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As the accident-prone sections and bottlenecks, highway weaving sections will become more complicated when it comes to the
mixed-traffic environments with connected and automated vehicles (CAVs) and human-driven vehicles (HVs). In order to make
CAVs accurately identify the driving behavior of manual-human vehicles to avoid traffic accidents caused by lane changing, it is
necessary to analyze the characteristics of the mandatory lane-changing (MCL) process in the weaving area. An analytical MCL
method based on the driver’s psychological characteristics is proposed in this study. Firstly, the driver’s MLC pressure concept was
proposed by leading in the distance of the off-ramp. /en, the lane-changing intention was quantified by considering the driver’s
MLC pressure and tendentiousness. Finally, based on the lane-changing intention and the headway distribution of the target lane,
an MLC positions probability density model was proposed to describe the distribution characteristics of the lane-changing
position. /rough the NGSIM data verification, the lane-changing analysis models can objectively describe the vehicle lane-
changing characteristics in the actual scenarios. Compared with the traditional lane-changing model, the proposed models are
more interpretable and in line with the driving intention. /e results show significant improvements in the lane-changing safe
recognition of CAVs in heterogeneous traffic flow (both CAVs and HVs) in the future.

1. Introduction

As one of the basic driving behaviors, lane-changing
manoeuver directly affects the fluency and safety of traffic
flow. Compared with car-following, the lane-changing
process is more complicated and dangerous. Previous
studies have shown that lane changing is a key factor causing
highway accidents [1–7]. As CAVs enter the road, highway
weaving areas will become more chaotic and dangerous.
CAV, as a passive party, needs to change its operating state
in real time according to the operating state of manual-
human vehicles to avoid collisions. /erefore, it is crucial to
study the lane-changing characteristics of manual-human
vehicles to avoid vehicle collisions. However, most re-
searches mainly use statistical models and probability

models to analyze various factors influencing traffic acci-
dents in a fixed scenario, lacking the analysis of traffic flow
theory, which is of low extensibility [8]. Based on the above
research foundation, this paper will use the traffic flow
theory and driver characteristics to analyze the vehicles’
lane-changing behavior in expressway weaving area.

/e lane-changing manoeuver is divided into discre-
tionary lane change (DLC) and mandatory lane change
(MLC) according to its motivation [9, 10]. MLC is the
necessary lane-changing behavior to achieve certain de-
mands; DLC is an unnecessary lane change behavior. It can
be seen that the MLC is an aggressive and necessary
manoeuver, which has a great influence on the traffic flow.
As an important part of the highway, the weaving section
undertakes the merging and the diverging of the traffic flow.
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In weaving section, all lane-changing manoeuvers belong to
MLC (driving into the highway; leaving the highway), which
are the manoeuver that must be completed in time; oth-
erwise, it will affect the operation of the highway segment. So
the weaving section becomes the bottleneck of the highway
[3–5, 11, 12].

In the past research, in order to simplify and facilitate the
modeling, it is considered that the lane-changing process is
only affected by the traffic conditions (the gap of the target
lane, the traffic capacity, and the speed, etc.). Sun and
Elefteriadou [13] found that the MLC process is also closely
related to the driver’s psychological characteristics (such as
aggressiveness, vigilance, and lane-changing pressure)
through data investigation. However, the existing models
have not fully analyzed the influence of the driver’s psy-
chological characteristics on the lane-changing process [13].

To address this challenge, the concept of lane-changing
pressure is introduced to describing the drivers’ pressure
fluctuation in MLC. /e MLC pressure is quantified by the
distance between the vehicle and the off-ramp. /en, using
the lane-changing pressure as an indicator, this paper
proposed an MLC intention model and a gap acceptance
model to analyze the driver’s intention to change lanes. /e
proposed model is based on the driver’s intention and in-
clination, which overcomes the defect of traditional models
only using traffic conditions as a fixed indicator. Finally,
combining the target lane headway distribution and MLC
intention, a lane change probability density model is pro-
posed to describe the lane-changing characteristics in the
weaving area.

/e rest of the paper is structured as follows: Section 2
reviews previous literature on mandatory lane-changing
models. Section 3 analyzes the characteristics of MLC and
proposes that the MLC is a continuous behavior. Section 4
constructs an MLC positions probability density function.
Section 5 uses NGSIM data to verify the proposed theory and
models. Finally, the conclusions and future work are pre-
sented in Section 6.

2. Literature Review

At present, the lane-changing decision-making models
mainly include rule-based models [14–19], discrete models
based on utility theory [9, 10, 20, 21], and artificial intelli-
gence models [22–28].

/e main idea of the rule-based model is to formulate
different driving rules according to different driving envi-
ronments. /e advantages of rule-based models are trace-
ability and simple implementation for specific scenarios./e
drivers choose whether to change lanes by some simple rules.
However, for complicated traffic conditions, a rule-based
model can require a substantial work in order to be extended
into more general scenarios. /e most representative rule-
based model is Gipps’ lane-changing model [14]. Gipps
believes that a driver’s lane-changing decision is the result of
three problems: (1) Is it possible to change lanes? (2) Is it
necessary to change lanes? (3) And is it desirable to change
lanes? After Gipps’ pioneering work, many people have
expanded the lane-changing decision-making model, such

as CORSIM Model [29], ARTEMiS Model [12], Cellular
Automata Model [30], and Game /eory Model [31]. By
extending Gipps’ model to the highway, Yang and Kout-
sopoulos [19] invented a microscopic traffic simulator
(MITSIM) that includes a car-following model and a lane-
changing model. /ey classify lane changing as mandatory
or discretionary and model the lane-changing decision-
making as a continuous four-step process: (1) decide to
consider the LC, (2) select the target lane, (3) find ac-
ceptable gaps, (4) and implement the changes. /e gap
acceptance algorithm receives and checks for gaps in the
target lane to perform the required lane change. Although
the rule-based modeling framework in Yang et al. is similar
to the Gipps’ model (1986), one of the distinguishing
features of their model is that, instead of considering the
lane-changing decision-making as a deterministic process,
it introduces the lane-changing probability to build the
model.

/e main idea of the discrete model is to use the utility
function to evaluate the driving gain of each lane. Discrete
models based on utility functions have the advantage of
allowing evaluation of multiple decision criteria by com-
bined weighting and can thus more easily be extended to
complex scenarios. However, a large number of different
weighting parameters can result in time-consuming pa-
rameter tuning and tractability difficulties, and vehicle lane
change is a continuous process. /e first discrete-choice
model based on the utility function was proposed by
Ahmed et al. [10, 11] and further refined by Toledo et al.
[20, 32]. Ahmed et al. [9, 10] used the gap between the
vehicles as the main influencing factor of the utility
function, using the utility function to simulate the impact
of the gap on the driver. /en, through the field data, the
binomial logit model is used to calibrate the weighting
parameters of the utility function. Ahmed’s model divides
the lane change type into MLC and DLC but does not
explain the driver’s choice of both sides. For a clearer
understanding of the type of vehicle lane change, based on
the basis of the Ahmed model, Toledo et al. [20, 32]
proposed a probabilistic lane-changing decision model to
describe the relationship between MLC and DLC. /e
relationship is captured by considering two types of lane
changes in a single utility function, and a discrete-choice
framework is chosen to simulate the strategy and operation
of the driver’s lane change decision. Most of the above
studies are modeled on vehicle trajectory data, even though
driver characteristics have a significant impact on all as-
pects of the lane process. But driver characteristics are not
considered because driver’s feature data extraction is dif-
ficult and the workload is huge, so most lane change de-
cision models lack them. To explicitly incorporate the
impact of driver characteristics, Sun and Elefteriadou [13]
conducted a survey to determine and understand the
driver’s driving behavior in various lane change scenarios.
/e study reveals the types, causes, and main factors of each
driver type in the lane-changing decision process and the
links between them.

/e artificial intelligence lane-changing decision
methods use a computer to simulate the driver’s thinking
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and actions during the driving process and judge the
environment to determine whether it is necessary to
change lanes, whether it is necessary to change lanes, and
the choice of target lanes. /e artificial intelligence models
impose some artificial intelligence algorithms, such as
fuzzy logic [22], artificial neural networks [23], and
Bayesian classification [24, 25], to explore the potential
determinants of driver lane change behavior. /e artificial
intelligence models are completely data-driven and do not
have any physical meaning parameters; it is inconvenient
to analyze the performance of the method and the scenario
expansion and does not consider the driver’s psycho-
logical factors.

/rough a review of the lane-changing models, it is
found that the existing lane-changing models have not fully
considered the driver’s influence on the lane changing.
However, these features are important for accurately de-
scribing the lane-changing behavior, and the relevant ex-
planatory variables should be included in the future lane-
changing model. In this paper, a new research idea based on
lane-changing pressure is proposed to express the charac-
teristics of the MCL in highway weaving section, and an
MCL model is established based on the driver’s driving
characteristics. /e traditional methods only consider the
influence of the traffic flow characteristics of the target lane
on the lane change. Considering the driver’s psychology of
being forced to change lanes, this paper introduces the
driver’s pressure to lane change (which is reflected by the
distance between the vehicle and the off-ramp) into theMCL
model, which is supposed to better describe the actual traffic
situation.

3. Mandatory Lane Change Behavior

MLC is a necessary lane-changing behavior to achieve a
certain demand, such as merging and diverging. DCL is an
unessential lane-changing behavior, usually to achieve
expectations speed or keep a certain distance from the car
in front [9, 10]. /erefore, compared with the DCL, the
drivers who have MLC demand will improve aggres-
siveness, and it is easy to cause traffic accidents. For this
issue, this paper studies the MLC scenarios of vehicles
leaving the highway, as shown in Figure 1. When the
vehicle has the demand leaving the highway, it will choose
whether to change lanes to the right lane according to the
current driving environment, then enter the weaving
section, and finally enter the off-ramp./eMLC process is
a continuous process and is divided into four phases: (1)
determining the target lane, (2) generating the intention
to change lanes, (3) finding acceptable gaps, and (4) ex-
ecuting lane changing. /e lane-changing decision pro-
cess is shown in Figure 2. /e MLC is a complicated
process involving road conditions (total traffic capacity,
vehicle arrival rate of on-ramp and off-ramp, and auxiliary
lane layout), driver characteristics, and so on. /erefore, it
is difficult to quantify various factors. After introducing
the concept of driver’s lane-changing pressure, this paper
will systematically study the various stages of the MLC
process.

4. MLC Models

4.1. MLC Pressure. MLC pressure refers to the pressure
generated by the drivers who havse lane-changing demand
before the last lane-changing node (LLCN). It is easy to
know that the closer the driver is to the off-ramp, the
stronger the desire to change lanes is generated. So, assume
that the driver’s MLC pressure is quantified by the available
parameter of distance in this paper. /e quantitative models
were proposed as follows:

f �

ω
xn − di
S

( )[ ]− α

, di ≤ xn ≤ S,

0, xn > S,


(1)

where f denotes the lane-changing pressure value; xn de-
notes the distance of the vehicle n from the off-ramp; di
denotes the distance of the LLCN of the lane i from the off-
ramp; S denotes the length of the weaving. While the vehicle
does not enter the weaving (xn > S), the drivers do not have
MLC pressure; that is, f � 0. While xn < S, the pressure that
the driver starts to generate, the closer the distance to the off-
ramp, the greater the lane change pressure. While the vehicle
reaches the LLCN (xn � di), the MLC pressure is∞, and the
vehicle must change lanes. α ∈ N∗.

/e formula for calculating ω is as follows:

ω � β0 + β1N + β2λ1 + β3λ2, (2)

where β0, β1, β2, and β3 denote coefficient of each parameter,
respectively; N denotes the number of lanes that need to be
crossed; λ1 denotes the average arrival rate of vehicles on the
segment at time unit; λ2 denotes the average arrival rate of
the on-ramp vehicles at time unit.

/eMLCpressuremodel is helpful to analyze the influence
of the driver’s psychological factors on the lane-changing
behavior. Secondly, quantifying the driver’s pressure is helpful
to promote the identification and behavior prediction of the
MHV characteristics on the heterogeneous traffic flow in the
future and reduce the conflict between the CAVs and the
MHV. Some characteristic parameters of drivers (gender, age,
occupation, etc.) can also be added into the model.

4.2. MLC Intention. Yang and Koutsopoulos [19] proposed
that mandatory lane changing occurs when drivers have to
change lanes in order to

(a) connect the link on their path

(b) bypass a lane blockage downstream

(c) avoid entering a restricted use lane

(d) respond to lane use sign or speed limit sign

/eMCL studied by Yang et al. are limited to (b) and (c).
In addition, the intention to change lanes in the weaving area
belongs to (a); drivers tend to change lanes early to avoid the
lane-changing pressure. /at is, the lower the pressure, the
stronger the driver’s intention to change lanes. Based on the
MLC model, a new MLC intention model is proposed:
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φ xn/txn ≥ txn min( ) � exp −f xn( )− 1( )
� exp −

β0 + β1N + β2λ1 + β3λ2( ) xn − di( )[ ]α

Sα
[ ],

di ≤xn ≤ S,
(3)

where φ(xn/txn ≥ txn min) denotes the intention generated of
the vehicle n at a distance of x meters from off-ramp.
txn ≥Txn min denotes that there is a traversable gap in the
target lane, which will analyze the determination of the
traversable gap in the next section. /e MLC intention
model describes the intensity of the MLC intention at dif-
ferent location. /e model is helpful to analyze the driving
behavior characteristics in the weaving section and also
obtains some driving potential preferences of the driver.

4.3. Gap Acceptance. /e lane-changing decision is not only
determined by the driver’s personal driving-preference but
also closely related to the driving environment. Only when
there is an acceptable gap in the target lane, the vehicles can
enter into the target lane. /erefore, the headway of the
target lane is the key factor for the successful imple-
mentation of lane changing. Erlang distribution is a more
general distribution model of traffic characteristics such as
headway and speed. According to the change of parameter
“k” in the distribution function, there are different distri-
bution functions. /e Erlang probability density function is
as follows (as shown in Figure 3):

g(t) � λe− λt(λt)k− 1

(k − 1)!
, k � 1, 2, 3, . . . . (4)

When k � 1, the Erlang distribution is equal to the
negative exponential distribution; when k�∞, a steady
headway distance is produced. /is shows that the pa-
rameter k in the Erlang distribution can reflect the condi-
tions of various traffic flows between the free traffic flow and
the crowded traffic flow. As the value of k increases, the more
crowded the traffic is, the more crowded the traffic flow
becomes. So that, it is difficult for drivers to drive freely.
/erefore, the value of k is a rough representation of the
degree of nonrandomness, and the degree of nonrandom-
ness increases as the value of k increases.

/e value of k is calculated as follows:

k �
m2

S2
, (5)

m � λ1t �
∑gj�1 kjfj∑gj�1 fi �

∑gj�1 kjfj
N

, (6)

S2 �
1

N − 1
∑N
i�1

ki −m( )2 � 1

N − 1
∑g
i�1

ki −m( )2fi, (7)

where m denotes the vehicle arrival rate during time t; S2

denotes the variance; t denotes the duration (s) or distance
(m) of each count interval; g denotes the number of the
groups;fi denotes the frequency of the number of vehicles
arriving is ki in t; ki denotes the number of vehicles arriving
in t;N denotes the total number of observation intervals; K is
an integer.

Previous studies [12, 32] assumed that the safe crossing
gap was a fixed value or followed a normal distribution.
However, due to the fact that lane changing is mandatory in
the weaving area, the closer the vehicle was to the LLCN, the

Xn

di

S

Gray area indicates the
weaving area

Figure 1: Highway weaving area.
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Figure 2: Lane-changing process.
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greater the driver’s desire to enter the target lane was. As a
result, it is assumed that the minimum acceptable gap is
proportional to the distance and proposes a minimum ac-
ceptable gap model:

txn min �
td
S
S − xn( ), (8)

where txn min is minimum acceptable merging headway
chosen by the vehicle n. td is minimum acceptable merging
headway expected by drivers in general driving
environment.

So, the probability of acceptable gap in the target lane is
as follows:

G h≥ txn min( ) � ∫∞
txn

λe− λtx
λtxn( )k− 1

(k − 1)!

�∑i
i�0

λktxn min( )ie− λktxn

i!
.

(9)

/e selection of manual-human vehicles’ lane-changing
gap is dynamic, which has great interference to CAVs
trajectory planning. If CAVs are blindly conservative or
aggressive, it is easy to cause vehicle collisions./erefore, the
acceptable gap acceptance model proposed in this paper can
provide an important technical means for MCL identifica-
tion of CAVs, which provides a guarantee for traffic safety in
mixed-traffic flows.

4.4. MLC Execution. Two conditions should be met for the
successful implementation of MLC: the driver has the MLC
intention and the target lane has an acceptable gap. When
both conditions are met, the vehicle can successfully change
lanes to the target lane. Suppose the driver has the intention
to change lanes which is event A, and there is the acceptable
gap in the target lane which is event B. According to the lane
change intention model and headway distribution model

proposed previously, the MLC probability density function
can be obtained:

P xn( ) � P(AB) � P(A)P(B),
P xn( ) � exp

− xn − di( )α

Sα β0 + β1N + β2λ1 + β3λ2( )−α[ ]

· ∫∞
td/S( )xn

λe− λtx
λ td/S( )xn( )k− 1

(k − 1)!
,

(10)

where P(xn) is the probability density function of MLC in
the weaving area. /is model can predict the lane-changing
behavior for advanced driver assistance system (ADAS) to
avoid crash and trajectory planning [27, 28].

5. Case Study and Models Verification

5.1. Scenarios and Data Description. /e NGSIM trajectory
data is obtained by the US Federal Highway Administration
(FHWA) for the purpose of conducting the “Next Gener-
ation Simulation” program [33]. /e data is collected by the
high-altitude camera to capture the vehicle’s driving process,
and then the video processing software is used to restore the
precise position of each vehicle in the study section at 10
frames per frame or 15 frames per second. /is paper uses
the data of the US-101 highway section in NGSIM. /e
length of the detected section is 640meters and there are five
lanes. In addition, it also includes a couple of ramps and an
auxiliary lane. /e effective data is obtained by processing
the trajectory data, as shown in Table 1. /e road segment
diagram is shown in Figure 4.

It can be seen from the figure that the segment has a
weaving section and the collected trajectory data is complete.
157 cars which have finished MLC were extracted from the
data.

5.2. MLC Analysis and Models Verification

5.2.1. MLC Intention Model. In order to accurately capture
the driver’s intention to change lanes and to verify the re-
liability of the MLC intention model proposed in this paper,
we extracted some trajectory in free flow. /at is, there are
no vehicles in auxiliary lane (lane 6) during this period. As
shown in Figure 5, in the absence of other vehicle inter-
ferences, lane-changing positions are mainly concentrated at
140–200 meters from the downstream. /ere are few ve-
hicles that choose to change lanes at the end of lane 5. /e
reason for this phenomenon is that drivers with MLC de-
mand tend to enter lane 6 as early as possible to relieve
pressure. While λ2 � 0, the MLC intention model is as
follows:

φ xn λ2 � 0，i � 1
∣∣∣∣( ) � exp

− xn − di( )α

Sα β0 + β1N + β2λ1( )−α[ ].
(11)

As shown in Figure 6, the curve represents the rela-
tionship between φ and xn, and the histogram represents the
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frequency at which all vehicles change lanes at xn during the
detection period. /e fit of the model proposed is 92.3%,
which can more accurately describe the intention of the
driver to change lanes.

5.2.2. Gap Acceptance Model. When there is no vehicle in
front of the subject vehicle within the detection section, the
default ID of the vehicle in front is “0,” and the headway is
also “0.” Although the headway is zero in data, but the actual

Table 1: Detecting road parameters.

Number of lanes Road type Traffic state Segment length (m) Auxiliary lane (m)

5 Highway Free 640 232

1
2

3
4

5
67 8

0 50 100 150 200 250 300 350 400 450 500 550 600 m

Figure 4: Detecting road geometry.
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headway is large. To this end, we divide the headway into two
parts. /e first part is that there is a certain headway, and the
other part is “0.” /erefore, the driver’s acceptable headway
is divided into two parts t � 0 or t≥ ta:

t �
Refuse changing lanes, 0< t< txn min,

Accept changing lanes, t � 0 or t≥ txn min,

 (12)

where t denotes headway.
/is paper uses the Erlang distribution to fit the lane

headway of lane 6, as shown in Figure 7. It is found that the
frequency of the headway is zero, accounting for 43%, which
indicates that the weaving zone is in good operating con-
dition. When k � 2, the Erlang distribution function fits
better to the headway of lane 6 (Figure 8).

/e driver’s acceptable gap is related to the driver’s own
driving style and is also related to the distance from on-
ramp. /e vehicle headway (tx max)-distance (xn) scatter
plot is drawn by collecting the headway data at the time of
the vehicles change lanes. Vehicles mainly change lanes
within 150–200meters. As the distance decreases, the range
of the headway is also reduced. /ey conform to the fol-
lowing relationship:

tmin < ta ≤ tx max � S · e
− 2/xn( ). (13)

5.2.3. MLC Positions Distribution. In this paper, the local
coordinates of the MLC lane-changing positions are col-
lected in weaving section of US-101 highway. /e trajectory
scatter plot (Figure 9) and heat map (Figure 10) of the lane
change position are drawn according to the local coordinates.
Lane 6 starts at 636.7 feet and ends at 1333.8 feet, respectively.
As can be seen from the two figures, lane change points are
mainly concentrated in the range of 650–750 feet in the
horizontal coordinate. Drivers tend to change lanes at the
front of weaving area to lane 6 which can eliminate the
pressure of lane change, instead of choosing lanes after
measuring lane utility. /is indicates that there is a trace to
follow when the vehicle chooses to change lanes. And the rule
of driver changing lanes can provide important guidance for
CAVs lane-changing recognition to avoid collision.

According to the MCL probability density function
proposed in this paper, the following formula can be
obtained:

P xn( ) � φ xn/txn ≥Tx min( ) · G h≥ tx( ) ,
� 1 + λ2

td
S
xn( )exp − xn − d( )

β0 + β1N + β2λ1 + β3λ2

−
2λ2td
S
xn[ ]

+ 0.43 · exp
xn − d( )

β0 + β1N + β2λ1

[ ],
(14)

where P(xn) represents MLC probability density function
and 0.43 in the model represents the proportion when the
headway is zero, as shown in Figure 7. It can be seen from
Figure 11 that the model proposed in this paper can
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accurately describe the drivers’ selection trend of the lane-
changing timing in the weaving section. But there is a
difference in a part at xn > 200 meters for the reason that
when establishing the MLC pressure model, this paper as-
sumes that the pressure of the lane change is inversely
proportional to the intention which makes the default op-
timal position of changing lanes be at front position of the
auxiliary lane. However, when the pressure accumulates to a
certain value, the MCL intention reaches the maximum
value. How much pressure the driver generates is needed to
be studied; the MCL intention will reach the peak.

6. Conclusion

Inspired by the principle of discretionary lane change
models, this paper proposes a method based on driver’s
psychological pressure to analysis MLC. /e main factor for
driving the driver to DLC is the lanes’ utility, and the main
factor for driving the driver to MLC is the lane-changing
pressure. /erefore, this paper proposes a new concept
named lane-changing pressure to analyze the MLC stages.
And obtaining the following research results, (1) the MLC
pressure model is proposed by leading in the lane-changing
pressure from the distance of the off-ramp. (2) Based on the
MLC pressure, an MLC intention model is proposed, which
describes the driver’s preference for lane-changing positions
in the weaving section. (3) By researching the driver’s MLC
intention and the probability of acceptable gaps, an MLC
positions probability density function is proposed.

It is verified that the proposed models can objectively
describe the characteristics of the lane-changing process in
the weaving section by the NGSIM data. Compared with the

traditional model, the proposed models explore the vehicle
lane-changing process from the driver’s level, which is more
explanatory and expandable. It can provide the basis for
CAVs vehicle to change lane recognition in heterogeneous
traffic flow in the future.
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