen Intel (R) Core (TM) i5-11400H @

2.70 GHz 2.69 GHz, 512 GB memory, and NVIDIA GeForce RTX3050 graphics processor.
The operating system is Windows 10 professional version, the deep learning framework
is tensorflow2.4-GPU, and CUDA version is 11.0.

The video acquisition device used in the experiment is a front-view camera, as shown
in Figure 10, with a resolution of 2592 × 1944. The experimental vehicle is a Volkswagen
Sagitar, the embedded platform Jetson Nano is used for mobile deployment, and the op-
erating system is ubuntu18.0.4. The details are shown in Figure 11.

Figure 10. Image acquisition equipment.

Figure 11. Experimental vehicle and Jetson Nano embedded platform.

Table 2 displays the lane line detection model’s hyperparameter settings. For lane
line image segmentation and lane line confidence prediction, different loss functions—the
cross-entropy loss function and binary cross-entropy loss function, respectively—are
used. Use each batch for training after updating the model parameters, and record it as a
training session. Set the maximum number of iterations to 300, and the maximum number
of training times to 80,000. When the number of training times is greater than this value,
stop training. The learning rate is determined by the following formula:

0.9(1)sL
p

= − (5)

Figure 10. Image acquisition equipment.

Sensors 2023, 22, x FOR PEER REVIEW 10 of 21

Figure 9. Display of some scenes from the TuSimple dataset.

3.2. Experiment Preparation
The server used in the experiment is the 11th Gen Intel (R) Core (TM) i5-11400H @

2.70 GHz 2.69 GHz, 512 GB memory, and NVIDIA GeForce RTX3050 graphics processor.
The operating system is Windows 10 professional version, the deep learning framework
is tensorflow2.4-GPU, and CUDA version is 11.0.

The video acquisition device used in the experiment is a front-view camera, as shown
in Figure 10, with a resolution of 2592 × 1944. The experimental vehicle is a Volkswagen
Sagitar, the embedded platform Jetson Nano is used for mobile deployment, and the op-
erating system is ubuntu18.0.4. The details are shown in Figure 11.

Figure 10. Image acquisition equipment.

Figure 11. Experimental vehicle and Jetson Nano embedded platform.

Table 2 displays the lane line detection model’s hyperparameter settings. For lane
line image segmentation and lane line confidence prediction, different loss functions—the
cross-entropy loss function and binary cross-entropy loss function, respectively—are
used. Use each batch for training after updating the model parameters, and record it as a
training session. Set the maximum number of iterations to 300, and the maximum number
of training times to 80,000. When the number of training times is greater than this value,
stop training. The learning rate is determined by the following formula:

0.9(1)sL
p

= − (5)

Figure 11. Experimental vehicle and Jetson Nano embedded platform.

Table 2 displays the lane line detection model’s hyperparameter settings. For lane
line image segmentation and lane line confidence prediction, different loss functions—the
cross-entropy loss function and binary cross-entropy loss function, respectively—are used.
Use each batch for training after updating the model parameters, and record it as a training
session. Set the maximum number of iterations to 300, and the maximum number of
training times to 80,000. When the number of training times is greater than this value, stop
training. The learning rate is determined by the following formula:

L = (1− s
p
)

0.9
(5)

Table 2. Hyper parameter settings of model.

Name Value

Batch size 8
Iterations 300

Initial learning rate 0.02
Optimizer SGD

Optimizer decay factor 0.0001

In the formula, L represents the learning rate, is the current training times, and is the
highest training times.

Sensors 2023, 23, 789 11 of 21

3.3. Model Evaluation Index and Performance Comparison of Different Models

The performance evaluation of the lane line detection model in this paper is performed
using the official evaluation method provided by TuSimple. Each detected lane line is
represented by a set of x-axis coordinates with a fixed y-axis. The difference between the
number of detected lane lines and the number of real lane lines cannot be greater than
two, otherwise, it is judged that no lane line is detected. The evaluation indicators include
accuracy rate (Acc), false positive rate (FP), false negative rate (FN), parameter amount
(Params), floating point calculation amount (FLOPs), and running speed (FPS). Accuracy is
calculated as follows: {

AP =
∫ 1

0 PRdr
mAP = 1

C ∑Ci∈C AP(Ci)
(6)

wherein Npred is the number of correctly detected lane line points and Ngt is the number of
real lane line points. The false positive rate and false negative rate are calculated as follows:

FP =
Fpred

Npred
(7)

FN =
Mpred

Ngt
(8)

Among them, Fpred is the number of wrongly predicted lane lines, Mpred means the
number of real lane lines that have not been predicted, and the lower the values of FP and
FN, the better the model performance.

To verify the performance of the model in this paper, it is compared with existing
models (ResNet-18, ResNet-34 [27], Enet [28], LaneNet [29], SCNN [30], ENet-SAD [31],
RESA-50 [32], SGLD-34 [33], Res34-VP [34]) that conducted comparative experiments on
the TuSimple test set, and the results are shown in Table 3.

Table 3. Parameter settings of model.

Net Acc (%) FP FN Params (M) FLOPs (G) FPS

ENet-SAD 90.13 0.0875 0.0810 11.12 56.33 75.1
Res34-VP 90.42 0.0891 0.0801 20.15 75.65 37.6
RESA-50 92.14 0.0876 0.0296 20.22 41.96 36.7
SGLD-34 92.18 0.0798 0.0589 13.56 45.12 59.3
Res18-Seg 92.69 0.0948 0.0822 12.03 42.63 79.3
Res34-Seg 92.84 0.0918 0.0796 22.14 79.88 34.2

ENet 93.02 0.0886 0.0734 0.95 2.20 72.6
LaneNet 96.38 0.0780 0.0224 20.66 111.31 35.8
SCNN 96.53 0.0617 0.0180 12.63 42.67 64.7

Our model 96.70 0.0359 0.0282 9.57 36.67 77.5

As can be seen from Table 3, the lane detection model proposed in this paper is
superior to the current excellent lane detection model in terms of accuracy, achieving the
highest accuracy rate and the lowest FP value. Moreover, the amount of parameters and
calculations of the model is only higher than that of the lightweight network Enet, and
the reasoning speed is second only to Res18-Seg. The model in this paper can quickly and
accurately detect lane lines with a small number of computing resources, achieve a balance
between accuracy and speed, and meet the accuracy and real-time requirements of lane
line detection. Therefore, on the whole, the lane detection model in this paper is superior
to other lane detection models in terms of comprehensive performance.

To verify the influence of the adaptive upsampling module and the feature enhance-
ment module on the overall performance of the lane line detection model, an ablation
experiment was carried out to compare the accuracy before and after adding the adaptive

Sensors 2023, 23, 789 12 of 21

upsampling module and the feature enhancement module. Table 4 records the results of
the ablation experiment.

Table 4. Ablation experiment results.

Baseline Adaptive Upsampling Module Feature Enhancement Module Acc/%
√

95.81√
96.01(+0.20)√
96.63(+0.82)√ √
96.70(+0.89)

It can be seen from Table 4 that after adding the adaptive upsampling module and the
feature enhancement module, the accuracy of the model has been improved to varying
degrees, which are 0.2% and 0.82%, respectively. After using the two modules comprehen-
sively, the accuracy rate of the model is increased to 96.7%, which is 0.89% higher than the
original, indicating that the above two modules can effectively improve the performance of
the lane line detection model.

3.4. Comparison of Loss Function Curves

In lane line detection, the rationality, quality, and performance of the first nine lane
line detection algorithms in Table 3 are tested to compare them with the model in this
paper. Figure 12 is the verification curve of the loss value during the model training
process. The maximum number of iterations set in the experimental environment is 300,
and the maximum number of training is 80,000. The number of iterations is converted to
89 generations, that is, it is executed from 0 to 88 generations. The initial learning rate of
the SGD optimizer is 0.02. When the above nine lane line detection algorithms converge
to a specific stage, the convergence speed of the loss function decreases significantly due
to the decline in the feature extraction ability of the model. After the convergence speed
decreases, the loss error curves of the first nine lane line detection algorithms in Table 3
oscillate greatly during the training process. From the ENet-SAD, Res34-VP, RESA-50,
SGLD-34, and Res18-Seg loss function curves, it can be seen that the loss function converges
faster in the early stage and slows down in the late convergence process. However, the
model in this paper has a steady downward trend, the oscillation amplitude is the smallest,
and the convergence effect is the best, even with a small number of parameters, a stable
training process can be achieved.

Figure 13 shows that in the training phase, the verification dataset is used to cross-
validate each lane line detection model to generate a loss function verification curve. It can
be seen from Figure 13 that ENet-SAD and RESA-50 present an overfitting phenomenon,
according to the loss function curve which first decreases and then increases. At the same
time, the other eight lane line detection models did not appear to be over-fitting during the
training period, but during the training process, the loss function of the network such as
Res34-VP has a certain degree of oscillation during the convergence process. Compared
with the convergence effects of the remaining seven lane line detection models, the model
in this paper has the best verification convergence.

For the ablation experiments in Table 4, the performance before and after adding the
adaptive upsampling module and feature enhancement module is comapared, to conduct
a comparative analysis with the model in this paper. Figure 14 is the verification curve
of the loss value during model training, and the experimental environment settings are
the same as above. For the baseline, when the loss function converges to a specific stage,
the convergence speed of the loss function decreases significantly due to the decline of
the feature extraction ability of the model. After the convergence speed decreases, the
baseline, adaptive upsampling module, and feature enhancement module, as well as the
fusion feature enhancement module and adaptive upsampling module all show a state
of convergence. However, the model in this paper has a stable downward trend, and the
oscillation amplitude is the smallest, so convergence works best.

Sensors 2023, 23, 789 13 of 21Sensors 2023, 22, x FOR PEER REVIEW 13 of 21

Figure 12. Model verification—loss function graph.

Figure 13 shows that in the training phase, the verification dataset is used to cross-
validate each lane line detection model to generate a loss function verification curve. It
can be seen from Figure 13 that ENet-SAD and RESA-50 present an overfitting phenome-
non, according to the loss function curve which first decreases and then increases. At the
same time, the other eight lane line detection models did not appear to be over-fitting
during the training period, but during the training process, the loss function of the net-
work such as Res34-VP has a certain degree of oscillation during the convergence process.
Compared with the convergence effects of the remaining seven lane line detection models,
the model in this paper has the best verification convergence.

Figure 13. Model verification—loss function graph.

For the ablation experiments in Table 4, the performance before and after adding the
adaptive upsampling module and feature enhancement module is comapared, to conduct
a comparative analysis with the model in this paper. Figure 14 is the verification curve of
the loss value during model training, and the experimental environment settings are the
same as above. For the baseline, when the loss function converges to a specific stage, the
convergence speed of the loss function decreases significantly due to the decline of the
feature extraction ability of the model. After the convergence speed decreases, the base-

0 8 16 24 32 40 48 56 64 72 80 88
0

20

40

60

80

100

120

140

Lo
ss

Epoch

 ENet-SAD
 Res34-VP
 RESA-50
 SGLD-34
 Res18-Seg
 Res34-Seg
 ENet
 LaneNet
 SCNN
 Our model

0 8 16 24 32 40 48 56 64 72 80 88
0

10

20

30

40

50

60

70

80

90

Lo
ss

Epoch

 ENet-SAD
 Res34-VP
 RESA-50
 SGLD-34
 Res18-Seg
 Res34-Seg
 ENet
 LaneNet
 SCNN
Our model

Figure 12. Model verification—loss function graph.

Sensors 2023, 22, x FOR PEER REVIEW 13 of 21

Figure 12. Model verification—loss function graph.

Figure 13 shows that in the training phase, the verification dataset is used to cross-
validate each lane line detection model to generate a loss function verification curve. It
can be seen from Figure 13 that ENet-SAD and RESA-50 present an overfitting phenome-
non, according to the loss function curve which first decreases and then increases. At the
same time, the other eight lane line detection models did not appear to be over-fitting
during the training period, but during the training process, the loss function of the net-
work such as Res34-VP has a certain degree of oscillation during the convergence process.
Compared with the convergence effects of the remaining seven lane line detection models,
the model in this paper has the best verification convergence.

Figure 13. Model verification—loss function graph.

For the ablation experiments in Table 4, the performance before and after adding the
adaptive upsampling module and feature enhancement module is comapared, to conduct
a comparative analysis with the model in this paper. Figure 14 is the verification curve of
the loss value during model training, and the experimental environment settings are the
same as above. For the baseline, when the loss function converges to a specific stage, the
convergence speed of the loss function decreases significantly due to the decline of the
feature extraction ability of the model. After the convergence speed decreases, the base-

0 8 16 24 32 40 48 56 64 72 80 88
0

20

40

60

80

100

120

140

Lo
ss

Epoch

 ENet-SAD
 Res34-VP
 RESA-50
 SGLD-34
 Res18-Seg
 Res34-Seg
 ENet
 LaneNet
 SCNN
 Our model

0 8 16 24 32 40 48 56 64 72 80 88
0

10

20

30

40

50

60

70

80

90

Lo
ss

Epoch

 ENet-SAD
 Res34-VP
 RESA-50
 SGLD-34
 Res18-Seg
 Res34-Seg
 ENet
 LaneNet
 SCNN
Our model

Figure 13. Model verification—loss function graph.

Figure 15 shows that in the training phase, the above four detection models are cross-
validated using the verification data set to generate a loss function verification curve. It can
be seen from Figure 15 that the model of the fusion feature enhancement module shows a
significant increase in the convergence speed in the later stage, and the convergence effect
outperforms the one fused with the baseline as well as networks fused with the adaptive
upsampling module. However, the model in this paper has more advantages than the first
three networks, so it has the best verification convergence.

Sensors 2023, 23, 789 14 of 21

Sensors 2023, 22, x FOR PEER REVIEW 14 of 21

line, adaptive upsampling module, and feature enhancement module, as well as the fu-
sion feature enhancement module and adaptive upsampling module all show a state of
convergence. However, the model in this paper has a stable downward trend, and the
oscillation amplitude is the smallest, so convergence works best.

Figure 14. Model verification—loss function graph.

Figure 15 shows that in the training phase, the above four detection models are cross-
validated using the verification data set to generate a loss function verification curve. It
can be seen from Figure 15 that the model of the fusion feature enhancement module
shows a significant increase in the convergence speed in the later stage, and the conver-
gence effect outperforms the one fused with the baseline as well as networks fused with
the adaptive upsampling module. However, the model in this paper has more advantages
than the first three networks, so it has the best verification convergence.

Figure 15. Model verification—loss function graph.

3.5. Comparison of Lane Line Detection Effects
To verify the effectiveness of the feature enhancement module and the adaptive up-

sampling module, the feature maps before and after the feature enhancement module and
the final detection results are visualized, as shown in Figure 16. Among them, Figure 16a
is the feature map before the encoder processing, Figure 16b is the feature map after being

0 8 16 24 32 40 48 56 64 72 80 88
0

20

40

60

80

100

120

140

Lo
ss

Epoch

 Baseline
 Fusion Adaptive Upsampling Module
 Fusion Feature Enhancement Module
 Our Model

0 8 16 24 32 40 48 56 64 72 80 88
0

10

20

30

40

50

60

70

80

90

Lo
ss

Epoch

 Baseline
 Fusion Adaptive Upsampling Module
 Fusion Feature Enhancement Module
 Our Model

Figure 14. Model verification—loss function graph.

Sensors 2023, 22, x FOR PEER REVIEW 14 of 21

line, adaptive upsampling module, and feature enhancement module, as well as the fu-
sion feature enhancement module and adaptive upsampling module all show a state of
convergence. However, the model in this paper has a stable downward trend, and the
oscillation amplitude is the smallest, so convergence works best.

Figure 14. Model verification—loss function graph.

Figure 15 shows that in the training phase, the above four detection models are cross-
validated using the verification data set to generate a loss function verification curve. It
can be seen from Figure 15 that the model of the fusion feature enhancement module
shows a significant increase in the convergence speed in the later stage, and the conver-
gence effect outperforms the one fused with the baseline as well as networks fused with
the adaptive upsampling module. However, the model in this paper has more advantages
than the first three networks, so it has the best verification convergence.

Figure 15. Model verification—loss function graph.

3.5. Comparison of Lane Line Detection Effects
To verify the effectiveness of the feature enhancement module and the adaptive up-

sampling module, the feature maps before and after the feature enhancement module and
the final detection results are visualized, as shown in Figure 16. Among them, Figure 16a
is the feature map before the encoder processing, Figure 16b is the feature map after being

0 8 16 24 32 40 48 56 64 72 80 88
0

20

40

60

80

100

120

140

Lo
ss

Epoch

 Baseline
 Fusion Adaptive Upsampling Module
 Fusion Feature Enhancement Module
 Our Model

0 8 16 24 32 40 48 56 64 72 80 88
0

10

20

30

40

50

60

70

80

90

Lo
ss

Epoch

 Baseline
 Fusion Adaptive Upsampling Module
 Fusion Feature Enhancement Module
 Our Model

Figure 15. Model verification—loss function graph.

3.5. Comparison of Lane Line Detection Effects

To verify the effectiveness of the feature enhancement module and the adaptive
upsampling module, the feature maps before and after the feature enhancement module and
the final detection results are visualized, as shown in Figure 16. Among them, Figure 16a
is the feature map before the encoder processing, Figure 16b is the feature map after
being processed by the feature enhancement module, and Figure 16c is the input image.
Figure 16b shows that the features extracted by the encoder are relatively scattered local
features, while the feature enhancement module can capture the complete features of the
lane lines, and the perceived ability of the lane lines is significantly enhanced. Figure 16b is
the mapping output by the adaptive upsampling module in the original image. It can be
seen that the model can accurately detect the lane lines in the input image.

Sensors 2023, 23, 789 15 of 21

Sensors 2023, 22, x FOR PEER REVIEW 15 of 21

processed by the feature enhancement module, and Figure 16c is the input image. Figure
16b shows that the features extracted by the encoder are relatively scattered local features,
while the feature enhancement module can capture the complete features of the lane lines,
and the perceived ability of the lane lines is significantly enhanced. Figure 16b is the map-
ping output by the adaptive upsampling module in the original image. It can be seen that
the model can accurately detect the lane lines in the input image.

(a) (b)

(c) (d)

Figure 16. Visualization of the lane line detection process. (a) Before feature enhancement. (b) After
feature enhancement. (c) Input image. (d) Detection result.

To verify the effectiveness of the feature enhancement module and the adaptive up-
sampling module, the feature maps before and after the feature enhancement module and
the final detection results are visualized, as shown in Figure 16. Among them, Figure 16a
is the feature map before the encoder processing, Figure 16b is the feature map after being
processed by the feature enhancement module, and Figure 16c is the input image. Figure
16b shows that the features extracted by the encoder are relatively scattered local features,
while the feature enhancement module can capture the complete features of the lane lines,
and the perceived ability of the lane lines is significantly enhanced. Figure 16b is the map-
ping output by the adaptive upsampling module in the original image. It can be seen that
the model can accurately detect the lane lines in the input image.

To verify the performance of the lane line detection model in this paper, the remain-
ing nine lane line detection models in Table 3, and the first three in Table 4, different mod-
ules are fused. The four cases of road shadow, road blur, road occlusion, and road slender
and sparse characteristics in the testset are selected for instance segmentation analysis, as
shown in Figure 17 below. After inputting pictures and fixed labels, for the four lane line
detection models of ENet-SAD, Res34-VP, RESA-50, and SGLD-34, the instances in the

Figure 16. Visualization of the lane line detection process. (a) Before feature enhancement. (b) After
feature enhancement. (c) Input image. (d) Detection result.

To verify the performance of the lane line detection model in this paper, the remaining
nine lane line detection models in Table 3, and the first three in Table 4, different modules
are fused. The four cases of road shadow, road blur, road occlusion, and road slender
and sparse characteristics in the testset are selected for instance segmentation analysis, as
shown in Figure 17 below. After inputting pictures and fixed labels, for the four lane line
detection models of ENet-SAD, Res34-VP, RESA-50, and SGLD-34, the instances in the
four scenarios are segmented, and the segmented solid lines have defect losses in the four
scenarios. For the instance segmentation of Res18-Seg, Res34-Seg, and ENet three lane line
detection models in four scenarios, the segmented solid lines have defect losses in three
scenarios. For the instance segmentation of LaneNet and SCNN lane line detection models
in four scenarios, the segmented solid lines have defect losses in two scenarios. For the
instance segmentation of the three network models in the four scenes in the case of ablation
experiments, the solid lines of the segmentation have defect losses in three scenes, two
scenes, and one scene, respectively. Compared with the performance of the first 12 models,
when the model in this paper performs instance segmentation on the four scenarios, there
is no defect loss, and the detection effect reaches the best level. Therefore, on the whole, the
lane detection model in this paper is superior to other lane detection models in terms of
comprehensive performance.

Sensors 2023, 23, 789 16 of 21

Sensors 2023, 22, x FOR PEER REVIEW 16 of 21

four scenarios are segmented, and the segmented solid lines have defect losses in the four
scenarios. For the instance segmentation of Res18-Seg, Res34-Seg, and ENet three lane line
detection models in four scenarios, the segmented solid lines have defect losses in three
scenarios. For the instance segmentation of LaneNet and SCNN lane line detection models
in four scenarios, the segmented solid lines have defect losses in two scenarios. For the
instance segmentation of the three network models in the four scenes in the case of abla-
tion experiments, the solid lines of the segmentation have defect losses in three scenes,
two scenes, and one scene, respectively. Compared with the performance of the first 12
models, when the model in this paper performs instance segmentation on the four scenar-
ios, there is no defect loss, and the detection effect reaches the best level. Therefore, on the
whole, the lane detection model in this paper is superior to other lane detection models in
terms of comprehensive performance.

Input
images

ENet-SAD

Res34-VP

RESA-50

SGLD-34

Res18-Seg

Res34-Seg

ENet

LaneNet

SCNN

Baseline

Adaptive
Upsampling

Feature
Enhancement

Our model

Seg_labels

Figure 17. Instance Segmentation Analysis of Different Network Performance Based on TuSimple
Dataset.

3.6. Lane Line Detection and Mobile Terminal Deployment in Different Scenarios

To further verify the effect of the lane line detection model in this paper, road video
information is collected by the front car camera in different scenarios, such as normal
roads, road congestion at night, road blocking, and night tunnels. At the same time,
according to the results of instance segmentation under the TuSimple testset, the closest
to the effect of the model in this paper is the network of the fusion feature enhancement
module. Considering that there are many network models for comparison and reducing the
repetition of experiments, the lane line detection model of the fusion feature enhancement

Sensors 2023, 23, 789 17 of 21

module and the lane line detection model in this paper, for comparison and analysis in
complex traffic scenarios, are shown in Figure 18.

Sensors 2023, 22, x FOR PEER REVIEW 17 of 21

Figure 17. Instance Segmentation Analysis of Different Network Performance Based on TuSimple
Dataset.

3.6. Lane Line Detection and Mobile Terminal Deployment in Different Scenarios
To further verify the effect of the lane line detection model in this paper, road video

information is collected by the front car camera in different scenarios, such as normal
roads, road congestion at night, road blocking, and night tunnels. At the same time, ac-
cording to the results of instance segmentation under the TuSimple testset, the closest to
the effect of the model in this paper is the network of the fusion feature enhancement
module. Considering that there are many network models for comparison and reducing
the repetition of experiments, the lane line detection model of the fusion feature enhance-
ment module and the lane line detection model in this paper, for comparison and analysis
in complex traffic scenarios, are shown in Figure 18.

Figure 18. Lane line detection effect in different scenarios.

It can be seen from Figure 18a,b that when driving on a normal road, both the lane
line detection model of the fusion feature enhancement module and the lane line detection
model in this paper can smoothly segment and accurately detect the lane line. The scenar-
ios of road congestion at night, road blocking, and the tunnel at night can be seen in Figure

Figure 18. Lane line detection effect in different scenarios.

It can be seen from Figure 18a,b that when driving on a normal road, both the lane
line detection model of the fusion feature enhancement module and the lane line detec-
tion model in this paper can smoothly segment and accurately detect the lane line. The
scenarios of road congestion at night, road blocking, and the tunnel at night can be seen
in Figure 18c,e,g, showing that the lane line detection model with the fused feature en-
hancement module has a partial miss detection problem, which is marked with an elliptical
dashed line. From Figure 18d,f,h, it can be seen that the lane line detection model in this
paper can detect lane lines accurately.

To further test the performance of the lane detection model in this paper, it is deployed
on the mobile terminal for verification. It can be seen from Table 3 that the parameter
quantity of the lane line model in this paper is 9.57 M, which is very low. At the same time,
since RepVgg-A0 is a lightweight network, different branch structures are subtly fused
during inference, thereby compressing the parameters of the model. Therefore, the lane
line detection model can be directly deployed to the embedded platform Jetson Nano, and

Sensors 2023, 23, 789 18 of 21

the TensorRT framework can be used for half-precision acceleration to make its detection
speed meet the requirements of real-time detection. Based on the complex traffic scene in
Figure 18, the lane line detection model in this paper is deployed to the embedded platform
Jetson Nano, and the displayed results are shown in Figure 19 below.

Sensors 2023, 22, x FOR PEER REVIEW 18 of 21

18c,e,g, showing that the lane line detection model with the fused feature enhancement
module has a partial miss detection problem, which is marked with an elliptical dashed
line. From Figure 18d,f,h, it can be seen that the lane line detection model in this paper
can detect lane lines accurately.

To further test the performance of the lane detection model in this paper, it is de-
ployed on the mobile terminal for verification. It can be seen from Table 3 that the param-
eter quantity of the lane line model in this paper is 9.57 M, which is very low. At the same
time, since RepVgg-A0 is a lightweight network, different branch structures are subtly
fused during inference, thereby compressing the parameters of the model. Therefore, the
lane line detection model can be directly deployed to the embedded platform Jetson Nano,
and the TensorRT framework can be used for half-precision acceleration to make its de-
tection speed meet the requirements of real-time detection. Based on the complex traffic
scene in Figure 18, the lane line detection model in this paper is deployed to the embedded
platform Jetson Nano, and the displayed results are shown in Figure 19 below.

Figure 19. Mobile terminal detection rendering.

Figure 19a,c,e,g show the deploying of the lane line detection model to the embedded
platform Jetson Nano, and the performance of the model based on the above different

Figure 19. Mobile terminal detection rendering.

Figure 19a,c,e,g show the deploying of the lane line detection model to the embedded
platform Jetson Nano, and the performance of the model based on the above different
scenarios can be tested. Due to the limited space shown in the picture on the left, its
enlarged effect under the ubuntu18.0.4 system is shown in Figure 19b,d,f,h, in which it can
be seen that under the premise of accurate detection of lane lines in complex scenarios,
the real-time detection speed of the Jetson Nano platform has reached above 27 fps/s.
Although there is still a certain gap with the real-time detection speed under the Windows
system, it can meet the real-time detection speed requirements under the deployment of
the mobile terminal. Therefore, the lane line detection model in this paper is deployed on
the mobile terminal and performs well.

Sensors 2023, 23, 789 19 of 21

4. Conclusions

In this paper, aiming at the problems of low lane line detection accuracy and poor
real-time detection speed of existing lane line detection algorithms in complex traffic scenes,
a lane line detection algorithm based on instance segmentation is proposed. The design
method of this paper mainly includes optimizing the RepVgg-A0 network structure to
expand the receptive field of the network; a multi-size asymmetric shuffled convolution
model is proposed to enhance extraction of sparse and slender lane lines ability; an adaptive
upsampling model is proposed, which allows the network to select the weight of the two
upsampling methods at each position; a lane line prediction branch is added to facilitate
the output of lane line confidence; and the lane line detection algorithm is deployed to the
embedding of the standard platform Jetson Nano, using the TensorRT framework for half-
precision acceleration. The experimental results show that the lane line detection algorithm
in this paper has an Acc value of 96.7% on the expanded TuSimple dataset and a real-
time detection speed of 77.5 fps/s. The model is successfully deployed on the embedded
platform Jetson Nano, and achieved a real-time detection speed of 27 fps/s, making it
suitable for mobile terminal deployment. Therefore, the lane line detection algorithm in
this paper is more suitable for current self-driving cars after being deployed on the mobile
terminal, to improve the accuracy and safety of the automated driving perception part.

Due to the limitation of the experimental conditions, there is a gap between the real-
time detection speed of the lane line algorithm deployed on the mobile terminal and the
real-time detection speed under the Windows system. Therefore, the next step is to consider
further compression of the model parameters, so that the real-time detection speed of the
mobile terminal can be further improved without reducing the accuracy.

Author Contributions: Conceptualization, W.C. and X.W.; methodology, B.M.; software, B.M.; vali-
dation, W.C., X.W. and B.M.; formal analysis, W.C.; investigation, X.W.; resources, X.W.; data curation,
B.M.; writing—original draft preparation, W.C.; writing—review and editing, B.M.; visualization,
X.W.; supervision, B.M.; project administration, W.C.; funding acquisition, X.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Anhui Provincial Natural Science Foundation under Grant
(1908085ME159), the funder: Xuanyao Wang, funding number: 5. The project was funded by the
Scientific Research Activities of Post-Doctoral Researchers in Anhui Province under Grant (2020B447),
the funder: Xuanyao Wang, funding number: 4. Anhui University of Technology Research Institute
of Environmentally Friendly Materials and Occupational Health (Wuhu) R&D special funding project
(ALW2021YF05). the funder: Xuanyao Wang, funding number: 6.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haris, M.; Hou, J. Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving

Lane. Sensors 2020, 20, 4719. [CrossRef] [PubMed]
2. Yang, W.; Zhang, X.; Lei, Q. Lane Position Detection Based on Long Short-Term Memory (LSTM). Sensors 2020, 20, 3115. [CrossRef]

[PubMed]
3. Mammeri, A.; Boukerche, A.; Tang, Z. A real-time lane marking localization, tracking and communication system. Comput.

Commun. 2015, 73, 229. [CrossRef]
4. Sotelo, N.; Rodríguez, J.; Magdalena, L. A Color Vision-Based Lane Tracking System for Autonomous Driving on Unmarked

Roads. Auton. Robot. 2004, 1, 95–116. [CrossRef]

http://doi.org/10.3390/s20174719
http://www.ncbi.nlm.nih.gov/pubmed/32825601
http://doi.org/10.3390/s20113115
http://www.ncbi.nlm.nih.gov/pubmed/32486424
http://doi.org/10.1016/j.comcom.2015.08.010
http://doi.org/10.1023/B:AURO.0000008673.96984.28

Sensors 2023, 23, 789 20 of 21

5. Ozgunalp, N.; Dahnoun, N. Lane detection based on improved feature map and efficient region of interest extraction. In
Proceedings of the 2015 IEEE Global Conference Signal and Information Process (GlobalSIP, IEEE 2015), Orlando, FL, USA,
14–16 December 2015. [CrossRef]

6. Chi, F.H.; Huo, Y.H. Forward vehicle detection system based on lane-marking tracking with fuzzy adjustable vanishing point mech-
anism. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, QLD, Australia, 10–15 June 2012.
[CrossRef]

7. Lin, H.Y.; Dai, J.M.; Wu, L.T.; Chen, L.Q. A Vision-Based Driver Assistance System with Forward Collision and Overtaking
Detection. Sensors 2020, 20, 5139. [CrossRef] [PubMed]

8. Li, K.; Shao, J.; Guo, D. A Multi-Feature Search Window Method for Road Boundary Detection Based on LIDAR Data. Sensors
2019, 19, 1551. [CrossRef] [PubMed]

9. Cao, Y.; Chen, Y.; Khosla, D. Spiking deep convolutional neural networks for energy-efficient object Recognition. Int. J. Comput.
Vis. 2014, 113, 54–66. [CrossRef]

10. Zhang, X.; Yang, W.; Tang, X.; Wang, Y. Lateral distance detection model based on convolutional neural network. IET Intell.
Transp. Syst. 2019, 13, 31–39. [CrossRef]

11. Kim, J.; Kim, J.; Jang, G.-J.; Lee, M. Fast learning method for convolutional neural networks using extreme learning machine and
its application to lane detection. Neural Netw. 2017, 87, 109–121. [CrossRef] [PubMed]

12. Aly, M. Real time detection of lane markers in urban streets. In Proceedings of the IEEE Intelligent Vehicles Symposium,
Eindhoven, The Netherlands, 4–6 June 2008. [CrossRef]

13. Kim, J.; Park, C. End-To-End Ego Lane Estimation Based on Sequential Transfer Learning for Self-Driving Cars. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, 2017), Honolulu, HI, USA, 21–26
July 2017; p. 1194. [CrossRef]

14. Neven, D.; de Brabandere, B.; Georgoulis, S.M. Towards End-to-End Lane Detection: An Instance Segmentation Approach. In
Proceedings of the 2018 IEEE Intelligent Vehicles Symposium(IV), Changshu, China, 26–30 June 2018; p. 286. [CrossRef]

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 6, 1137. [CrossRef] [PubMed]

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 9, 1904. [CrossRef]

17. Haris, M.; Jin, H.; Xiao, W. Lane line detection and departure estimation in a complex environment by using an asymmetric
kernel convolution algorithm. Vis. Comput. 2022, 1–10. [CrossRef]

18. Liu, R.; Yuan, Z.; Liu, T. End-to-end lane shape prediction with transformers. In Proceedings of the IEEE Winter Conference on
Applications of Computer Vision, Online, 5–9 January 2021; pp. 3694–3702.

19. Chao, M.; Dean, L.; He, H. Lane Line Detection Based on Improved Semantic Segmentation. Sens. Mater. 2021, 33, 4545–4560.
20. Ma, N.; Zhang, X.; Zheng, H.T. Shufflenet v2: Practical guidelines for efficient CNN architecture design. In Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.
21. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021; pp. 13733–13742.
22. Qiu, S.; Xu, X.; Cai, B. FReLU: Flexible rectified linear units for improving convolutional neural networks. In Proceedings of the

2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 1223–1228.
23. Szegedy, C.; Vanhoucke, V.; Ioffe, S. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
24. Zheng, T.; Fang, H.; Zhang, Y. Resa: Recurrent feature-shift aggregator for lane detection. In Proceedings of the AAAI Conference

on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 3547–3554.
25. Romera, E.; Alvarez, J.M.; Bergasa, L. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE

Trans. Intell. Transp. Syst. 2017, 19, 263–272. [CrossRef]
26. Wang, P.; Chen, P.; Yuan, Y. Understanding convolution for semantic segmentation. In Proceedings of the 2018 IEEE Winter

Conference on Applications of Computer Vision (WACV), IEEE, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460.
27. Chen, L.C.; Papandreou, G.; Kokkinos, I. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]
28. Paszke, A.; Chaurasia, A.; Kim, S. Enet: A deep neural network architecture for real-time semantic segmentation. arXiv 2016,

arXiv:1606.02147.
29. Lu, P.; Xu, S.; Peng, H. Graph-Embedded Lane Detection. IEEE Trans. Image Process. 2021, 30, 2977–2988. [CrossRef] [PubMed]
30. Pan, X.; Shi, J.; Luo, P. Spatial as deep: Spatial cnn for traffic scene understanding. In Proceedings of the AAAI Conference on

Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
31. Hou, Y.; Ma, Z.; Liu, C. Learning lightweight lane detection CNNS by self attention distillation. In Proceedings of the IEEE

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1013–1021.

http://doi.org/10.1109/GlobalSIP.2015.7418332
http://doi.org/10.1109/FUZZ-IEEE.2012.6250840
http://doi.org/10.3390/s20185139
http://www.ncbi.nlm.nih.gov/pubmed/32916970
http://doi.org/10.3390/s19071551
http://www.ncbi.nlm.nih.gov/pubmed/30935070
http://doi.org/10.1007/s11263-014-0788-3
http://doi.org/10.1049/iet-its.2017.0431
http://doi.org/10.1016/j.neunet.2016.12.002
http://www.ncbi.nlm.nih.gov/pubmed/28110106
http://doi.org/10.1109/IVS.2008.4621152
http://doi.org/10.1109/CVPRW.2017.158
http://doi.org/10.1109/IVS.2018.8500547
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1007/978-3-319-10578-9_23
http://doi.org/10.1007/s00371-021-02353-6
http://doi.org/10.1109/TITS.2017.2750080
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://doi.org/10.1109/TIP.2021.3057287
http://www.ncbi.nlm.nih.gov/pubmed/33566762

Sensors 2023, 23, 789 21 of 21

32. Wang, B.; Wang, Z.; Zhang, Y. Polynomial regression network for variable-number lane detection. In Proceedings of the European
Conference on Computer Vision, Online, 23–28 August 2020; pp. 719–734.

33. Su, J.; Chen, C.; Zhang, K. Structure guided lane detection. arXiv 2021, arXiv:2105.05403.
34. Liu, Y.B.; Zeng, M.; Meng, Q.H. Heatmap-based vanishing point boosts lane detection. arXiv 2020, arXiv:2007.15602.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Design of Lane Line Detection Model
	Design of Encoder Network Structure
	Design of Feature Enhancement Model
	Design of Decoder Network Structure
	Design of Lane Line Prediction Branch
	Proposed Lane Detection Model

	Experimental Results and Analysis
	Dataset and Preprocessing
	Experiment Preparation
	Model Evaluation Index and Performance Comparison of Different Models
	Comparison of Loss Function Curves
	Comparison of Lane Line Detection Effects
	Lane Line Detection and Mobile Terminal Deployment in Different Scenarios

	Conclusions
	References

